Skip to main content
Log in

Physiological performances of two populations of Compsopogon caeruleus (Rhodophyta) to inorganic nitrogen and phosphorus impoverishment

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Studies on the effects of inorganic nutrients manipulation (specially nitrogen and phosphorus) in freshwater macroalgae are scarce. Physiological responses (growth, photosynthesis, and pigment contents) to nitrogen and phosphorus impoverishment (nitrate and phosphates, respectively) were analyzed under culture conditions in two populations of Compsopogon caeruleus coming from environments with distinct levels of saprobity (oligosaprobic and mesosaprobic, designated isolates o and m, respectively). The aim was to evaluate the isolate responses (decrease or increase in physiological performance) to decrease in inorganic nitrogen and phosphorus concentrations. Three dilutions in original concentration of nitrogen and phosphorus of Bold Basic Medium were tested. For the nitrogen treatments, the isolate m had a more pronounced decrease in general performance in comparison to isolate o: lower values of effective quantum yield and phycobiliprotein concentrations in all nitrogen dilutions. Phycobiliprotein degradation is a typical and widely reported response of red algae under nitrogen scarcity. For the phosphorus experiments, the isolate o showed a more pronounced decrease in general performance in comparison to isolate m: lower values of maximum photosynthetic rate (Pmax) and photosynthetic efficiency (α), besides lower phycobiliprotein concentrations in all dilutions. The best performance of C. caeruleus was found at higher nutrient concentrations, confirming previous records as a good bioindicator of enriched environments. Nevertheless, the two populations differed in the mode that they use these resources, thus suggesting a possible phenotypic difference between them. Physiological responses of these isolates to nitrogen and phosphorus impoverishment seem to be more related to the type of limiting nutrient than to saprobity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α:

Photosynthetic efficiency

Pmax :

Maximum photosynthetic rate

Ik :

Saturation parameter

β:

Photoinhibition parameter

EQY:

Effective quantum yield

ETR:

Electron transport rate

References

  • Andria JR, Vergara JJ, Llorens LP (1999) Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádis, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol 34:497–504

    Article  Google Scholar 

  • Bautista AIN, Necchi Jr O (2007) Photoacclimation in three species of freshwater red algae. Braz J Plant Physiol 19:23–34

    Article  CAS  Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792

    Article  CAS  Google Scholar 

  • Biggs BJF, Stevenson RJ, Lowe RL (1998) A habitat matrix conceptual model for stream periphyton. Arch Hydrobiol 143:21–56

    Google Scholar 

  • Bird KT, Habig C, DeBusk T (1982) Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J Phycol 18:344–348

    Article  CAS  Google Scholar 

  • Brooks A (1986) Effects of phosphorus nutrition on ribulose-1,5-biphosphate carboxylase activation, photosynthetic quantum yield and amounts of Calvin-cycle metabolites in spinach leaves. Aust J Plant Physiol 13:221–237

    Article  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Codispoti LA (1989) Phosphorus vs. nitrogen limitation of new and export production. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. Wiley, New York, pp 377–394

    Google Scholar 

  • Conde-Álvarez RM, Peres-Rodríguez E, Altamirano M, Nieto JM, Abdala R, Figueroa FL, Flores-Moya A (2002) Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. Aquat Bot 73:47–61

    Article  Google Scholar 

  • Dawes CJ, Kock EU (1990) Physiological responses of the red algae Gracilaria verrucosa and. G. tikvahiae before and after nutrient enrichment. Bull Mar Sci 46:335–344

    Google Scholar 

  • Dring MJ (1990) Light haversting and pigment composition in marine phytoplankton and macroalgae. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge Univ Press, Cambridge, pp 89–103

    Google Scholar 

  • Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14

    Article  Google Scholar 

  • Falkwoski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary productivity. Science 281:200–206

    Article  Google Scholar 

  • Geider RJ, Macintyre HL, Graziano LM, McKay RML (1998) Responses of photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur J Phycol 33:315–332

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, New York

    Google Scholar 

  • Grossman AR, Schaffer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex response to environmental conditions. Microbiol Rev 57:725–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaczmarczyk D, Sheath RG (1992) Pigment content and carbon to nitrogen ratios of freshwater red algae growing at different light levels. Jpn J Phycol 40:279–282

    CAS  Google Scholar 

  • Kain JM (1987) Seasonal growth and photoinhibition in Plocamium cartilagineum (Rhodophyta) off the Isle of Man. Phycologia 32:401–409

    Google Scholar 

  • Lapointe BE (1981) The effects of light and nitrogen on growth, pigment content, and biochemical composition of Gracilaria foliifera v. angustissima (Gigartinales, Rhodophyta). J Phycol 17:90–95

    Article  CAS  Google Scholar 

  • Lapointe BE, Duke CS (1984) Biochemical strategies of growth of Gracilaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. J Phycol 20:488–495

    Article  CAS  Google Scholar 

  • Littler MM, Arnold KE (1985) Electrodes and chemicals. In: Littler MM, Littler DS (eds) Handbook of phycological methods; ecological field methods: macroalgae. Cambridge University Press, Cambridge, pp 349–375

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) Theory of island biogeography. Princeton University, Princeton

    Google Scholar 

  • Mourthé CA Jr (2000) Modificações estruturais na comunidade de diatomáceas em um gradiente de poluição hídrica: trecho superior do Rio das Velhas (Região Metropolitana de Belo Horizonte, MG). Dissertação Univ Fed, Belo Horizonte

    Google Scholar 

  • Necchi Jr O, Zucchi MR (2001) Photosynthetic performance of freshwater Rhodophyta in response to temperature, irradiance, pH and diurnal rhythm. Phycolog Res 49:305–318

    Article  Google Scholar 

  • Necchi Jr O, Branco LHZ, Dip MR (1994) Uso de macroalgas para avaliação da poluição orgânica no Rio Preto, noroeste do estado de São Paulo. Ann Acad Bras Cienc 66:359–371

    Google Scholar 

  • Necchi Jr O, Branco CCZ, Gomes RRV (1999) Microhabitat and plant structure of compsopogon coeruleus (compsopogonaceae, rhodophyta) populations in streams from from São Paulo state, southeastern Brazil. Cryptogam Algol 20:75–87

    Article  Google Scholar 

  • Necchi Jr O, Fo GAS, Salomaki ED, West JA, Aboal M, Vis ML (2013) Global sampling reveals low genetic diversity within Compsopogon (Compsopogonales, Rhodophyta). Eur J Phycol 48:152–162

    Article  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Roberts J (1997) Control of supply line. Science 278:2073–2074

    Article  CAS  PubMed  Google Scholar 

  • Sabater S, Aboal M, Cambra J (1989) Nuevas observaciones de rodofíceas en aguas epicontinentales del NE y SE de España. Limnética 5:93–100

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100. Springer-Verlag, Berlim, pp 49–70

    Google Scholar 

  • Sharkey TD (1990) Feedback limitation of photosynthesis and the physiological role of ribulose biphosphate carboxylase carbamylation. Bot Mag Tokyo Spec Tissue 2:87–105

    Google Scholar 

  • Sladecek V (1974) System of quality from the biological point of view. Arch Hydrobiol Beih Ergevn Limnol 7:1–218

    Google Scholar 

  • Thomas MLH (1988) Photosynthesis and respiration of aquatic macroflora using the light and dark bottle oxygen method and dissolved oxygen method and dissolved oxygen analyzer. In: Lobban CS, Chapman DJ, Kremer BP (eds) Experimental phycology. Cambridge University Press, Cambridge, pp 64–77

    Google Scholar 

  • Tomas X, Lopez P, Margalef-Mir R, Comin FA (1980) Distribution and ecology of Compsopogon coeruleus (Balbis) Montagne in eastern Spain. Cryptog Algolog 3:179–186

    Google Scholar 

  • Van Kooten O, Snel JJH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Vergara JJ, Niell X (1993) Effects of nitrate availability and irradiance on internal nitrogen constituents in Corallina elongata (Rhodophyta). J Phycol 29:285–293

    Article  CAS  Google Scholar 

  • Watanabe MM (2005) Freshwater culture media. In: Andersen RA (ed) Algal culture techniques. Elsevier Academic Press, Amsterdam, pp 13–20

    Google Scholar 

  • Wetzel RG (1983) Limnology, 2nd edn. Saunders College, Philadelphia

    Google Scholar 

  • Wetzel RG, Likens GE (2000) Limnlogical analyses. Springer-Verlag, New York

    Book  Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63–72

    Article  CAS  Google Scholar 

  • Zucchi MR, Necchi Jr O (2001) Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture. Phycolog Res 49:103–114

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a FAPESP (Fundação de Amparo à Pesquisa de São Paulo) master’s scholarship to AINB (05/03511-0); laboratory assistance by Maria Helena Carabolante is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Isabel Nassar Bautista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista, A.I.N., Necchi-Júnior, O. Physiological performances of two populations of Compsopogon caeruleus (Rhodophyta) to inorganic nitrogen and phosphorus impoverishment. Braz. J. Bot 37, 391–398 (2014). https://doi.org/10.1007/s40415-014-0088-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-014-0088-8

Keywords

Navigation