Skip to main content

Advertisement

Log in

Nuclear medicine techniques in transplantation

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the indications and perspectives of nuclear medicine techniques in transplantation.

Methods

We performed a systematic review of the literature using PubMed/Medline and Google scholars, with multiple research keywords for each organ accompanying the terms “transplant”, “transplantation”, “graft”, “nuclear imaging”, “scintigraphy”, “PET” and “PET/CT”. The review considers the following organs/systems: kidney, liver, pancreas, heart, lung, bone and salivary glands, as well as a common complication, the post-transplant lymphoproliferative disorder. The references of the retrieved articles were also considered to find supplementary articles. The search was limited to English language. Preoperative workup exploration, preclinical and animal studies were not included in the review. A total of 146 original articles were considered for the review, including 118 retrospective and 28 prospective studies.

Results

The functional integrity of the renal graft is safely and reliably assessed using quantitative dynamic scintigraphy with 99mTc-DTPA or 99mTc-MAG3. 18F-FDG PET/CT is a promising method for early detection of acute rejection. The glomerular filtration rate (GFR) of potential donors should ideally be assessed using 51Cr-EDTA, and the split renal function could be quantified using 99mTc-MAG3 or 99mTc-DMSA imaging. In liver transplantation, both 99mTc-GSA and 99mTc-HIDA scintigraphies can be used for evaluating the function of transplanted liver, and 18F-FDG PET/CT increasingly appears as a powerful tool for characterising the aggressiveness of hepatocellular carcinoma and contributes to the decision of transplantation in selected patients. In heart transplants, the major indication is the evaluation of cardiac allograft vasculopathy using myocardial perfusion imaging, either with SPECT or PET. In the context of lung transplantation, perfusion scanning helps select potential donors and contributes to the postoperative follow-up, either early on for detecting primary graft dysfunction or later on in the diagnosis of chronic rejection. Bone scintigraphy and 18F-NaF PET/CT are valuable tools for assessing bone graft viability. This is particularly established in mandible grafts, but convincing data are available in other types of graft. Salivary gland transplantation is not frequently performed, but in such a clinical situation, 99mTcO4 scintigraphy is an elegant way to help select the transplant and to verify the viability of the graft. Finally, 18F-FDG PET/CT is very effective in patients with post-transplant lymphoproliferative disorder (PTLD), both at diagnosis and for evaluating the response to treatment.

Conclusion

Nuclear medicine techniques are strongly established as valuable clinical tools in a wide variety of indications, before and after organ transplantation. Furthermore, 18F-FDG PET/CT in PTLD and radio-isotopic evaluation of the renal function in putative kidney donors are recommended in clinical algorithms proposed in international guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from [31], with permission

Fig. 2
Fig. 3

Reprinted from [173], with permission from Annals of Nuclear Medicine

Fig. 4

Similar content being viewed by others

References

  1. Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D et al (2011) Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 11(10):2093–2109

    Article  CAS  PubMed  Google Scholar 

  2. Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L et al (2016) Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 374(4):333–343

    Article  CAS  PubMed  Google Scholar 

  3. Hilson AJ, Maisey MN, Brown CB, Ogg CS, Bewick MS (1978) Dynamic renal transplant imaging with Tc-99 m DTPA (Sn) supplemented by a transplant perfusion index in the management of renal transplants. J Nucl Med 19(9):994–1000

    CAS  PubMed  Google Scholar 

  4. Kirchner PT, Goldman MH, Leapman SB, Kiepfer RF (1978) Clinical application of the kidney to aortic blood flow index (K/A ratio). Contrib Nephrol 11:120–126

    Article  CAS  PubMed  Google Scholar 

  5. Preston DF, Luke RG (1979) Radionuclide evaluation of renal transplants. J Nucl Med 20(10):1095–1097

    CAS  PubMed  Google Scholar 

  6. Rutland MD (1985) A comprehensive analysis of renal DTPA studies. II. Renal transplant evaluation. Nucl Med Commun 6(1):21–30

    Article  CAS  PubMed  Google Scholar 

  7. Schmidlin P, Clorius JH, Lubosch EM, Siems H, Boehm M, Dreikorn K (1985) Renal perfusion and mean vascular transit time. Eur J Nucl Med 11(2–3):69–72

    CAS  PubMed  Google Scholar 

  8. Anaise D, Oster ZH, Atkins HL, Arnold AN, Weis S, Waltzer WC et al (1986) Cortex perfusion index: a sensitive detector of acute rejection crisis in transplanted kidneys. J Nucl Med 27(11):1697–1701

    CAS  PubMed  Google Scholar 

  9. Gedroyc W, Taube D, Fogleman I, Neild G, Cameron S, Maisey M (1986) Tc-99 m DTPA scans in renal allograft rejection and cyclosporine nephrotoxicity. Transplantation 42(5):494–497

    Article  CAS  PubMed  Google Scholar 

  10. Ash J, DeSouza M, Peters M, Wilmot D, Hausen D, Gilday D (1990) Quantitative assessment of blood flow in pediatric recipients of renal transplants. J Nucl Med 31(5):580–585

    CAS  PubMed  Google Scholar 

  11. Groothedde RT, Koppejan LJ, Heidendal GK, Hasman A (1990) The differential ratio. A method for describing blood flow in renal transplants. Nucl Med Commun 11(11):771–776

    Article  CAS  PubMed  Google Scholar 

  12. al-Nahhas AM, Kedar R, Morgan SH, Landells WN, al-Murrani B, Heary T et al (1993) Cellular versus vascular rejection in transplant kidneys. Correlation of radionuclide and Doppler studies with histology. Nucl Med Commun 14(9):761–765

    Article  CAS  PubMed  Google Scholar 

  13. Chaiwatanarat T, Laorpatanaskul S, Poshyachinda M, Boonvisut S, Buachum V, Krisanachinda A et al (1994) Deconvolution analysis of renal blood flow: evaluation of postrenal transplant complications. J Nucl Med 35(11):1792–1796

    CAS  PubMed  Google Scholar 

  14. Li Y, Russell CD, Palmer-Lawrence J, Dubovsky EV (1994) Quantitation of renal parenchymal retention of technetium-99m-MAG3 in renal transplants. J Nucl Med 35(5):846–850

    CAS  PubMed  Google Scholar 

  15. Mizuiri S, Hayashi I, Takano M, Ban R, Ohara T, Sasaki Y et al (1994) Fractional mean transit time in transplanted kidneys studied by technetium-99m-DTPA: comparison of clinical and biopsy findings. J Nucl Med 35(1):84–89

    CAS  PubMed  Google Scholar 

  16. Riedinger-Berriolo A, Touzery C, Chevet D, Toubeau M, Riedinger JM, Mezeray C et al (1994) Normal range of [99mTc]MAG-3 renogram parameters in renal transplant recipients. Transplant Proc. 26(1):301–302

    CAS  PubMed  Google Scholar 

  17. Oriuchi N, Miyamoto K, Hoshino K, Imai J, Takahashi Y, Sakai S et al (1997) 99Tcm-MAG3: a sensitive indicator for evaluating perfusion and rejection of renal transplants. Nucl Med Commun 18(5):400–404

    Article  CAS  PubMed  Google Scholar 

  18. El-Maghraby TA, de Fijter JW, van Eck-Smit BL, Zwinderman AH, El-Haddad SI, Pauwels EK (1998) Renographic indices for evaluation of changes in graft function. Eur J Nucl Med 25(11):1575–1586

    Article  CAS  PubMed  Google Scholar 

  19. Lin E, Alavi A (1998) Significance of early tubular extraction in the first minute of Tc-99m MAG3 renal transplant scintigraphy. Clin Nucl Med 23(4):217–222

    Article  CAS  PubMed  Google Scholar 

  20. Dubovsky EV, Russell CD, Bischof-Delaloye A, Bubeck B, Chaiwatanarat T, Hilson AJ et al (1999) Report of the Radionuclides in Nephrourology Committee for evaluation of transplanted kidney (review of techniques). Semin Nucl Med 29(2):175–188

    Article  CAS  PubMed  Google Scholar 

  21. Heaf JG, Iversen J (2000) Uses and limitations of renal scintigraphy in renal transplantation monitoring. Eur J Nucl Med 27(7):871–879

    Article  CAS  PubMed  Google Scholar 

  22. Koizumi K, Kakiuchi H, Saguchi T, Inoue S, Fuse S, Kawakami E et al (2001) A simple objective parameter for perfusion study of renal transplant. Ann Nucl Med 15(1):27–32

    Article  CAS  PubMed  Google Scholar 

  23. Aktas A, Karakayali H, Bilgin N, Akkoc H, Moray G, Emiroglu R (2002) Serial radionuclide imaging in acute renal allograft dysfunction. Transplant Proc. 34(6):2102–2105

    Article  CAS  PubMed  Google Scholar 

  24. Aktas A (2014) Transplanted kidney function evaluation. Semin Nucl Med 44(2):129–145

    Article  PubMed  Google Scholar 

  25. Gupta SK, Lewis G, Rogers KM, Attia J, Rostron K, O’Neill L et al (2014) Quantitative (99m)Tc DTPA renal transplant scintigraphic parameters: assessment of interobserver agreement and correlation with graft pathologies. Am J Nucl Med Mol Imaging. 4(3):213–224

    PubMed  PubMed Central  Google Scholar 

  26. George EA, Codd JE, Newton WT, Haibach H, Donati RM (1976) Comparative evaluation of renal transplant rejection with radioiodinated fibrinogen 99mTc-sulfur collid, and 67Ga-citrate. J Nucl Med 17(3):175–180

    CAS  PubMed  Google Scholar 

  27. Einollahi B, Bakhtiari P, Simforoosh N, Amirjalali R, Bassiri A, Nafar M et al (2005) Renal allograft accumulation of technetium-99m sulfur colloid as a predictor of graft rejection. Transplant Proc. 37(7):2973–2975

    Article  CAS  PubMed  Google Scholar 

  28. Haas M, Sis B, Racusen LC, Solez K, Glotz D, Colvin RB et al (2014) Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant 14(2):272–283

    Article  CAS  PubMed  Google Scholar 

  29. Lopes de Souza SA, Barbosa da Fonseca LM, Torres Goncalves R, Salomao Pontes D, Holzer TJ, Proenca Martins FP et al (2004) Diagnosis of renal allograft rejection and acute tubular necrosis by 99mTc-mononuclear leukocyte imaging. Transplant Proc. 36(10):2997–3001

    Article  CAS  PubMed  Google Scholar 

  30. Martins FP, Souza SA, Goncalves RT, Fonseca LM, Gutfilen B (2004) Preliminary results of [99mTc]OKT3 scintigraphy to evaluate acute rejection in renal transplants. Transplant Proc 36(9):2664–2667

    Article  CAS  PubMed  Google Scholar 

  31. Lovinfosse P, Weekers L, Bonvoisin C, Bovy C, Grosch S, Krzesinski JM et al (2016) Fluorodeoxyglucose F(18) positron emission tomography coupled with computed tomography in suspected acute renal allograft rejection. Am J Transplant 16(1):310–316

    Article  CAS  PubMed  Google Scholar 

  32. Jadoul A, Lovinfosse P, Weekers L, Delanaye P, Krzesinski JM, Hustinx R et al. (2016) The Uptake of 18F-FDG by renal allograft in kidney transplant recipients is not influenced by renal function. Clin Nuclear Med (Ahead of print)

  33. Spicer ST, Chi KK, Nankivell BJ, Larcos G, Farlow DC, Choong KK et al (1999) Mercaptoacetyltriglycine diuretic renography and output efficiency measurement in renal transplant patients. Eur J Nucl Med 26(2):152–154

    Article  CAS  PubMed  Google Scholar 

  34. Gottlieb RH, Voci SL, Cholewinski SP, Robinette WB, Rubens DJ, O’Mara RE et al (1999) Urine leaks in renal transplant patients. Diagnostic usefulness of sonography and renography. Clin Imaging 23(1):35–39

    Article  CAS  PubMed  Google Scholar 

  35. Cohney S, Kanellis J, Howell M, Cari (2010) The CARI guidelines. Donor renal function. Nephrology (Carlton) 15(Suppl 1):S137–S145

    Article  Google Scholar 

  36. Andrews PA, Burnapp L, Manas D, Bradley JA, Dudley C, British Transplantation S et al (2012) Summary of the British Transplantation Society/Renal Association UK guidelines for living donor kidney transplantation. Transplantation 93(7):666–673

    Article  PubMed  Google Scholar 

  37. Weinberger S, Bader M, Scheurig-Munkler C, Hinz S, Neymeyer J, Miller K et al (2014) Optimizing evaluation of split renal function in a living kidney donor using scintigraphy and calculation of the geometric mean: a case report. Case Rep Nephrol Urol 4(1):1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cosgriff P, Brown H (1990) Influence of kidney depth on the renographic estimation of relative renal function. J Nucl Med 31(9):1576–1577

    CAS  PubMed  Google Scholar 

  39. Akaki S, Mitsumori A, Kanazawa S, Togami I, Takeda Y, Joja I et al (1998) Technetium-99m-DTPA-galactosyl human serum albumin liver scintigraphy evaluation of regional CT/MRI attenuation/signal intensity differences. J Nucl Med 39(3):529–532

    CAS  PubMed  Google Scholar 

  40. Sawamura T, Kawasato S, Shiozaki Y, Sameshima Y, Nakada H, Tashiro Y (1981) Decrease of a hepatic binding protein specific for asialoglycoproteins with accumulation of serum asialoglycoproteins in galactosamine-treated rats. Gastroenterology 81(3):527–533

    CAS  PubMed  Google Scholar 

  41. Kwon AH, Ha-Kawa SK, Uetsuji S, Kamiyama Y, Tanaka Y (1995) Use of technetium 99m diethylenetriamine-pentaacetic acid-galactosyl-human serum albumin liver scintigraphy in the evaluation of preoperative and postoperative hepatic functional reserve for hepatectomy. Surgery 117(4):429–434

    Article  CAS  PubMed  Google Scholar 

  42. Kokudo N, Vera DR, Makuuchi M (2003) Clinical application of TcGSA. Nucl Med Biol 30(8):845–849

    Article  CAS  PubMed  Google Scholar 

  43. Miki K, Kubota K, Inoue Y, Vera DR, Makuuchi M (2001) Receptor measurements via Tc-GSA kinetic modeling are proportional to functional hepatocellular mass. J Nucl Med 42(5):733–737

    CAS  PubMed  Google Scholar 

  44. de Graaf W, Bennink RJ, Vetelainen R, van Gulik TM (2010) Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. J Nucl Med 51(5):742–752

    Article  PubMed  Google Scholar 

  45. Iida T, Yagi S, Hori T, Uemoto S (2015) Significance of (99m)Tc-GSA liver scintigraphy in liver surgery and transplantation. Ann Transl Med 3(2):16

    PubMed  PubMed Central  Google Scholar 

  46. Wu J, Ishikawa N, Takeda T, Tanaka Y, Pan XQ, Sato M et al (1995) The functional hepatic volume assessed by 99mTc-GSA hepatic scintigraphy. Ann Nucl Med 9(4):229–235

    Article  CAS  PubMed  Google Scholar 

  47. Satoh K, Yamamoto Y, Nishiyama Y, Wakabayashi H, Ohkawa M (2003) 99mTc-GSA liver dynamic SPECT for the preoperative assessment of hepatectomy. Ann Nucl Med 17(1):61–67

    Article  PubMed  Google Scholar 

  48. Sugai Y, Komatani A, Hosoya T, Yamaguchi K (2000) Response to percutaneous transhepatic portal embolization: new proposed parameters by 99mTc-GSA SPECT and their usefulness in prognostic estimation after hepatectomy. J Nucl Med 41(3):421–425

    CAS  PubMed  Google Scholar 

  49. Kita Y, Miki K, Hirao S, Inoue Y, Ohtake T, Matsukura A et al (1998) Liver allograft functional reserve estimated by total asialoglycoprotein receptor amount using Tc-GSA liver scintigraphy. Transplant Proc 30(7):3277–3278

    Article  CAS  PubMed  Google Scholar 

  50. Sakahara H, Kiuchi T, Nishizawa S, Saga T, Nakamoto Y, Sato N et al (1999) Asialoglycoprotein receptor scintigraphy in evaluation of auxiliary partial orthotopic liver transplantation. J Nucl Med 40(9):1463–1467

    CAS  PubMed  Google Scholar 

  51. Yoshizumi T, Taketomi A, Uchiyama H, Harada N, Kayashima H, Yamashita Y et al (2008) Graft size, donor age, and patient status are the indicators of early graft function after living donor liver transplantation. Liver Transpl 14(7):1007–1013

    Article  PubMed  Google Scholar 

  52. Iida T, Isaji S, Yagi S, Hori T, Taniguchi K, Ohsawa I et al (2009) Assessment of liver graft function and regeneration by galactosyl-human serum albumin (99mTc-GSA) liver scintigraphy in adult living-donor liver transplantation. Clin Transplant 23(2):271–277

    Article  PubMed  Google Scholar 

  53. Kaibori M, Kariya S, Matsui K, Ishizaki M, Ikeda H, Nakahashi Y et al (2014) Detection of Portal Vein Stenosis by Technetium-99m-Diethylenetriaminepentaacetic Acid-Galactosyl Human Serum Albumin Liver Scintigraphy after Living-Donor Liver Transplantation. Hepatogastroenterology 61(132):1063–1067

    PubMed  Google Scholar 

  54. Kwon AH, Matsui Y, Kaibori M, Satoi S, Kamiyama Y (2004) Safety of hepatectomy for living donors as evaluated using asialoscintigraphy. Transplant Proc 36(8):2239–2242

    Article  PubMed  Google Scholar 

  55. Kaibori M, Ha-Kawa SK, Uchida Y, Ishizaki M, Saito T, Matsui K et al (2008) Liver regeneration in donors evaluated by Tc-99m-GSA scintigraphy after living donor liver transplantation. Dig Dis Sci 53(3):850–855

    Article  PubMed  Google Scholar 

  56. Haubner R, Vera DR, Farshchi-Heydari S, Helbok A, Rangger C, Putzer D et al (2013) Development of (6)(8)Ga-labelled DTPA galactosyl human serum albumin for liver function imaging. Eur J Nucl Med Mol Imaging 40(8):1245–1255

    Article  CAS  PubMed  Google Scholar 

  57. Ziessman HA (2014) Hepatobiliary scintigraphy in 2014. J Nucl Med Technol 42(4):249–259

    Article  PubMed  CAS  Google Scholar 

  58. Gambhir SS, Hawkins RA, Huang SC, Hall TR, Busuttil RW, Phelps ME (1989) Tracer kinetic modeling approaches for the quantification of hepatic function with technetium-99 m DISIDA and scintigraphy. J Nucl Med 30(9):1507–1518

    CAS  PubMed  Google Scholar 

  59. Heyman S (1994) Hepatobiliary scintigraphy as a liver function test. J Nucl Med 35(3):436–437

    CAS  PubMed  Google Scholar 

  60. Loken MK, Ascher NL, Boudreau RJ, Najarian JS (1986) Scintigraphic evaluation of liver transplant function. J Nucl Med 27(4):451–459

    CAS  PubMed  Google Scholar 

  61. Engeler CM, Kuni CC, Nakhleh R, Engeler CE, duCret RP, Boudreau RJ (1992) Liver transplant rejection and cholestasis: comparison of technetium 99 m-diisopropyl iminodiacetic acid hepatobiliary imaging with liver biopsy. Eur J Nucl Med 19(10):865–870

    Article  CAS  PubMed  Google Scholar 

  62. Brunot B, Petras S, Germain P, Vinee P, Constantinesco A (1994) Biopsy and quantitative hepatobiliary scintigraphy in the evaluation of liver transplantation. J Nucl Med 35(8):1321–1327

    CAS  PubMed  Google Scholar 

  63. Kaxiras A, Yamamoto S, Soderdahl G, Wernerson A, Axelsson R, Ericzon BG (2014) Cyclosporin A, but not tacrolimus, negatively affects the hepatic extraction fraction of hepatobiliary scintigraphy in liver transplant recipients. EJNMMI Res 4(1):73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kansoul HA, Axelsson R, Yamamoto S, Savicheva I, Aspelin P, Ericzon BG et al (2007) Parameters obtained by hepatobiliary scintigraphy have significant correlation with biochemical factors early after liver transplantation. Acta Radiol 48(6):597–604

    Article  CAS  PubMed  Google Scholar 

  65. Kim JS, Moon DH, Lee SG, Lee YJ, Park KM, Hwang S et al (2002) The usefulness of hepatobiliary scintigraphy in the diagnosis of complications after adult-to-adult living donor liver transplantation. Eur J Nucl Med Mol Imaging 29(4):473–479

    Article  CAS  PubMed  Google Scholar 

  66. Aktas A, Koyuncu A, Yalcin H (2004) Acceleration of hepatobiliary dynamics in liver transplant donors. Transplant Proc 36(1):206–209

    Article  CAS  PubMed  Google Scholar 

  67. Seehofer D, Eurich D, Veltzke-Schlieker W, Neuhaus P (2013) Biliary complications after liver transplantation: old problems and new challenges. Am J Transplant 13(2):253–265

    Article  CAS  PubMed  Google Scholar 

  68. Mochizuki T, Tauxe WN, Dobkin J, Shah AN, Shanker R, Todo S et al (1991) Detection of complications after liver transplantation by technetium-99 m mebrofenin hepatobiliary scintigraphy. Ann Nucl Med 5(3):103–107

    Article  CAS  PubMed  Google Scholar 

  69. Scott-Smith W, Raftery AT, Wraight EP, Calne RY (1983) Tc-99 m labeled HIDA imaging in suspected biliary leaks after liver transplantation. Clin Nucl Med 8(10):478–479

    Article  CAS  PubMed  Google Scholar 

  70. Gencoglu EA, Kocabas B, Moray G, Aktas A, Karakayali H, Haberal M (2008) Usefulness of hepatobiliary scintigraphy for the evaluation of living related liver transplant recipients in the early postoperative period. Transplant Proc 40(1):234–237

    Article  CAS  PubMed  Google Scholar 

  71. Al Sofayan MS, Ibrahim A, Helmy A, Al Saghier MI, Al Sebayel MI, Abozied MM (2009) Nuclear imaging of the liver: is there a diagnostic role of HIDA in posttransplantation? Transplant Proc 41(1):201–207

    Article  CAS  PubMed  Google Scholar 

  72. Lee JY, Hu W, Lee KH, Kwon CH, Lee EJ, Choi JY et al (2012) Differentiation of liver transplantation complications by quantitative analysis of dynamic hepatobiliary scintigraphy. Nucl Med Commun 33(3):255–261

    Article  CAS  PubMed  Google Scholar 

  73. Hopkins LO, Feyssa E, Parsikia A, Khanmoradi K, Zaki R, Campos S et al (2011) Tc-99m-Br IDA hepatobiliary (HIDA) scan has a low sensitivity for detecting biliary complications after orthotopic liver transplantation in patients with hyperbilirubinemia. Ann Nucl Med 25(10):762–767

    Article  PubMed  Google Scholar 

  74. Tsuji AB, Morita M, Li XK, Sogawa C, Sudo H, Sugyo A et al (2009) 18F-FDG PET for semiquantitative evaluation of acute allograft rejection and immunosuppressive therapy efficacy in rat models of liver transplantation. J Nucl Med 50(5):827–830

    Article  CAS  PubMed  Google Scholar 

  75. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365(12):1118–1127

    Article  CAS  PubMed  Google Scholar 

  76. Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F et al (1996) Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 334(11):693–699

    Article  CAS  PubMed  Google Scholar 

  77. Welker MW, Bechstein WO, Zeuzem S, Trojan J (2013) Recurrent hepatocellular carcinoma after liver transplantation—an emerging clinical challenge. Transpl Int 26(2):109–118

    Article  PubMed  Google Scholar 

  78. Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasayama S, Yonekura Y et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36(10):1811–1817

    CAS  PubMed  Google Scholar 

  79. Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N et al (2007) Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res 13(2 Pt 1):427–433

    Article  CAS  PubMed  Google Scholar 

  80. Yang SH, Suh KS, Lee HW, Cho EH, Cho JY, Cho YB et al (2006) The role of (18)F-FDG-PET imaging for the selection of liver transplantation candidates among hepatocellular carcinoma patients. Liver Transpl 12(11):1655–1660

    Article  PubMed  Google Scholar 

  81. Kornberg A, Freesmeyer M, Barthel E, Jandt K, Katenkamp K, Steenbeck J et al (2009) 18F-FDG-uptake of hepatocellular carcinoma on PET predicts microvascular tumor invasion in liver transplant patients. Am J Transplant 9(3):592–600

    Article  CAS  PubMed  Google Scholar 

  82. Lee JW, Paeng JC, Kang KW, Kwon HW, Suh KS, Chung JK et al (2009) Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J Nucl Med 50(5):682–687

    Article  PubMed  Google Scholar 

  83. Kornberg A, Kupper B, Tannapfel A, Buchler P, Krause B, Witt U et al (2012) Patients with non-[18 F]fludeoxyglucose-avid advanced hepatocellular carcinoma on clinical staging may achieve long-term recurrence-free survival after liver transplantation. Liver Transpl 18(1):53–61

    Article  PubMed  Google Scholar 

  84. Lee SD, Kim SH, Kim YK, Kim C, Kim SK, Han SS et al (2013) (18)F-FDG-PET/CT predicts early tumor recurrence in living donor liver transplantation for hepatocellular carcinoma. Transpl Int 26(1):50–60

    Article  PubMed  Google Scholar 

  85. Detry O, Govaerts L, Deroover A, Vandermeulen M, Meurisse N, Malenga S et al (2015) Prognostic value of (18)F-FDG PET/CT in liver transplantation for hepatocarcinoma. World J Gastroenterol 21(10):3049–3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hong G, Suh KS, Suh SW, Yoo T, Kim H, Park MS et al (2016) Alpha-fetoprotein and (18)F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation. J Hepatol 64(4):852–859

    Article  CAS  PubMed  Google Scholar 

  87. Kim YI, Paeng JC, Cheon GJ, Suh KS, Lee DS, Chung JK et al (2016) Prediction of post-transplantation recurrence of hepatocellular carcinoma by using metabolic and volumetric indices of 18F-FDG PET/CT. J Nucl Med. doi:10.2967/jnumed.115.170076

    Google Scholar 

  88. Kobayashi T, Aikata H, Honda F, Nakano N, Nakamura Y, Hatooka M et al (2016) Preoperative fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for prediction of microvascular invasion in small hepatocellular carcinoma. J Comput Assist Tomogr. doi:10.1097/RCT.0000000000000405

    PubMed  Google Scholar 

  89. Kim YK, Lee KW, Cho SY, Han SS, Kim SH, Kim SK et al (2010) Usefulness 18F-FDG positron emission tomography/computed tomography for detecting recurrence of hepatocellular carcinoma in posttransplant patients. Liver Transpl 16(6):767–772

    Article  PubMed  Google Scholar 

  90. Darwish Murad S, Heimbach JK, Gores GJ, Rosen CB, Benson JT, Kim WR (2013) Excellent quality of life after liver transplantation for patients with perihilar cholangiocarcinoma who have undergone neoadjuvant chemoradiation. Liver Transpl 19(5):521–528

    Article  PubMed  Google Scholar 

  91. Kornberg A, Kupper B, Thrum K, Wilberg J, Sappler A, Gottschild D (2009) Recurrence-free long-term survival after liver transplantation in patients with 18F-FDG non-avid hilar cholangiocarcinoma on PET. Am J Transplant 9(11):2631–2636

    Article  CAS  PubMed  Google Scholar 

  92. Dholakia S, Mittal S, Quiroga I, Gilbert J, Sharples EJ, Ploeg RJ et al (2016) Pancreas transplantation: past, present, future. Am J Med. doi:10.1016/j.amjmed.2016.02.011

    PubMed  Google Scholar 

  93. Toledo-Pereyra LH, Kristen KT, Mittal VK (1982) Scintigraphy of pancreatic transplants. AJR Am J Roentgenol 138(4):621–622

    Article  CAS  PubMed  Google Scholar 

  94. Hahn D, Bull U, Land W (1983) Pancreatic grafts. Nuclear perfusion imaging to detect vascular complications and rejection crises. Horm Metab Res Suppl. http://www.ncbi.nlm.nih.gov/pubmed/6345324(13):78-80

  95. Shulkin BL, Dafoe DC, Wahl RL (1986) Simultaneous pancreatic-renal transplant scintigraphy. AJR Am J Roentgenol 147(6):1193–1196

    Article  CAS  PubMed  Google Scholar 

  96. George EA, Salimi Z, Carney K, Castaneda M, Garvin PJ (1988) Radionuclide surveillance of the allografted pancreas. AJR Am J Roentgenol 150(4):811–816

    Article  CAS  PubMed  Google Scholar 

  97. Patel B, Markivee CR, Mahanta B, Vas W, George E, Garvin P (1988) Pancreatic transplantation: scintigraphy, US, and CT. Radiology 167(3):685–687

    Article  CAS  PubMed  Google Scholar 

  98. Yuh WT, Wiese JA, Abu-Yousef MM, Rezai K, Sato Y, Berbaum KS et al (1988) Pancreatic transplant imaging. Radiology 167(3):679–683

    Article  CAS  PubMed  Google Scholar 

  99. Kuni CC, du Cret RP, Boudreau RJ (1989) Pancreas transplants: evaluation using perfusion scintigraphy. AJR Am J Roentgenol 153(1):57–61

    Article  CAS  PubMed  Google Scholar 

  100. Catafau AM, Lomena FJ, Ricart MJ, Pons F, Piera C, Pavia J et al (1989) Indium-111-labeled platelets in monitoring human pancreatic transplants. J Nucl Med 30(9):1470–1475

    CAS  PubMed  Google Scholar 

  101. Hirsch H, Fernandez-Ulloa M, Munda R, Fisher RA, Moulton JS, Huth CJ (1991) Diagnosis of segmental necrosis in a pancreas transplant by thallium-201 perfusion scintigraphy. J Nucl Med 32(8):1605–1607

    CAS  PubMed  Google Scholar 

  102. van der Hem LG, van der Linden CJ, Ticheler CH, Hoitsma AJ, Corstens FH (1994) Early detection of post-transplant pancreatic graft dysfunction with technetium-99m-HMPAO scintigraphy. J Nucl Med 35(9):1488–1490

    PubMed  Google Scholar 

  103. Elgazzar AH, Munda R, Fernandez-Ulloa M, Clark J, Ryan JR, Hughes JA (1995) Scintigraphic evaluation of pancreatic transplants using technetium-99m-sestamibi. J Nucl Med 36(5):771–777

    CAS  PubMed  Google Scholar 

  104. Vandermeer FQ, Manning MA, Frazier AA, Wong-You-Cheong JJ (2012) Imaging of whole-organ pancreas transplants. Radiographics. 32(2):411–435

    Article  PubMed  Google Scholar 

  105. Yates A, Parry C, Stephens M, Eynon A (1030) Imaging pancreas transplants. Br J Radiol 2013(86):20130428

    Google Scholar 

  106. Tolat PP, Foley WD, Johnson C, Hohenwalter MD, Quiroz FA (2015) Pancreas transplant imaging: how I do it. Radiology 275(1):14–27

    Article  PubMed  Google Scholar 

  107. Otsuki K, Kenmochi T, Saigo K, Maruyama M, Akutsu N, Iwashita C et al (2008) Evaluation of segmental pancreatic function using 11C-methionine positron emission tomography for safe operation of living donor pancreas transplantation. Transplant Proc 40(8):2562–2564

    Article  CAS  PubMed  Google Scholar 

  108. Otsuki K, Yoshikawa K, Kenmoshi T, Akutsu N, Maruyama M, Asano T et al (2014) Evaluation of insulin independence using 11C-methionine positron emission tomography after living-donor and brain-dead donor pancreas transplantation. Transplant Proc 46(6):1913–1916

    Article  CAS  PubMed  Google Scholar 

  109. Eriksson O, Eich T, Sundin A, Tibell A, Tufveson G, Andersson H et al (2009) Positron emission tomography in clinical islet transplantation. Am J Transpl 9(12):2816–2824

    Article  CAS  Google Scholar 

  110. Freeby M, Goland R, Ichise M, Maffei A, Leibel R, Harris P (2008) VMAT2 quantitation by PET as a biomarker for beta-cell mass in health and disease. Diabetes Obes Metab 10(Suppl 4):98–108

    Article  PubMed  Google Scholar 

  111. Eriksson O, Jahan M, Johnstrom P, Korsgren O, Sundin A, Halldin C et al (2010) In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol 37(3):357–363

    Article  CAS  PubMed  Google Scholar 

  112. Fagerholm V, Mikkola KK, Ishizu T, Arponen E, Kauhanen S, Nagren K et al (2010) Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med 51(9):1439–1446

    Article  CAS  PubMed  Google Scholar 

  113. Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49(7):1171–1176

    Article  CAS  PubMed  Google Scholar 

  114. Tornehave D, Kristensen P, Romer J, Knudsen LB, Heller RS (2008) Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J Histochem Cytochem 56(9):841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pattou F, Kerr-Conte J, Wild D (2010) GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. N Engl J Med 363(13):1289–1290

    Article  PubMed  Google Scholar 

  116. Christ E, Wild D, Forrer F, Brandle M, Sahli R, Clerici T et al (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94(11):4398–4405

    Article  CAS  PubMed  Google Scholar 

  117. DePasquale EC, Schweiger M, Ross HJ (2014) A contemporary review of adult heart transplantation: 2012 to 2013. J Heart Lung Transplant 33(8):775–784

    Article  PubMed  Google Scholar 

  118. Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD et al (2013) The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report–2013; focus theme: age. J Heart Lung Transplant 32(10):951–964

    Article  PubMed  Google Scholar 

  119. Orrego CM, Cordero-Reyes AM, Estep JD, Loebe M, Torre-Amione G (2012) Usefulness of routine surveillance endomyocardial biopsy 6 months after heart transplantation. J Heart Lung Transplant 31(8):845–849

    Article  PubMed  Google Scholar 

  120. Miller CA, Fildes JE, Ray SG, Doran H, Yonan N, Williams SG et al (2013) Non-invasive approaches for the diagnosis of acute cardiac allograft rejection. Heart 99(7):445–453

    Article  CAS  PubMed  Google Scholar 

  121. Lee KJ, Wallis JW, Miller TR, Bolman RM 3rd (1990) The clinical utility of radionuclide ventriculography in cardiac transplantation. J Nucl Med 31(12):1933–1939

    CAS  PubMed  Google Scholar 

  122. Flotats A, Carrio I (2006) Value of radionuclide studies in cardiac transplantation. Ann Nucl Med 20(1):13–21

    Article  CAS  PubMed  Google Scholar 

  123. Narula J, Southern JF, Dec GW, Palacios IF, Newell JB, Fallon JT et al (1995) Antimyosin uptake and myofibrillar lysis in dilated cardiomyopathy. J Nucl Cardiol 2(6):470–477

    Article  CAS  PubMed  Google Scholar 

  124. Hesse B, Mortensen SA, Folke M, Brodersen AK, Aldershvile J, Pettersson G (1995) Ability of antimyosin scintigraphy monitoring to exclude acute rejection during the first year after heart transplantation. J Heart Lung Transpl 14(1 Pt 1):23–31

    CAS  Google Scholar 

  125. Schutz A, Breuer M, Kemkes BM (1997) Antimyosin antibodies in cardiac rejection. Ann Thorac Surg 63(2):578–581

    Article  CAS  PubMed  Google Scholar 

  126. Ballester M, Obrador D, Carrio I, Auge JM, Moya C, Pons-Llado G et al (1990) Indium-111-monoclonal antimyosin antibody studies after the first year of heart transplantation. Identification of risk groups for developing rejection during long-term follow-up and clinical implications. Circulation 82(6):2100–2107

    Article  CAS  PubMed  Google Scholar 

  127. Rubin PJ, Hartman JJ, Hasapes JP, Bakke JE, Bergmann SR (1996) Detection of cardiac transplant rejection with 111In-labeled lymphocytes and gamma scintigraphy. Circulation 94(9 Suppl):II298–II303

    CAS  PubMed  Google Scholar 

  128. Kown MH, Strauss HW, Blankenberg FG, Berry GJ, Stafford-Cecil S, Tait JF et al (2001) In vivo imaging of acute cardiac rejection in human patients using (99m)technetium labeled annexin V. Am J Transpl 1(3):270–277

    Article  CAS  Google Scholar 

  129. Rodney RA, Johnson LL, Blood DK, Barr ML (1994) Myocardial perfusion scintigraphy in heart transplant recipients with and without allograft atherosclerosis: a comparison of thallium-201 and technetium 99m sestamibi. J Heart Lung Transpl 13(2):173–180

    CAS  Google Scholar 

  130. Lamich R, Ballester M, Marti V, Brossa V, Aymat R, Carrio I et al (1998) Efficacy of augmented immunosuppressive therapy for early vasculopathy in heart transplantation. J Am Coll Cardiol 32(2):413–419

    Article  CAS  PubMed  Google Scholar 

  131. Carlsen J, Toft JC, Mortensen SA, Arendrup H, Aldershvile J, Hesse B (2000) Myocardial perfusion scintigraphy as a screening method for significant coronary artery stenosis in cardiac transplant recipients. J Heart Lung Transpl 19(9):873–878

    Article  CAS  Google Scholar 

  132. Elhendy A, Sozzi FB, van Domburg RT, Vantrimpont P, Valkema R, Krenning EP et al (2000) Accuracy of dobutamine tetrofosmin myocardial perfusion imaging for the noninvasive diagnosis of transplant coronary artery stenosis. J Heart Lung Transpl 19(4):360–366

    Article  CAS  Google Scholar 

  133. Ciliberto GR, Ruffini L, Mangiavacchi M, Parolini M, Sara R, Massa D et al (2001) Resting echocardiography and quantitative dipyridamole technetium-99m sestamibi tomography in the identification of cardiac allograft vasculopathy and the prediction of long-term prognosis after heart transplantation. Eur Heart J 22(11):964–971

    Article  CAS  PubMed  Google Scholar 

  134. Elhendy A, van Domburg RT, Vantrimpont P, Poldermans D, Bax JJ, van Gelder T et al (2002) Prediction of mortality in heart transplant recipients by stress technetium-99m tetrofosmin myocardial perfusion imaging. Am J Cardiol 89(8):964–968

    Article  PubMed  Google Scholar 

  135. Wu YW, Yen RF, Lee CM, Ho YL, Chou NK, Wang SS et al (2005) Diagnostic and prognostic value of dobutamine thallium-201 single-photon emission computed tomography after heart transplantation. J Heart Lung Transpl 24(5):544–550

    Article  Google Scholar 

  136. Hacker M, Tausig A, Romuller B, Hoyer X, Klauss V, Stempfle U et al (2005) Dobutamine myocardial scintigraphy for the prediction of cardiac events after heart transplantation. Nucl Med Commun 26(7):607–612

    Article  PubMed  Google Scholar 

  137. Manrique A, Bernard M, Hitzel A, Bubenheim M, Tron C, Agostini D et al (2010) Diagnostic and prognostic value of myocardial perfusion gated SPECT in orthotopic heart transplant recipients. J Nucl Cardiol 17(2):197–206

    Article  PubMed  Google Scholar 

  138. Wenning C, Stypmann J, Papavassilis P, Sindermann J, Schober O, Hoffmeier A et al (2012) Left ventricular dilation and functional impairment assessed by gated SPECT are indicators of cardiac allograft vasculopathy in heart transplant recipients. J Heart Lung Transpl 31(7):719–728

    Article  Google Scholar 

  139. Wenning C, Vrachimis A, Dell Aquila A, Penning A, Stypmann J, Schafers M (2015) Inhomogeneous myocardial stress perfusion in SPECT studies predicts future allograft dysfunction in heart transplant recipients. EJNMMI Res 5(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wu YW, Chen YH, Wang SS, Jui HY, Yen RF, Tzen KY et al (2010) PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J Nucl Med 51(6):906–912

    Article  PubMed  Google Scholar 

  141. Allen-Auerbach M, Schoder H, Johnson J, Kofoed K, Einhorn K, Phelps ME et al (1999) Relationship between coronary function by positron emission tomography and temporal changes in morphology by intravascular ultrasound (IVUS) in transplant recipients. J Heart Lung Transpl 18(3):211–219

    Article  CAS  Google Scholar 

  142. Guertner C, Krause BJ, Klepzig H Jr, Herrmann G, Lelbach S, Vockert EK et al (1995) Sympathetic re-innervation after heart transplantation: dual-isotope neurotransmitter scintigraphy, norepinephrine content and histological examination. Eur J Nucl Med 22(5):443–452

    Article  CAS  PubMed  Google Scholar 

  143. De Marco T, Dae M, Yuen-Green MS, Kumar S, Sudhir K, Keith F et al (1995) Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol 25(4):927–931

    Article  PubMed  Google Scholar 

  144. Estorch M, Camprecios M, Flotats A, Mari C, Berna L, Catafau AM et al (1999) Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med 40(6):911–916

    CAS  PubMed  Google Scholar 

  145. Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M (1999) Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 99(14):1866–1871

    Article  CAS  PubMed  Google Scholar 

  146. Balsam LB, Robbins RC (2007) Current trends in heart transplantation. Scand J Surg 96(2):125–130

    Article  CAS  PubMed  Google Scholar 

  147. Ergul N, Cermik TF (2011) FDG-PET or PET/CT in fever of unknown origin: the diagnostic role of underlying primary disease. Int J Mol Imaging 2011:318051

    Article  PubMed  PubMed Central  Google Scholar 

  148. Graute V, Jansen N, Sohn HY, Becker A, Klein B, Schmid I et al (2012) Diagnostic role of whole-body [18F]-FDG positron emission tomography in patients with symptoms suspicious for malignancy after heart transplantation. J Heart Lung Transpl 31(9):958–966

    Article  Google Scholar 

  149. Delgado JF, Alonso-Pulpon L, Mirabet S, Almenar L, Villa FP, Gonzalez-Vilchez F et al (2016) Cancer incidence in heart transplant recipients with previous neoplasia history. Am J Transpl 16(5):1569–1578

    Article  CAS  Google Scholar 

  150. Stanchina ML, Tantisira KG, Aquino SL, Wain JC, Ginns LC (2002) Association of lung perfusion disparity and mortality in patients with cystic fibrosis awaiting lung transplantation. J Heart Lung Transpl 21(2):217–225

    Article  Google Scholar 

  151. Fox BD, Nachum IB, Bernstine H, Amital A, Bakal I, Peled N et al (2008) Graft side-mismatching for single-lung transplantation does not affect outcomes: role of the pre-operative quantitative lung perfusion scan. J Heart Lung Transpl 27(3):272–275

    Article  Google Scholar 

  152. Sokai A, Handa T, Chen F, Tanizawa K, Aoyama A, Kubo T et al (2016) Serial perfusion in native lungs in patients with idiopathic pulmonary fibrosis and other interstitial lung diseases after single lung transplantation. Clin Transpl 30(4):407–414

    Article  Google Scholar 

  153. Kramer MR, Marshall SE, McDougall IR, Kloneck A, Starnes VA, Lewiston NJ et al (1991) The distribution of ventilation and perfusion after single-lung transplantation in patients with pulmonary fibrosis and pulmonary hypertension. Transpl Proc 23(1 Pt 2):1215–1216

    CAS  Google Scholar 

  154. Colt HG, Cammilleri S, Khelifa F, Dumon JF, Garbe L, Noirclerc M et al (1994) Comparison of SPECT lung perfusion with transbronchial lung biopsy after lung transplantation. Am J Respir Crit Care Med 150(2):515–520

    Article  CAS  PubMed  Google Scholar 

  155. Christie JD, Sager JS, Kimmel SE, Ahya VN, Gaughan C, Blumenthal NP et al (2005) Impact of primary graft failure on outcomes following lung transplantation. Chest 127(1):161–165

    Article  PubMed  Google Scholar 

  156. Belmaati EO, Iversen M, Kofoed KF, Nielsen MB, Mortensen J (2012) Scintigraphy at 3 months after single lung transplantation and observations of primary graft dysfunction and lung function. Interact CardioVasc Thorac Surg 14(6):792–796

    Article  PubMed  PubMed Central  Google Scholar 

  157. Humplik BI, Sandrock D, Aurisch R, Richter WS, Ewert R, Munz DL (2005) Scintigraphic results in patients with lung transplants: a prospective comparative study. Nuklearmedizin 44(2):62–68

    CAS  PubMed  Google Scholar 

  158. Andrade M, Krug B, Abraham C, Pirson AS, Delaunois L, Vander Borght T (2008) Unusual ventilation-perfusion scans in the follow-up of two lung transplant patients. Clin Nucl Med 33(10):713–716

    Article  PubMed  Google Scholar 

  159. Karetzky MS, Jasani RR, Zubair MA (1996) Thallium-201 scintigraphy in the evaluation of graft dysfunction in lung transplantation. Newark Beth Israel Medical Center Lung Transplant Group. Eur Respir J 9(12):2553–2559

    Article  CAS  PubMed  Google Scholar 

  160. Hardoff R, Steinmetz AP, Krausz Y, Bar-Sever Z, Liani M, Kramer MR (2000) The prognostic value of perfusion lung scintigraphy in patients who underwent single-lung transplantation for emphysema and pulmonary fibrosis. J Nucl Med 41(11):1771–1776

    CAS  PubMed  Google Scholar 

  161. Ouwens JP, van der Bij W, van der Mark TW, Geertsma A, Piers DA, de Boer WJ et al (2004) The value of ventilation scintigraphy after single lung transplantation. J Heart Lung Transpl 23(1):115–121

    Article  Google Scholar 

  162. Johansson A, Moonen M, Enocson A, Martensson G, Bake B (2005) Detection of chronic rejection by quantitative ventilation scintigrams in lung-transplanted patients: a pilot study. Clin Physiol Funct Imaging 25(3):183–187

    Article  PubMed  Google Scholar 

  163. Shinya T, Sato S, Kato K, Gobara H, Akaki S, Date H et al (2008) Assessment of mean transit time in the engrafted lung with 133Xe lung ventilation scintigraphy improves diagnosis of bronchiolitis obliterans syndrome in living-donor lobar lung transplant recipients. Ann Nucl Med 22(1):31–39

    Article  PubMed  Google Scholar 

  164. Ross DJ, Waters PF, Waxman AD, Koerner SK, Mohsenifar Z (1993) Regional distribution of lung perfusion and ventilation at rest and during steady-state exercise after unilateral lung transplantation. Chest 104(1):130–135

    Article  CAS  PubMed  Google Scholar 

  165. Starobin D, Shitrit D, Steinmetz A, Fink G, Hardoff R, Kramer MR (2007) Quantitative lung perfusion following single lung transplantation. Thorac Cardiovasc Surg 55(1):48–52

    Article  CAS  PubMed  Google Scholar 

  166. Bergstedt HF, Korlof B, Lind MG, Wersall J (1978) Scintigraphy of human autologous rib transplants to a partially resected mandible. Scand J Plast Reconstr Surg 12(2):151–156

    Article  CAS  PubMed  Google Scholar 

  167. Frame JW, Edmondson HD, O’Kane MM (1983) A radio-isotope study of the healing of mandibular bone grafts in patients. Br J Oral Surg 21(4):277–289

    Article  CAS  PubMed  Google Scholar 

  168. Zinberg EM, Wood MB, Brown ML (1985) Vascularized bone transfer: evaluation of viability by postoperative bone scan. J Reconstr Microsurg 2(1):13–19

    Article  CAS  PubMed  Google Scholar 

  169. Karcher H, Fuger G, Borbely L (1988) Bone scintigraphy of vascularized bone transfer in maxillofacial surgery. Oral Surg Oral Med Oral Pathol 65(5):519–522

    Article  CAS  PubMed  Google Scholar 

  170. Takato T, Harii K, Nakatsuka T (1988) The sequential evaluation of bone scintigraphy: an analysis of revascularised bone grafts. Br J Plast Surg 41(3):262–269

    Article  CAS  PubMed  Google Scholar 

  171. Berding G, Bothe K, Gratz KF, Schmelzeisen R, Neukam FW, Hundeshagen H (1994) Bone scintigraphy in the evaluation of bone grafts used for mandibular reconstruction. Eur J Nucl Med 21(2):113–117

    Article  CAS  PubMed  Google Scholar 

  172. Harada H, Takinami S, Makino S, Kitada H, Yamashita T, Notani K et al (2000) Three-phase bone scintigraphy and viability of vascularized bone grafts for mandibular reconstruction. Int J Oral Maxillofac Surg 29(4):280–284

    Article  CAS  PubMed  Google Scholar 

  173. Buyukdereli G, Guney IB, Ozerdem G, Kesiktas E (2006) Evaluation of vascularized graft reconstruction of the mandible with Tc-99m MDP bone scintigraphy. Ann Nucl Med 20(2):89–93

    Article  PubMed  Google Scholar 

  174. Schuepbach J, Dassonville O, Poissonnet G, Demard F (2007) Early postoperative bone scintigraphy in the evaluation of microvascular bone grafts in head and neck reconstruction. Head Face Med 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hervas I, Floria LM, Bello P, Baquero MC, Perez R, Barea J et al (2001) Microvascularized fibular graft for mandibular reconstruction: detection of viability by bone scintigraphy and SPECT. Clin Nucl Med 26(3):225–229

    Article  CAS  PubMed  Google Scholar 

  176. Schimming R, Juengling FD, Lauer G, Schmelzeisen R (2000) Evaluation of microvascular bone graft reconstruction of the head and neck with 3-D 99mTc-DPD SPECT scans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90(6):679–685

    Article  CAS  PubMed  Google Scholar 

  177. Aydogan F, Akbay E, Cevik C, Kalender E (2014) Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction. Eur Rev Med Pharmacol Sci 18(4):587–592

    CAS  PubMed  Google Scholar 

  178. Lauer I, Czech N, Zieron J, Sieg P, Richter E, Baehre M (2000) Assessment of the viability of microvascularized bone grafts after mandibular reconstruction by means of bone SPET and semiquantitative analysis. Eur J Nucl Med 27(10):1552–1556

    Article  CAS  PubMed  Google Scholar 

  179. Ramsay SC, Yeates MG, Ho LC (1991) Bone scanning in the early assessment of nasal bone graft viability. J Nucl Med 32(1):33–36

    CAS  PubMed  Google Scholar 

  180. Kirschner MH, Manthey N, Tatsch K, Nerlich A, Hahn K, Hofmann GO (1999) Use of three-phase bone scans and SPET in the follow-up of patients with allogenic vascularized femur transplants. Nucl Med Commun 20(6):517–524

    Article  CAS  PubMed  Google Scholar 

  181. Manthey N, Kirschner MH, Nerlich A, Hofmann GO, Tatsch K, Hahn K (2001) 3-phase bone imaging and SPECT in the follow up of patients with allogenic vascularized knee joint transplants. Nuklearmedizin 40(6):187–192

    CAS  PubMed  Google Scholar 

  182. Droll KP, Prasad V, Ciorau A, Gray BG, McKee MD (2007) The use of postoperative bone scintigraphy to predict graft retention. Can J Surg 50(4):261–265

    PubMed  PubMed Central  Google Scholar 

  183. Malizos KN, Soucacos PN, Vragalas V, Dailiana ZH, Schina I, Fotopoulos A (1995) Three phase bone scanning and digital arteriograms for monitoring vascularized fibular grafts in femoral head necrosis. Int Angiol 14(3):319–326

    CAS  PubMed  Google Scholar 

  184. Jadvar H, Desai B, Conti PS (2015) Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med 45(1):58–65

    Article  PubMed  PubMed Central  Google Scholar 

  185. Schliephake H, Berding G, Knapp WH, Sewilam S (1999) Monitoring of graft perfusion and osteoblast activity in revascularised fibula segments using [18F]-positron emission tomography. Int J Oral Maxillofac Surg 28(5):349–355

    Article  CAS  PubMed  Google Scholar 

  186. Berding G, Schliephake H, van den Hoff J, Knapp WH (2001) Assessment of the incorporation of revascularized fibula grafts used for mandibular reconstruction with F-18-PET. Nuklearmedizin 40(2):51–58

    CAS  PubMed  Google Scholar 

  187. Quon A, Dodd R, Iagaru A, de Abreu MR, Hennemann S, Alves Neto JM et al (2012) Initial investigation of (1)(8)F-NaF PET/CT for identification of vertebral sites amenable to surgical revision after spinal fusion surgery. Eur J Nucl Med Mol Imaging 39(11):1737–1744

    Article  PubMed  PubMed Central  Google Scholar 

  188. Brans B, Weijers R, Halders S, Wierts R, Peters M, Punt I et al (2012) Assessment of bone graft incorporation by 18 F-fluoride positron-emission tomography/computed tomography in patients with persisting symptoms after posterior lumbar interbody fusion. EJNMMI Res 2(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  189. Piert M, Winter E, Becker GA, Bilger K, Machulla H, Muller-Schauenburg W et al (1999) Allogenic bone graft viability after hip revision arthroplasty assessed by dynamic [18F]fluoride ion positron emission tomography. Eur J Nucl Med 26(6):615–624

    Article  CAS  PubMed  Google Scholar 

  190. Brenner W, Vernon C, Conrad EU, Eary JF (2004) Assessment of the metabolic activity of bone grafts with (18)F-fluoride PET. Eur J Nucl Med Mol Imaging 31(9):1291–1298

    Article  CAS  PubMed  Google Scholar 

  191. Bernstein P, Beuthien-Baumann B, Kotzerke J, Hofheinz F, Zessin J, Stiehler M et al (2014) Periacetabular bone metabolism following hip revision surgery. PET-based evaluation of allograft osteointegration. Nuklearmedizin. 53(4):147–154

    Article  CAS  PubMed  Google Scholar 

  192. Sorensen J, Ullmark G, Langstrom B, Nilsson O (2003) Rapid bone and blood flow formation in impacted morselized allografts: positron emission tomography (PET) studies on allografts in 5 femoral component revisions of total hip arthroplasty. Acta Orthop Scand 74(6):633–643

    Article  PubMed  Google Scholar 

  193. Temmerman OP, Raijmakers PG, Heyligers IC, Comans EF, Lubberink M, Teule GJ et al (2008) Bone metabolism after total hip revision surgery with impacted grafting: evaluation using H2 15O and [18F]fluoride PET; a pilot study. Mol Imaging Biol 10(5):288–293

    Article  PubMed  PubMed Central  Google Scholar 

  194. Itala A, Alihanka S, Kosola J, Kemppainen J, Ranne J, Kajander S (2016) Tendon graft healing in multiligament reconstructed knee detected by FDG-PET/CT: a pilot study. Scand J Surg 105(2):133–138

    Article  CAS  PubMed  Google Scholar 

  195. Murube-del-Castillo J (1986) Transplantation of salivary gland to the lacrimal basin. Scand J Rheumatol Suppl 61:264–267

    CAS  PubMed  Google Scholar 

  196. Lauer I, Sieg P, Bahre M, Richter E (1998) Salivary gland scintigraphy using technetium-99m-pertechnetate after autotransplantation of the submandibular salivary gland in the correction of dry eye. Eur J Nucl Med 25(2):128–131

    Article  CAS  PubMed  Google Scholar 

  197. Zhang L, Zhu ZH, Dai HJ, Cai ZG, Mao C, Peng X et al (2007) Application of 99mTc-pertechnetate scintigraphy to microvascular autologous transplantation of the submandibular gland in patients with severe keratoconjunctivitis sicca. J Nucl Med 48(9):1431–1435

    Article  PubMed  Google Scholar 

  198. Wu F, Weng S, Li C, Sun J, Li L, Gao Q (2015) Submandibular gland transfer for the prevention of postradiation xerostomia in patients with head and neck cancer: a systematic review and meta-analysis. ORL J Otorhinolaryngol Relat Spec 77(2):70–86

    Article  PubMed  Google Scholar 

  199. Jha N, Seikaly H, McGaw T, Coulter L (2000) Submandibular salivary gland transfer prevents radiation-induced xerostomia. Int J Radiat Oncol Biol Phys 46(1):7–11

    Article  CAS  PubMed  Google Scholar 

  200. Liu XK, Su Y, Jha N, Hong MH, Mai HQ, Fan W et al (2011) Submandibular salivary gland transfer for the prevention of radiation-induced xerostomia in patients with nasopharyngeal carcinoma: 5-Year outcomes. Head Neck 33(3):389–395

    PubMed  Google Scholar 

  201. Zhang X, Liu F, Lan X, Yu L, Wu W, Wu X et al (2014) Clinical observation of submandibular gland transfer for the prevention of xerostomia after radiotherapy for nasopharyngeal carcinoma: a prospective randomized controlled study of 32 cases. Radiat Oncol 9:62

    Article  PubMed  PubMed Central  Google Scholar 

  202. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bakker NA, van Imhoff GW, Verschuuren EA, van Son WJ (2007) Presentation and early detection of post-transplant lymphoproliferative disorder after solid organ transplantation. Transpl Int 20(3):207–218

    Article  CAS  PubMed  Google Scholar 

  204. Borhani AA, Hosseinzadeh K, Almusa O, Furlan A, Nalesnik M. Imaging of posttransplantation lymphoproliferative disorder after solid organ transplantation. Radiographics. 2009;29(4):981-1000; discussion -2

  205. Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32(27):3048–3058

    Article  PubMed  PubMed Central  Google Scholar 

  206. Marom EM, McAdams HP, Butnor KJ, Coleman RE (2004) Positron emission tomography with fluoro-2-deoxy-d-glucose (FDG-PET) in the staging of post transplant lymphoproliferative disorder in lung transplant recipients. J Thorac Imaging 19(2):74–78

    Article  PubMed  Google Scholar 

  207. O’Conner AR, Franc BL (2005) FDG PET imaging in the evaluation of post-transplant lymphoproliferative disorder following renal transplantation. Nucl Med Commun 26(12):1107–1111

    Article  PubMed  Google Scholar 

  208. McCormack L, Hany TI, Hubner M, Petrowsky H, Mullhaupt B, Knuth A et al (2006) How useful is PET/CT imaging in the management of post-transplant lymphoproliferative disease after liver transplantation? Am J Transpl 6(7):1731–1736

    Article  CAS  Google Scholar 

  209. Bakker NA, Pruim J, de Graaf W, van Son WJ, van der Jagt EJ, van Imhoff GW (2006) PTLD visualization by FDG-PET: improved detection of extranodal localizations. Am J Transpl 6(8):1984–1985

    Article  CAS  Google Scholar 

  210. Bianchi E, Pascual M, Nicod M, Delaloye AB, Duchosal MA (2008) Clinical usefulness of FDG-PET/CT scan imaging in the management of posttransplant lymphoproliferative disease. Transplantation 85(5):707–712

    Article  PubMed  Google Scholar 

  211. von Falck C, Maecker B, Schirg E, Boerner AR, Knapp WH, Klein C et al (2007) Post transplant lymphoproliferative disease in pediatric solid organ transplant patients: a possible role for [18F]-FDG-PET(/CT) in initial staging and therapy monitoring. Eur J Radiol 63(3):427–435

    Article  Google Scholar 

  212. Dierickx D, Tousseyn T, Requile A, Verscuren R, Sagaert X, Morscio J et al (2013) The accuracy of positron emission tomography in the detection of posttransplant lymphoproliferative disorder. Haematologica 98(5):771–775

    Article  PubMed  PubMed Central  Google Scholar 

  213. Panagiotidis E, Quigley AM, Pencharz D, Ardeshna K, Syed R, Sajjan R et al (2014) (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in diagnosis of post-transplant lymphoproliferative disorder. Leuk Lymphoma 55(3):515–519

    Article  PubMed  Google Scholar 

  214. Takehana CS, Twist CJ, Mosci C, Quon A, Mittra E, Iagaru A (2014) (18)F-FDG PET/CT in the management of patients with post-transplant lymphoproliferative disorder. Nucl Med Commun 35(3):276–281

    Article  PubMed  Google Scholar 

  215. Network. NCC. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) (2016) Non-Hodgkin’s Lymphomas Version 3.2016. https://www.nccn.org/professionals/physician_gls/pdf/nhl.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Hustinx.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovinfosse, P., Hustinx, R. Nuclear medicine techniques in transplantation. Clin Transl Imaging 5, 45–62 (2017). https://doi.org/10.1007/s40336-016-0216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-016-0216-5

Keywords

Navigation