Skip to main content
Log in

Fully discrete stability and dispersion analysis for a linear dispersive internal wave model

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the context of modeling internal water waves, some strongly nonlinear reduced models exhibit a nonlocal term involving a Hilbert-type transform. These models accurately account for the physical dispersion regarding the Euler equations. To perform a careful stability analysis and detect whether numerical solutions are reliable or spurious, it is necessary to adapt the classical von Neumann analysis to account for nonlocal dispersive terms. We address this issue by a fully discrete analysis of the one-dimensional linear model, in the flat bottom case. We find a formula for the amplification factor that provides estimates concerned with numerical stability and dispersion (namely, phase errors). Subsequently, we contrast the numerical properties of the original dispersive problem with that of the underlying non-dispersive case, namely a linear hyperbolic system. The stability estimates corroborate the fact that physical dispersion provided by a nonlocal (singular integral) term allows for less restrictive stability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ascher U (2008) Numerical methods for evolutionary differential equations. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Baker G, Nachbin A (1998) Stable methods for vortex sheet motion in the presence of surface tension. SIAM J Sci Comput 19(5):1737–1766

    Article  MATH  MathSciNet  Google Scholar 

  • Beale J, Hou T, Lowengrub J (1996) Convergence of a boundary integral method for water waves. SIAM J Numer Anal 33(5):1797–1843

    Article  MATH  MathSciNet  Google Scholar 

  • Bona J, Chen M, Saut JC (2002) Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory. J Nonlinear Sci 12(4):283–318

    Article  MATH  MathSciNet  Google Scholar 

  • Camassa R, Choi W, Michallet H, Rusås PO, Sveen JK (2006) On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J Fluid Mech 549:1–23

    Article  MathSciNet  Google Scholar 

  • Choi W, Camassa R (1999) Fully nonlinear internal waves in a two-fluid system. J Fluid Mech 396:1–36

    Article  MATH  MathSciNet  Google Scholar 

  • Choi W, Barros R, Jo TC (2009) A regularized model for strongly nonlinear internal solitary waves. J Fluid Mech 629:73–85

    Article  MATH  MathSciNet  Google Scholar 

  • Debsarma S, Das KP, Kirby JT (2010) Fully nonlinear higher-order model equations for long internal waves in a two-fluid system. J Fluid Mech 654:281–303

    Article  MATH  MathSciNet  Google Scholar 

  • Grajales Muñoz JC, Nachbin A (2006) Improved Boussinesq-type equations for highly variable depth. IMA J Appl Math 71(4):600–633

  • Iório R, Iório V (2001) Fourier analysis and partial differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Keener JP (2000) Principles of applied mathematics. Transformation and approximation. Westview Press, Cambridge

    MATH  Google Scholar 

  • Levy D, Tadmor E (1998) From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method. SIAM Rev 40(1):40–73

    Article  MATH  MathSciNet  Google Scholar 

  • Milewski P, Tabak E, Turner C, Rosales R, Menzaque F (2004) Nonlinear stability of two-layer flows. Commun Math Sci 2:427–442

    Article  MATH  MathSciNet  Google Scholar 

  • Oliveira SP, Ruiz de Zárate A, Rocha AC, Alfaro Vigo DG (2013) A note on the alternate trapezoidal quadrature method for Fredholm integral eigenvalue problems. Numer Algorithms 62(4):601–614

    Google Scholar 

  • Ruiz de Zárate A (2007) A reduced model for internal waves interacting with submarine structures at intermediate depth. Technical Report. C 55/2007, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil. http://www.preprint.impa.br/Shadows/SERIE_C/2007/55.html

  • Ruiz de Zárate A, Nachbin A (2008) A reduced model for internal waves interacting with topography at intermediate depth. Commun Math Sci 6:385–396

  • Ruiz de Zárate A, Alfaro Vigo DG, Nachbin A, Choi W (2009) A higher-order internal wave model accounting for large bathymetric variations. Stud Appl Math 122:275–294

  • Strikwerda JC (2004) Finite difference schemes and partial differential equations, 2nd edn. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Trefethen LN (2000) Spectral methods in Matlab. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Vichnevetsky R, Bowles JB (1982) Fourier analysis of numerical approximations of hyperbolic equations. SIAM, Philadelphia

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saulo P. Oliveira.

Additional information

Communicated by Abimael F. D. Loula.

This work was funded by CNPq under grant 482081/2009-0. A. N. and S. O. are supported by CNPq under grants 300368/96-8 and 314553/2009-6.

Proof of Theorem 2

Proof of Theorem 2

Our proof of Theorem 2 is based on the Fourier Series framework provided in Iório and Iório (2001). Similar arguments have been previously employed in Bona et al. (2002) for a class of Boussinesq systems.

Proof

Proceeding as in Lemma 2, we find

$$\begin{aligned} \Vert [\eta (t,\cdot ), u(t,\cdot )]^{T} \Vert ^2_{s,s+1/2} = \frac{1}{2l}\sum _{k=-\infty }^\infty \left[ 1 + \kappa ^2\right] ^{s}\left\| A(\kappa ) \left[ \hat{\eta }(k),\hat{u}(k)\right] ^T\right\| ^2_2, \end{aligned}$$

where \(\kappa =k\pi /l\) and the matrix function \(A(\kappa )\) is defined in Eq. (38). Moreover, it follows from Eq. (8) that

$$\begin{aligned} \left\| A(\kappa )\left[ \hat{\eta }(k),\hat{u}(k)\right] ^T\right\| _2 \le \left\| A(\kappa )G\left( t,\kappa \right) A^{-1}(\kappa )\right\| _2 \left\| A(\kappa )\left[ \hat{\eta }^0(k),\hat{u}^0(k)\right] ^T\right\| _2, \end{aligned}$$

whereas \(G\left( t,\kappa \right) \) can be written as \(G\left( t,\kappa \right) =V(\kappa ) \,\tilde{G}(t,\kappa ) \,V^{-1}(\kappa )\), where

$$\begin{aligned} V(\kappa ) = \begin{bmatrix} 1&\quad 0\\ 0&\quad v(\kappa ) \end{bmatrix}, \quad \tilde{G}(t,\kappa ) = \begin{bmatrix} \cos (\omega (\kappa ) t)&\quad i\sin (\omega (\kappa ) t)\\ i\sin (\omega (\kappa ) t)&\quad \cos (\omega (\kappa ) t) \end{bmatrix}. \end{aligned}$$
(42)

We have \(\Vert A(\kappa )G\left( t,\kappa \right) A^{-1}(\kappa )\Vert _2 \le \Vert A(\kappa )V(\kappa )\Vert _2\Vert (A(\kappa )V(\kappa ))^{-1}\Vert _2\), i.e.,

$$\begin{aligned} \Vert A(\kappa )G\left( t,\kappa \right) A^{-1}(\kappa )\Vert _2 \le \max \left\{ v(\kappa )\root 4 \of {1+\kappa ^2},\frac{1}{v(\kappa )\root 4 \of {1+\kappa ^2}}\right\} . \end{aligned}$$
(43)

Taking into account that the function \(\phi \) defined in Eq. (5) satisfies \(|\kappa |\le \phi (\kappa )\le 1+|\kappa |\), we can find the following upper bound for the inequality (43):

$$\begin{aligned} \Vert A(\kappa )G\left( t,\kappa \right) A^{-1}(\kappa )\Vert _2 \le \max \left\{ \sqrt{\frac{\rho _1}{\rho _2}\frac{1}{\sqrt{\beta }}},\root 4 \of {2}\sqrt{1+\frac{\rho _2}{\rho _1}\frac{h_1}{h_2}\max \{1,\delta \}}\right\} . \end{aligned}$$

The inequality (13) follows from choosing \(C\) as the above upper bound. Analogously, for the persistence property (14) we can prove that

$$\begin{aligned} \left\| A(\kappa )\partial _t^r\left[ \hat{\eta }(k),\hat{u}(k)\right] ^T\right\| ^2_2&\le \left\| A(\kappa )\partial _t^rG\left( t,\kappa \right) A^{-1}(\kappa )\right\| ^2_2\left\| A(\kappa )[\hat{\eta }^0(k),\hat{u}^0(k)]^T\right\| ^2_2\\&\le \tilde{C}\left[ 1+\kappa ^2\right] ^{r/2} \left\| A(\kappa )\left[ \hat{\eta }^0(k),\hat{u}^0(k)\right] ^T\right\| ^2_2 \end{aligned}$$

where the constant \(\tilde{C}>0\) does not depend on \(t\), thus using the Weierstrass M-test we conclude that \([\partial _t^r \eta (t,x), \partial _t^r u(t,x)]^{T} \in C([0,\infty ); H^{(s-r/2,s+1/2-r/2)})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfaro Vigo, D.G., Oliveira, S.P., Ruiz de Zárate, A. et al. Fully discrete stability and dispersion analysis for a linear dispersive internal wave model. Comp. Appl. Math. 33, 203–221 (2014). https://doi.org/10.1007/s40314-013-0056-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-013-0056-0

Keywords

Mathematics Subject Classification (2000)

Navigation