Skip to main content
Log in

Numerical Conformal Mapping to One-Tooth Gear-Shaped Domains and Applications

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We study conformal mappings from the unit disk (or a rectangle) to one-tooth gear-shaped planar domains from the point of view of the Schwarzian derivative, with emphasis on numerical considerations. Applications are given to evaluation of a singular integral, mapping to the complement of an annular rectangle, and symmetric multitooth domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barnard, R.W., Pearce, K.: Rounding corners of gearlike domains and the omitted area problem. J. Comput. Appl. Math. 14(1–2), 217–226 (1986). (Special issue on numerical conformal mapping)

  2. Brown, P.: Conformal mapping of a gear domain with one tooth. Quaest. Math. 33(3), 277–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, P., Porter, R.M.: Conformal mapping of circular quadrilaterals and Weierstrass elliptic functions. Comput. Methods Funct. Theory 11(2), 463–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, P., Porter, R.M.: Gears, pregears and related domains. Complex Var. Elliptic Equ. (2015). doi:10.1080/17476933.2015.1057715

  5. Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel Mapping. In: Cambridge Monogr. Appl. Comput. Math. Cambridge University Press, Cambridge (2002)

  6. Duren, P., Pfaltzgraff, J.: Robin capacity and extremal length. J. Math. Anal. Appl. 179(1), 110–119 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faigle, U., Kern, W., Still, G.: Algorithmic principles of mathematical programming. In: Kluwer Texts in the Mathematical Sciences, vol. 24. Kluwer Academic Publishers, Dordrecht (2002)

  8. Goodman, A.W.: Conformal mapping onto certain curvilinear polygons. Univ. Nac. Tucuman Rev. Ser. A 13, 20–26 (1960)

    MathSciNet  MATH  Google Scholar 

  9. Hakula, H., Rasila, A., Vuorinen, M.: On moduli of rings and quadrilaterals: algorithms and experiments. SIAM J. Sci. Comput. 33(1), 279–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hakula, H., Rasila, A., Vuorinen, M.: Computation of exterior moduli of quadrilaterals. Electron. Trans. Numer. Anal. 40, 436–451 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)

    MATH  Google Scholar 

  12. Hille, E.: Analytic function theory. Introductions to Higher Mathematics, vol. 2. Ginn and Co., Boston (1962)

  13. Hyvönen, N.: Complete electrode model of electrical impedance tomography: approximation properties and characterization of inclusions. SIAM J. Appl. Math. 64(3), 902–931 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kravchenko, V.V., Porter, R.M.: Spectral parameter power series for Sturm–Liouville problems. Math. Methods Appl. Sci. 33, 459–468 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Kravchenko, V.V., Porter, R.M.: Conformal mapping of right circular quadrilaterals. Complex Var. Elliptic Equ. 56(5), 399–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kühnau, R.: The conformal module of quadrilaterals and of rings. In: The Handbook of Complex Analysis: geometric function theory, vol. 2, pp. 99–129 (2005)

  17. Lehto, O., Virtanen, K.I.: Quasiconformal mappings in the plane. Die Grundlehren der mathematischen Wissenschaften, vol. 126, 2nd edn. Springer, New York (1973)

  18. Nehari, Z.: Conformal Mapping. McGraw-Hill Book Co., New York (1952)

    MATH  Google Scholar 

  19. Nishimiya, H.: Conformal mapping onto gearlike domain. Kodai Math. Sem. Rep. 16(4), 243–248 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Papamichael, N., Stylianopoulos, N.: Numerical Conformal Mapping: Domain Decomposition and the Mapping of Quadrilaterals. World Scientific Publishing Co. Pte. Ltd., Hackensack (2010)

  21. Pearce, K.: A constructive method for numerically computing conformal mappings for gearlike domains. SIAM J. Sci. Stat. Comput. 12(2), 231–246 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Porter, R.M.: Numerical calculation of conformal mapping to a disk minus finitely many horocycles. Comput. Methods Funct. Theory 5(2), 471–488 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vuorinen, M., Zhang, X.: On exterior moduli of quadrilaterals and special functions. J. Fixed Point Theory Appl. 13(1), 215–230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis. Cambridge University Press, Cambridge (1927)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Brown.

Additional information

Communicated by Darren Crowdy.

P. R. Brown and R. M. Porter: Partially supported by CONACyT Grant 166183.

Appendix: SPPS Method

Appendix: SPPS Method

The sequence \(I_n\) of iterated integrals generated by an arbitrary pair of functions \((q_0,q_1)\) is defined recursively by setting \(I_0=1\) identically and for \(n\ge 1\),

$$\begin{aligned} I_n(z) = \int _0^z I_{n-1}(\zeta )\,q_{n-1}(\zeta )\,\mathrm{d}\zeta , \end{aligned}$$
(34)

where \(q_{n+2j}=q_n\) for \(j=1,2,\dots \)

Proposition 7.1

[14] Let \(\psi _0\) and \(\psi _1\) be given, and suppose that \(y_\infty \) is a non-vanishing solution of

$$\begin{aligned} y_\infty ''+\psi _0\,y_\infty =\lambda _\infty \psi _1\,y_\infty \end{aligned}$$

on the interval [0, 1], where \(\lambda _\infty \) is any constant. Choose \(q_0=1/y_\infty ^2\), \(q_1=\psi _1\,y_\infty ^2\) and define \(X^{(n)}\), \(\widetilde{X}^{(n)}\) to be the two sequences of iterated integrals generated by \((q_0,q_1)\) and by \((q_1,q_0)\), respectively. Then for each \(\lambda \in \mathbb {C}\) the functions

$$\begin{aligned} y_1= & {} y_\infty \sum _{k=0}^\infty (\lambda -\lambda _\infty )^k \widetilde{X}^{(2k)}, \nonumber \\ y_2= & {} y_\infty \sum _{k=0}^\infty (\lambda -\lambda _\infty )^k X^{(2k+1)} \end{aligned}$$
(35)

are linearly independent solutions of the equation

$$\begin{aligned} y''+\psi _0y=\lambda \psi _1y \end{aligned}$$
(36)

on [0, 1]. Further, the series for \(y_1\) and \(y_2\) converge uniformly on [0, 1] for every \(\lambda \).

It is a straightforward matter to obtain the appropriate linear combination of solutions with desired 1-jets at \(z=0\), for example (0, 1) and (1, 0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, P.R., Porter, R.M. Numerical Conformal Mapping to One-Tooth Gear-Shaped Domains and Applications. Comput. Methods Funct. Theory 16, 319–345 (2016). https://doi.org/10.1007/s40315-015-0149-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-015-0149-4

Keywords

Mathematics Subject Classification

Navigation