Skip to main content
Log in

Generalized Hurwitz Matrices, Generalized Euclidean Algorithm, and Forbidden Sectors of the Complex Plane

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Given a polynomial

$$\begin{aligned} f(x)=a_0x^n+a_1x^{n-1}+\cdots +a_n \end{aligned}$$

with positive coefficients \(a_k\), and a positive integer \(M\le n\), we define an infinite generalized Hurwitz matrix \(H_M(f):= (a_{Mj-i})_{i,j}\). We prove that the polynomial f(z) does not vanish in the sector

$$\begin{aligned} \left\{ z\in \mathbb {C}: |\arg (z)| < \frac{\pi }{M}\right\} \end{aligned}$$

whenever the matrix \(H_M\) is totally non-negative. This result generalizes the classical Hurwitz’ Theorem on stable polynomials (\(M=2\)), the Aissen–Edrei–Schoenberg–Whitney theorem on polynomials with negative real roots (\(M=1\)), and the Cowling–Thron theorem (\(M=n\)). In this connection, we also develop a generalization of the classical Euclidean algorithm, of independent interest per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aissen, M., Edrei, A., Schoenberg, I.J., Whitney, A.: On the generating functions of totally positive sequences. Proc. Natl. Acad. Sci. U.S.A. 37, 303–307 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asner, B.A.: On the total nonnegativity of the Hurwitz matrix. SIAM J. Appl. Math. 18, 407–414 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burcsi, P., Kovács, A.: An algorithm checking a necessary condition of number system constructions. Annales Universitatis Scientarium Budapestinensis, Sectio Computatorica 25, 143–152 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Cauchy, A.L.: Calcul des indices des fonctions. J. École Polytech. 15, 176–229 (1837) Œuvres 1(2), 416–466)

  5. Cowling, V.F., Thron, W.J.: Zero-free regions of polynomials. Am. Math. Mon. 61(10), 682–687 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fisk, S.: Polynomials, roots and interlacing, pp. xx+700 (2003–2007) http://www.bowdoin.edu/fisk

  7. Gantmacher, F.R.: Applications of the Theory of Matrices. Interscience, New York, London (1959)

    MATH  Google Scholar 

  8. Goodman, T.N.T., Sun, Q.: Total positivity and refinable functions with general dilation. Appl. Comput. Harmon. Anal. 16, 69–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hermite, C.: Sur le nombre des racines d’une équation algébrique comprise entre des limites données. J. Reine Angew. Math. 52, 39–51 (1856)

    Article  MathSciNet  Google Scholar 

  10. Henrici, P.: Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. Wiley-Interscience, New York (1988)

    MATH  Google Scholar 

  11. Henrici, P.: Applied and Computational Complex Analysis. II: Special Functions, Integral Transforms, Asymptotics, Continued Fractions. Wiley-Interscience, New York (1991)

    MATH  Google Scholar 

  12. Holtz, O.: Hermite–Biehler, Routh–Hurwitz, and total positivity. Linear Algebra Appl 372, 105–110 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holtz, O., Tyaglov, M.: Structured matrices, continued fractions, and root localization of polynomials. SIAM Rev. 54(3), 421–509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hurwitz, A.: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negatvoen reellen Teilen besitzt. Math. Ann. 46, 273–284 (1895) (Werke, 2, pp. 533–545)

  15. Jones, W.B., Thron, W.J.: Continued Fractions. Analytic Theory and Applications. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  16. Kemperman, J.H.B.: A Hurwitz matrix is totally positive. SIAM J. Math. Anal. 13, 331–341 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marden, M.: Geometry of Polynomials. American Mathematical Society, Issue 3 of Mathematical surveys (1985)

  18. Meinsma, G.: Elementary proof of the Routh–Hurwitz test. J. Syst. Control Lett. 25(4), 237–242 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, Berlin (1963)

    MATH  Google Scholar 

  20. Pinkus, A.: Totally Positive Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  21. Pólya, G., Szegő, G.: Problems and Theorems in Analysis. II. Theorey of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, pp. xii+392. Springer-Verlag, Berlin (1998)

  22. Routh, E.J.: The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, 4th edn., pp. 168–176. Macmillan and Co., London (1884)

  23. Routh, E.J.: Stability of a Given State of Motion. Macmillan, London (1877)

  24. Schoenberg, I.J.: On the zeros of the generating functions of multiply positive sequences and functions. Ann. Math. Second Ser. 62(3), 447–471 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wall, H.S.: Polynomials whose zeros have negative real parts. Am. Math. Mon. 52(6), 308–322 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Mikhail Tyaglov for helpful discussions, in particular, for suggesting the idea of the proof of Theorem 4, and to Alan Sokal for pointing out its connection with the Aissen–Edrei–Schoenberg–Whitney Theorem. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. 259173 and from the National Science Foundation under agreement No. DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Holtz.

Additional information

Communicated by Stephan Ruscheweyh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtz, O., Khrushchev, S. & Kushel, O. Generalized Hurwitz Matrices, Generalized Euclidean Algorithm, and Forbidden Sectors of the Complex Plane. Comput. Methods Funct. Theory 16, 395–431 (2016). https://doi.org/10.1007/s40315-016-0156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-016-0156-0

Keywords

Mathematics Subject Classification

Navigation