Skip to main content

Advertisement

Log in

Analysis of fractional-order models for hepatitis B

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents two models for hepatitis B, both given by fractional differential equations. The first model is formulated without parameters that indicate drug therapy, while the second one considers the drug therapy. The basic reproduction number and the stability analysis are considered for both models. Moreover, some numerical simulations by nonstandard finite difference schemes are presented. The numerical results show that the solutions converges to an equilibrium point as predicted in the stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that, from Definition 2, that \(I^\alpha t^\beta =t^{\beta +\alpha }\Gamma (\beta +1)/\Gamma (\beta +\alpha +1),\) i.e., the polynomial case is a recovered if \(\alpha ,\beta \in \mathbb {N}\).

  2. This fact is one of the main differences between the fractional derivatives of Camargo and de Oliveira (2015).

  3. As made in Driessche and Watmough (2002) the basic reproduction number will be the biggest eigenvalue of K. For convenience, we omit the square root.

References

  • Ahmed E, El-Sayed AMA, El-Saka HAA (2007) Equilibrium points, stability and numerical solutions of fractional order predator–prey and rabies models. J Math Anal Appl 325:542–553

    Article  MathSciNet  MATH  Google Scholar 

  • Arafa AAM, Hanafy IM, Gouda MI (2016) Stability analysis of fractional order HIV infection of \(^+\)T cells with numerical solutions. J Fract Calc Appl 7(1):36–45

    MathSciNet  Google Scholar 

  • Camargo RF, de Oliveira EC (2015) Cálculo fracionário. Editora Livraria da Física, São Paulo, Brasil

    Google Scholar 

  • Cardoso LC, dos Santos FLP, Camargo RF (2017) Método de diferenças finitas não clássico aplicado ao cálculo fracionário. Revista Eletrônica Paulista de Matemática 7:45–54

    Google Scholar 

  • Ciupe SM et al (2007) The role of cells refractory to productive infection in acute hepatitis B viral dynamics. PNAS 12:5050–5055

    Article  Google Scholar 

  • Debnath E (2003) Recent applications of fractional calculus to science and engineering. Int J Math 2003:3413–3442

    Article  MathSciNet  MATH  Google Scholar 

  • Degertekin B, Lok Anna SF (2009) Indications for therapy in hepatitis B. Hepatology 49:129–137

    Article  Google Scholar 

  • Diekmann O, Heesterbeek AP, Roberts GM (2009) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7:873–885

    Article  Google Scholar 

  • Diethelm K (2004) The analysis of fractional differential equations. Notes in mathematics Springer, Germany

    Google Scholar 

  • Diethelm K, Ford NJ, Freed AD, Luchko Yu (2005) Algorithms for the fractional calculus selection of numerical methods. Comput Methods Appl Mech Eng 194:743–773

    Article  MathSciNet  MATH  Google Scholar 

  • Dietz H (1983) The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 2:23–41

    Article  Google Scholar 

  • Dokoumetzidis A, Magin R, Macheareas P (2010) Fractional kinetics in multi-compartmental systems. J Pharmacokinet Pharmacodyn 37:507–524

    Article  Google Scholar 

  • Ferreira MS (2000) Diagnóstico e tratamento da hepatite B. Revista da Sociedade Brasileira de Medicina Tropical 33:389–400

    Article  Google Scholar 

  • Forde JE, Ciupe SM, Arias AC, Lenhart S (2016) Optimal control of drug therapy in a hepatitis B model. Appl Sci 6:1–18

    Article  Google Scholar 

  • Gómez JF, Rosales JJ, Bernal JJ, Guía M (2012) Mathematical modelling of the mass-spring-damper system–a fractional calculus approach. Acta Universitaria 5:5–11

    Google Scholar 

  • Kuroda LKB, Gomes AV, Tavoni R, Mancera Paulo FA, Valralta N, Camargo RF (2017) Unexpected behavior of Caputo fractional derivative. Comput Appl Math 136:1173–1183

    Article  MathSciNet  MATH  Google Scholar 

  • Lewin SR, Ribeiro RM, Walters T, Lau GK (2001) Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 34:1012–1019

    Article  Google Scholar 

  • Machado JAT (2003) A probabilistic interpretation of the fractional-order differentiation. Fract Calc Appl Anal 6:73–80

    MathSciNet  MATH  Google Scholar 

  • Matignon D (1996) Stability result on fractional differential equations with applications to control processing. In: IMACS-SMC proceedings, pp 963–968

  • McCallemail JP, David KW (2009) Learning and memory in disease vectors. Trends Parasitol 18:429–433

    Article  Google Scholar 

  • Mickens R, Smith A (1990) Finite-difference models of ordinary differential equations: influence of denominator functions. J Frankl Inst 327:143–149

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak M, Bonhoeffer S, Hill A, Boehme R, Thomas HC, McDade H (1996) Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci 93:4398–4402

    Article  Google Scholar 

  • Odibat ZM, Shawagfeh NT (2007) Generalized Taylor’s formula. Appl Math Comput 186:286–293

    MathSciNet  MATH  Google Scholar 

  • Okyene E, Oduro FT (2016) Fractional order SIR model with constant populations. BIMCS 14:1–12

    Google Scholar 

  • Ongun MY, Arslan D, Garrappa R (2013) Nonstandard finite difference schemes for a fractional order Brusselator system. Adv Differ Equ 102:1–11

    MathSciNet  MATH  Google Scholar 

  • Ortigueira MD, Machado JAT (2015) What is a fractional derivative? J Comput Phys 293:4–13

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations, mathematics in science and engineering. Academic Press, San Diego

    MATH  Google Scholar 

  • Podlubny I (2002) Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 5(4):367–386

    MathSciNet  MATH  Google Scholar 

  • Salman MS, Yousef AM (2017) On a fractional-order model for HBV infection with cure of infected cells. J Egypt Math Soc 2:1–7

    MathSciNet  MATH  Google Scholar 

  • Tumwiine J (2007) A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity. Appl Math Comput 4:1954–1965

    MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Varalta N, Gomes AV, Camargo RF (2014) A prelude to the fractional calculus applied to tumor dynamic. TEMA 15:7–14

    MathSciNet  Google Scholar 

  • Zhou X, Sun Q (2014) Stability analysis of a fractional-order HBV infection model. Int J Adv Appl Math Mech 2:1–6

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

LCC thanks CAPES, and RFC thanks CNPq (universal 455920-2014-1) for financial support. The authors thanks the research group CF@FC for the important and productive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Camargo.

Additional information

Communicated by José Tenreiro Machado.

L. C. Cardoso is supported by NSF Grant CAPES - 1515153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, L.C., Dos Santos, F.L.P. & Camargo, R.F. Analysis of fractional-order models for hepatitis B. Comp. Appl. Math. 37, 4570–4586 (2018). https://doi.org/10.1007/s40314-018-0588-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-018-0588-4

Keywords

Mathematics Subject Classification

Navigation