Skip to main content

Advertisement

Log in

Insights into cognitive aging and Alzheimer’s disease using amyloid PET and structural MRI scans

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Positron emission tomography using amyloid binding ligands, labeled with carbon-11 and fluorine-18, (Amyloid PET) has been used to understand the relationship between amyloid deposition in the brain, neurodegeneration and the development of mild cognitive impairment and dementia. Structural MRI has been used to identify morphological changes in the brain which may relate to the cause(s) of cognitive impairment, including infarcts, space-occupying lesions, hydrocephalus and the patterns of atrophy which are characteristic of various neurodegenerative diseases. These two imaging biomarkers have also played an important role in revealing the sequence of cerebral amyloid deposition, neurodegeneration and cognitive impairment. Although there may not be a direct relationship between amyloid deposition and brain atrophy or cognitive deficits, the presence of both amyloid deposition on PET and neurodegeneration on MRI has been associated with accelerated cognitive decline. The main focus of this article is to summarize some of the insights gained using these two imaging methods individually and in combination to better understand the biological bases of normal aging and age-associated cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Powers RE, Ashford JW, Peschin S (2008) Memory Matters: Screening Approaches to Increase Early Detection and Treatment of Alzheimer’s Disease and Related Dementias, and Recommendations for National Policy. Alzheimer’s Foundation of America, New York

    Google Scholar 

  2. Beach TG, Monsell SE, Philips LE, Kukull W (2012) Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centres 2005–2010. J Neuropathol Exp Neurol 71:266–273

    Article  PubMed Central  PubMed  Google Scholar 

  3. Albert MS, Dekosky ST, Dickson D, Dubois B, Feldman HF, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262

    Article  PubMed Central  PubMed  Google Scholar 

  5. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    Article  PubMed Central  PubMed  Google Scholar 

  8. Benzinger TL, Blazey T, Jack CR, Koeppe RA, Su Y, Xiong C, Raichle ME et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci USA 110:E4502–4509

  9. Villemagne VL, Burnham S, Bourgeat P et al (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12:357–367

    Article  CAS  PubMed  Google Scholar 

  10. Fleisher AS, Chen K, Liu X, Roontiva A, Thiyyagura P, Ayutyanont N et al (2011) Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol 68:1404–1411

    Article  PubMed  Google Scholar 

  11. Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77

    Article  PubMed Central  PubMed  Google Scholar 

  12. Miners JS, Van Helmond Z, Chalmers K, Wilcock G, Love S, Kehoe PG (2006) Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J Neuropathol Exp Neurol 65:1012–1021

    Article  CAS  PubMed  Google Scholar 

  13. Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2. doi:10.1101/cshperspect.a011452 (review)

  14. Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443

    Article  PubMed  Google Scholar 

  15. Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14

    Article  CAS  PubMed  Google Scholar 

  16. Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JA, Carare RO (2012) Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon4 allele. PLoS One 7:e41636. doi:10.1371/journal.pone.0041636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  18. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA et al (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305:275–283

    Article  CAS  PubMed  Google Scholar 

  19. Cummings JL, Dubois B, Molinuevo JL, Scheltens P (2013) International Work Group criteria for the diagnosis of Alzheimer disease. Med Clin North Am 97:363–368

    Article  PubMed  Google Scholar 

  20. Johnson KA, Minoshima S, Bohnen NI et al (2013) Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J Nucl Med 54:476–490

    Article  CAS  PubMed  Google Scholar 

  21. Villain N, Chételat G, Grassiot B et al (2012) Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxel-wise PiB-PET longitudinal study. Brain 135:2126–2139

    Article  PubMed  Google Scholar 

  22. Drzezga A, Grimmer T, Henriksen G et al (2009) Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 72:1487–1494

    Article  CAS  PubMed  Google Scholar 

  23. Fleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P et al (2013) Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging 34:1–12

    Article  CAS  PubMed  Google Scholar 

  24. Murphy KR, Landau SM, Choudhury KR et al (2013) Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth. Neuroimage 78:474–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, Mintun MA (2010) APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 67:122–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, Fripp J, Tochon-Danguy H et al (2010) Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283

    Article  PubMed  Google Scholar 

  27. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging—Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed Central  PubMed  Google Scholar 

  28. Devanand DP, Bansal R, Liu J, Hao X, Pradhaban G, Peterson BS (2012) MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer’s disease. Neuroimage 60:1622–1629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, Shen Q et al (2008) Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 71:1986–1992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Varon D, Barker W, Loewenstein D, Greig M, Bohorquez A, Santos I, Shen Q et al (2014) Visual rating and volumetric measurement of medial temporal atrophy in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort: baseline diagnosis and the prediction of MCI outcome. Int J Geriatr Psychiatry. doi:10.1002/gps.4126

    PubMed  Google Scholar 

  31. Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, Kalaria RN, O’Brien JT (2009) Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 132(Pt 1):195–203

    CAS  PubMed  Google Scholar 

  32. Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC, Edland SD et al (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757

    Article  PubMed Central  PubMed  Google Scholar 

  33. Barker WW, Luis CA, Kashuba A, Luis M, Harwood DG, Loewenstein D, Waters C et al (2002) Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the state of Florida brain bank. Alzheimer Dis Assoc Disord 16(4):203–212

    Article  PubMed  Google Scholar 

  34. Korf ES, Wahlund LO, Visser PJ, Scheltens P (2004) Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 63(1):94–100

    Article  PubMed  Google Scholar 

  35. Varon D, Loewenstein DA, Potter E, Greig MT, Agron J, Shen Q, Zhao W, Celeste Ramirez M, Santos I, Barker W, Potter H, Duara R (2011) Minimal atrophy of the entorhinal cortex and hippocampus: progression of cognitive impairment. Dement Geriatr Cogn Disord 31:276–283

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000) The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 95:721–725

    Article  CAS  PubMed  Google Scholar 

  37. Jarvenpaa T, Laakso MP, Rossi R et al (2004) Hippocampal MRI volumetry in cognitively discordant monozygotic twin pairs. J of Neurol Neurosurg Psychiatry 75:116–120

    CAS  Google Scholar 

  38. Wolf H, Grunwald M, Kruggel F et al (2001) Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly. Neurobiol Aging 22:177–186

    Article  CAS  PubMed  Google Scholar 

  39. de Leon MJ, George AE, Golomb J et al (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18:1–11

    Article  PubMed  Google Scholar 

  40. Jack CR, Petersen RC, Xu YC et al (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397–1403

    Article  PubMed Central  PubMed  Google Scholar 

  41. Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, Tanzi R et al (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 47:430–439

    Article  CAS  PubMed  Google Scholar 

  42. Gosche KM, Mortimer JA, Smith CD et al (2002) Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 58:1476–1482

    Article  CAS  PubMed  Google Scholar 

  43. Likeman M, Anderson VM, Stevens JM et al (2005) Visual assessment of atrophy on magnetic resonance imaging in the diagnosis of pathologically confirmed young-onset dementias. Arch Neurol 62:1410–1415

    Article  PubMed  Google Scholar 

  44. Barkhof F, Polvikoski TM, van Straaten EC et al (2007) The significance of medial temporal lobe atrophy: a postmortem MRI study in the very old. Neurology 69:1521–1527

    Article  CAS  PubMed  Google Scholar 

  45. Dickerson BC, Bakkour A, Salat DH et al (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19:497–510

    Article  PubMed Central  PubMed  Google Scholar 

  46. Dickerson BC, Stroub TR, Shah RC et al (2011) Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76:1395–1402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796

    Article  PubMed Central  PubMed  Google Scholar 

  48. Shiino A, Watanabe T, Maeda K, Kotani E, Akiguchi I, Matsuda M (2006) Four subgroups of Alzheimer’s disease based on patterns of atrophy using VBM and a unique pattern for early onset disease. Neuroimage 33:17–26

    Article  PubMed  Google Scholar 

  49. Sluimer JD, Vrenken H, Blankenstein MA, Fox NC, Scheltens P, Barkhof F, van der Flier WM (2008) Whole-brain atrophy rate in Alzheimer disease: identifying fast progressors. Neurology 70:1836–1841

    Article  CAS  PubMed  Google Scholar 

  50. Duara R, Loewenstein D, Shen Q, Barker W, Greig M, Varon D, Murray M, Dickson D (2013) Regional patterns of atrophy on MRI in Alzheimer’s disease: neuropsychological features and progression rates in the ADNI cohort. Adv Alzheimer’s Disease 2:135–147

    Article  Google Scholar 

  51. Fox NC, Warrington EK, Freeborough PA et al (1996) Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain 119:2001–2007

    Article  PubMed  Google Scholar 

  52. Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358:201–205

    Article  CAS  PubMed  Google Scholar 

  53. Schott JM, Fox NC, Frost C et al (2003) Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol 53:181–188

    Article  PubMed  Google Scholar 

  54. Kaye JA, Swihart T, Howieson D et al (1997) Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to dementia. Neurology 48:1297–1304

    Article  CAS  PubMed  Google Scholar 

  55. Smith CD, Chebrolu H, Wekstein DR et al (2007) Brain structural alterations before mild cognitive impairment. Neurology 68:1268–1273

    Article  CAS  PubMed  Google Scholar 

  56. den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MM (2006) Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 63:57–62

    Article  Google Scholar 

  57. Apostolova LG, Mosconi L, Thompson PM et al (2010) Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol Aging 31:1077–1088

    Article  PubMed Central  PubMed  Google Scholar 

  58. Csernansky JG, Wang L, Swank J et al (2005) Preclinical detection of Alzheimer’s disease: hippocampal shape and volume predict dementia onset in the elderly. Neuroimage 25:783–792

    Article  CAS  PubMed  Google Scholar 

  59. Jack CR, Shiung MM, Weigand SD et al (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227–1231

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack CR Jr, Feldman HH et al (2012) Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 33:1203–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, DeCarli CS, Turner RS, Koeppe RA, Higdon R, Minoshima S (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130:2616–2635

    Article  PubMed  Google Scholar 

  62. Jack CR, Lowe VJ, Senjem ML et al (2008) 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131:665–680

    Article  PubMed Central  PubMed  Google Scholar 

  63. Jack CR, Lowe VJ, Weigand SD et al (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365

    Article  PubMed Central  PubMed  Google Scholar 

  64. Jack CR, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Lowe V, Kantarci K et al (2012) Shapes of the trajectories of five major biomarkers of Alzheimer’s disease. Arch Neurol 69:856–867

    PubMed Central  PubMed  Google Scholar 

  65. Jack CR, Wiste HJ, Knopman DS et al (2014) Rates of β-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology 82:1605–1612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Villemagne VL, Rowe CC (2013) Long night’s journey into the day: amyloid-β imaging in Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S349–S359

    PubMed  Google Scholar 

  67. Oh H, Madison C, Villeneuve S, Markley C, Jagust WJ (2014) Association of gray matter atrophy with age, β-amyloid, and cognition in aging. Cereb Cortex 24:1609–1618

    Article  PubMed Central  PubMed  Google Scholar 

  68. Wirth M, Oh H, Mormino EC, Markley C, Landau SM, Jagust WJ (2013) The effect of amyloid β on cognitive decline is modulated by neural integrity in cognitively normal elderly. Alzheimers Dement 9:687–698

    Article  PubMed  Google Scholar 

  69. Mormino EC, Betensky RA, Hedden T, Schultz AP, Amariglio RE, Rentz DM, Johnson KA, Sperling RA (2014) Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurol 71:1379–1385

    Article  PubMed Central  PubMed  Google Scholar 

  70. Villeneuve S, Reed BR, Wirth M, Haase CM, Madison CM, Ayakta N, Mack W, Mungas D, Chui HC, DeCarli C, Weiner MW, Jagust WJ (2014) Cortical thickness mediates the effect of β-amyloid on episodic memory. Neurology 82:761–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. van Rossum IA, Vos SJ, Burns L, Knol DL, Scheltens P, Soininen H, Wahlund LO et al (2012) Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 79:1809–1816

    Article  PubMed Central  PubMed  Google Scholar 

  72. Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, Doraiswamy PM (2013) Alzheimer’s disease neuroimaging initiative, predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 266:583–591

    Article  PubMed Central  PubMed  Google Scholar 

  73. Tosun D, Schuff N, Mathis CA, Jagust W, Weiner MW (2011) Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment. Brain 134:1077–1088

    Article  PubMed Central  PubMed  Google Scholar 

  74. Reiman EM, Chen K, Liu X et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 106:6820–6825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Chen K, Reiman EM, Alexander GE, Caselli RJ, Gerkin R, Bandy D, Domb A, Osborne D, Fox N, Crum WR, Saunders AM, Hardy J (2007) Correlations between apolipoprotein E epsilon4 gene dose and whole brain atrophy rates. Am J Psychiatry 164:916–921

    Article  PubMed  Google Scholar 

  76. Jak AJ, Houston WS, Nagel BJ, Corey-Bloom J, Bondi MW (2007) Differential cross-sectional and longitudinal impact of APOE genotype on hippocampal volumes in nondemented older adults. Dement Geriatr Cogn Disord 23:382–389

    Article  PubMed Central  PubMed  Google Scholar 

  77. Donix M, Burggren AC, Suthana NA, Siddarth P, Ekstrom AD, Krupa AK, Jones M et al (2010) Family history of Alzheimer’s disease and hippocampal structure in healthy people. Am J Psychiatry 167:1399–1406

    Article  PubMed Central  PubMed  Google Scholar 

  78. Heise V, Filippini N, Ebmeier KP, Mackay CE (2011) The APOE ε4 allele modulates brain white matter integrity in healthy adults. Mol Psychiatry 16:908–916

    Article  CAS  PubMed  Google Scholar 

  79. Brown JA, Terashima KH, Burggren AC, Ercoli LM, Miller KJ, Small GW, Bookheimer SY (2011) Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proc Natl Acad Sci USA 108:20760–20765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Blacker D, Haines JL, Rodes L, Terwedow H, Go RC, Harrell LE, Perry RT, Bassett SS, Chase G, Meyers D, Albert MS, Tanzi R (1997) ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48:139–147

    Article  CAS  PubMed  Google Scholar 

  81. Corrada MM, Paganini-Hill A, Berlau DJ, Kawas CH (2013) Apolipoprotein E genotype, dementia, and mortality in the oldest old: the 90+ Study. Alzheimers Dement 9:12–18

    Article  PubMed Central  PubMed  Google Scholar 

  82. Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL, Baxter LC, Rapcsak SZ, Shi J, Woodruff BK, Locke DE, Snyder CH, Alexander GE, Rademakers R, Reiman EM (2009) Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med 361:255–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Mosconi L, Mistur R, Switalski R, Brys M, Glodzik L, Rich K, Pirraglia E, Tsui W, De Santi S, de Leon MJ (2009) Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology 72:513–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127

    Article  PubMed  Google Scholar 

  85. Bochetta M, Galluzzi S, Kehoe PG et al (2014) The use of biomarkers for the etiologic diagnosis of MCI in Europe: An EADC survey. Alzheimers Dement S1552–5260

  86. Fagan T, Strobel G (2013) Longitudinal data stand out at AD/PD imaging satellite. http://www.alzforum.org/news/conference-coverage/longitudinal-data-stand-out-adpd-imaging-satellite

  87. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, O’Keefe G et al (2011) Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52:1210–1217

    Article  PubMed  Google Scholar 

  88. Jack CR, Wiste HJ, Weigand SD et al (2013) Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology 81:1–9

    Article  Google Scholar 

  89. Vos SJ, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, Cairns NJ, Morris JC, Holtzman DM, Fagan AM (2013) Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol 12:957–965

    Article  PubMed Central  PubMed  Google Scholar 

  90. Jack CR, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, Kantarci K, Gunter JL, Senjem ML, Ivnik RJ, Roberts RO, Rocca WA, Boeve BF, Petersen RC (2012) An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol 71:765–775

    Article  PubMed Central  PubMed  Google Scholar 

  91. Duara R, Loewenstein DA, Shen Q, Barker W, Potter E, Varon D et al (2013) Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 9:295–301

    Article  PubMed  Google Scholar 

  92. Jack CR, Wiste H, Weigand SD et al (2014) Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50–89 years: a cross-sectional study. Lancet Neurol 13:997–1005

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the State of Florida Alzheimer’s Disease Initiative, Department of Elder Affairs, Tallahassee, Florida.

Compliance with ethics guidelines

This study is a retrospective review of published research. All data reviewed in the published studies were de-identified.

Conflict of interest

Ranjan Duara has been a consultant and speaker for GE Healthcare, Medical Learning Group, Vindico, Eli Lilly and Bristol Myers Squib. Warren Barker, David Loewenstein, Maria T. Greig, Rosemarie Rodriguez, Mohammed Goryawala, Qi Zhou and Malek Adjouadi have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Duara.

Additional information

For the Alzheimer’s Disease Neuroimaging Initiative.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duara, R., Barker, W., Loewenstein, D. et al. Insights into cognitive aging and Alzheimer’s disease using amyloid PET and structural MRI scans. Clin Transl Imaging 3, 65–74 (2015). https://doi.org/10.1007/s40336-015-0110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-015-0110-6

Keywords

Navigation