Skip to main content
Log in

Statistical Analysis of Optimal Stationkeeping Location and Coast Duration Using Stretching Directions

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The methodologies for orbit maintenance continue to develop as the number of cislunar space missions grows. Many of the studies on stationkeeping within cislunar space assume a fixed number of evenly spaced correction maneuvers or plan maneuvers based on the control methodology and mission constraints. From these studies, the maneuver location and coast duration have been identified as essential design parameters that affect the cost of fuel consumption and aid in understanding when and where maneuvers should be placed. The Cauchy–Green tensor allows the analysis of combinations of these design parameters in the form of stability maps. This manuscript derives a modified Cauchy–Green tensor for one and two impulsive stationkeeping maneuvers. The stability maps obtained from the modified Cauchy–Green tensors are used to determine combinations of maneuver location and coast duration that minimize fuel consumption and the final position and velocity errors. In addition, a guidance policy, dependent on uncertainties and an initial state perturbation, is derived from the two-impulse stationkeeping analysis to determine whether performing a corrective maneuver is more beneficial to the overall system’s performance. The solutions obtained from this analysis yield a tool for mission design that is dependent mainly on the problem dynamics, navigation, and thrust uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets produced in this study can be obtained from the corresponding author upon a reasonable request.

References

  1. Shirobokov, M., Trofimov, S., Ovchinnikov, M.: Survey of station-keeping techniques for libration point orbits. J. Guid. Control Dyn. 40(5), 1085–1105 (2017). https://doi.org/10.2514/1.G001850

    Article  ADS  Google Scholar 

  2. Folta, D., Vaughn, F.: A survey of earth-moon libration orbits: Stationkeeping strategies and intra-orbit transfers. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2004)

  3. Berning Jr, A.W., Liao-McPherson, D., Girard, A., Kolmanovsky, I.: Suboptimal nonlinear model predictive control strategies for tracking near rectilinear halo orbits. arXiv preprint arXiv:2008.09240 (2020)

  4. Farrés, A., Gao, C., Masdemont, J.J., Gómez, G., Folta, D.C., Webster, C.: Geometrical analysis of station-keeping strategies about libration point orbits. J. Guid. Control Dyn. 45(6), 1108–1125 (2022)

    Article  ADS  Google Scholar 

  5. Bucci, L., Lavagna, M., Jehn, R.: Station keeping techniques for near rectilinear halo orbits in the earth-moon system. In: 10th International ESA Conference on Guidance, Navigation and Control (2017)

  6. Muralidharan, V., Howell, K.C.: Stationkeeping in Earth-Moon near rectilinear halo orbits. In: AAS/AIAA Astrodynamics Specialist Conference (2020)

  7. Davis, D.C., Phillips, S.M., Howell, K.C., Vutukuri, S., McCarthy, B.P.: Stationkeeping and transfer trajectory design for spacecraft in cislunar space. In: AAS/AIAA Astrodynamics Specialist Conference 8 (2017)

  8. Guzzetti, D., Zimovan, E.M., Howell, K.C., Davis, D.C.: Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. In: 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, Texas, United States 160, pp. 3199–3218 (2017)

  9. Subudhi, C.S., Vutukuri, S., Padhi, R.: A near fuel-optimal station-keeping strategy for halo orbits. In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 1478–1483 (2020). https://doi.org/10.1109/CDC42340.2020.9304327

  10. Renault, C., Scheeres, D.: Optimal placement of statistical maneuvers in an unstable orbital environment. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. https://doi.org/10.2514/6.2002-4725

  11. Yan, H., Gong, Q.: Feedback control for formation flying maintenance using state transition matrix. J. Astron. Sci. 59, 177–192 (2012). https://doi.org/10.1007/s40295-013-0012-7

    Article  ADS  Google Scholar 

  12. Farrés Basiana, A., Masdemont Soler, J., Gómez Muntané, G., Webster, C., Folta, D.C.: The geometry of station-keeping strategies around libration point orbits. In: Proceedings of the 70th Astronautical Congress, Vol. 19 (2019)

  13. Station-keeping of libration point orbits by means of projecting to the manifolds. Acta Astronautica 163, 38–44 (2019). https://doi.org/10.1016/j.actaastro.2018.12.002. Fourth IAA Conference on Dynamics and Control of Space Systems (DYCOSS2018)

  14. Vutukuri, S., Padhi, R.: An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbits. Acta Astronaut. 188, 518–530 (2021). https://doi.org/10.1016/j.actaastro.2021.07.041

    Article  Google Scholar 

  15. Folta, D.C., Woodard, M.A., Cosgrove, D.: Stationkeeping of the first Earth-Moon libration orbiters: The artemis mission. In: AAS/AIAA Astrodynamics Specialist Conference (2011)

  16. Zhang, R., Wang, Y., Shi, Y., Zhang, C., Zhang, H.: Performance analysis of impulsive station-keeping strategies for cis-lunar orbits with the ephemeris model. Acta Astronaut. 198, 152–160 (2022). https://doi.org/10.1016/j.actaastro.2022.05.054

    Article  ADS  Google Scholar 

  17. Renault, C.A., Scheeres, D.J.: Statistical analysis of control maneuvers in unstable orbital environments. J. Guid. Control Dyn. 26(5), 758–769 (2003). https://doi.org/10.2514/2.5110

  18. Bonasera, S., Elliott, I., Sullivan, C., Bosanac, N., Ahmed, N., Mcmahon, J.: Designing impulsive station-keeping maneuvers near a Sun-Earth L2 halo orbit via reinforcement learning. In: AAS/AIAA Space Flight Mechanics Meeting (2021)

  19. Pavlak, T., Howell, K.: Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system. In: AIAA/AAS Astrodynamics Specialist Conference (2012). https://doi.org/10.2514/6.2012-4665

  20. Davis, D.C., Scheuerle, S.T., Williams, D.A., Miguel, F.S., Zimovan-Spreen, E.M., Howell, K.C.: Orbit maintenance burn details for spacecraft in a near rectilinear halo orbit. In: AAS/AIAA Astrodynamics Specialist Conference (2022)

  21. LaFarge, N.B., Howell, K.C., Folta, D.C.: An autonomous stationkeeping strategy for multi-body orbits leveraging reinforcement learning. In: AIAA SCITECH 2022 Forum (2022). https://doi.org/10.2514/6.2022-1764

  22. Landau, D.: Efficient maneuver placement for automated trajectory design. J. Guid. Control Dyn. 41(7), 1531–1541 (2018). https://doi.org/10.2514/1.G003172

    Article  ADS  Google Scholar 

  23. Muralidharan, V., Howell, K.C.: Leveraging stretching directions for stationkeeping in Earth-Moon halo orbits. Adv. Space Res. 69(1), 620–646 (2022). https://doi.org/10.1016/j.asr.2021.10.028

    Article  ADS  Google Scholar 

  24. Short, C.R., Howell, K.C.: Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes. Acta Astronaut. 94(2), 592–607 (2014). https://doi.org/10.1016/j.actaastro.2013.08.020

    Article  ADS  Google Scholar 

  25. Oshima, K., Campagnola, S., Yam, C.H., Kayama, Y., Kawakatsu, Y., Ozaki, N., Verspieren, Q., Kakihara, K., Oguri, K., Funase, R.: Equuleus mission analysis: Design of the transfer phase. In: International Symposium on Space Technology and Science, ISTS-2017-d-159, Ehime, Japan (2017)

  26. Baresi, N., Dei Tos, D.A., Ikeda, H., Kawakatsu, Y.: Trajectory design and maintenance of the Martian moons exploration mission around Phobos. J. Guid. Control Dyn. 44(5), 996–1007 (2021). https://doi.org/10.2514/1.G005041

    Article  ADS  Google Scholar 

  27. Spreen, C., Howell, K.C., Marchand, B.: Node placement capability for spacecraft trajectory targeting in an ephemeris model. In: AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado (2015)

  28. Bai, X., Junkins, J.: Modified Chebyshev-Picard iteration methods for station-keeping of translunar halo orbits. Math. Probl. Eng. (2012). https://doi.org/10.1155/2012/926158

    Article  MathSciNet  Google Scholar 

  29. Davis, D.C., Bhatt, S., Howell, K.C., Jang, J.-W., Whitley, R.J., Clark, F., Guzzetti, D., Zimovan, E.M., Barton, G.: Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits. In: 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, Texas, February 5-9, 2017 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Rivera Lopez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Jacobian Matrix for the CR3BP

$$\begin{aligned} F({\textbf{X}}) = \begin{bmatrix} {\dot{x}} \\ \\ {\dot{y}}\\ \\ {\dot{z}} \\ \\ x - (1-\mu )\frac{(x-x_{1})}{\rho _{1}^{3}} - \mu \frac{(x-x_{2})}{\rho _{2}^{3}} + 2{\dot{y}} \\ \\ (1 - \frac{1-\mu }{\rho _{1}^{3}} - \frac{\mu }{\rho _{2}^{3}})y - 2{\dot{x}} \\ \\ -(\frac{1-\mu }{\rho _{1}^{3}} + \frac{\mu }{\rho _{2}^{3}})z \end{bmatrix} \end{aligned}$$
(A1)
$$\begin{aligned} {\textbf{A}}(t) = \frac{\partial F({\textbf{X}})}{\partial {\textbf{X}}} = \begin{bmatrix} {0}_{3x3} &{} {I}_{3x3} \\ {A}_{x_{21}} &{} {A}_{x_{22}} \end{bmatrix} \end{aligned}$$
(A2)
$$\begin{aligned} {A}_{x_{22}} = \begin{bmatrix} 0 &{} 2 &{} 0 \\ -2 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \end{bmatrix} \end{aligned}$$
(A3)
$$\begin{aligned} {\textbf {A}}_{x_{21}} = \begin{bmatrix} A_{4x}&{} A_{4y} &{}A_{4z}\\ A_{5x}&{} A_{5y} &{}A_{5z}\\ A_{6x}&{} A_{6y} &{}A_{6z} \end{bmatrix} \end{aligned}$$
(A4)
$$\begin{aligned} \begin{bmatrix} A_{4x} \\ \\ A_{4y} \\ \\ A_{4z}\\ \\ A_{5x} \\ \\ A_{5y}\\ \\ A_{5z}\\ \\ A_{6x} \\ \\ A_{6y} \\ \\ A_{6z} \end{bmatrix} =\begin{bmatrix} \frac{3(1-{\mu })(x-{x_{1}})^2}{\rho _{1}^{5}}-\frac{1-{\mu }}{\rho _{1}^{3}}-\frac{{\mu }}{\rho _{2}^{3}}+\frac{3 {\mu }(x-{x_{2}})^2}{\rho _{2}^{5}}+1\\ \\ \frac{3 (1-{\mu }) y (x-{x_{1}})}{\rho _{1}^{5}}+\frac{3 {\mu } y (x-{x_{2}})}{\rho _{2}^{5}}\\ \\ \frac{3 (1-{\mu }) z (x-{x_{1}})}{\rho _{1}^{5}}+\frac{3 {\mu } z (x-{x_{2}})}{\rho _{2}^{5}} \\ \\ A_{4y}\\ \\ y \left( \frac{3 (1-{\mu }) y}{\rho _{1}^{5}}+\frac{3 {\mu } y}{\rho _{2}^{5}}\right) -\frac{1-{\mu }}{\rho _{1}^{3}}-\frac{{\mu }}{\rho _{2}^{3}}+1 \\ \\ y \left( \frac{3 (1-{\mu }) z}{\rho _{1}^{5}}+\frac{3 {\mu } z}{\rho _{2}^{5}}\right) \\ \\ A_{4z}\\ \\ A_{5z}\\ \\ z \left( \frac{3 (1-{\mu }) z}{\rho _{1}^5}+\frac{3 {\mu } z}{\rho _{2}^5}\right) -\frac{1-{\mu }}{\rho _{1}^3}-\frac{{\mu }}{\rho _{2}^3} \end{bmatrix} \end{aligned}$$
(A5)

Appendix B: Stability Maps for Three Orbit Periods

From an automation perspective, maintaining consistent maneuver locations across multiple orbit revolutions is desirable. Given the periodic nature of orbits in the CR3BP, it is expected that the stability map patterns repeat. This is demonstrated by regenerating the stability maps in Figs. 5 and 6 for three orbit revolutions, as illustrated in Figs. 11 and 12 for the NRHO and \(L_2\) Lyapunov, respectively. Similarly, Figs. 7 and 8 exhibit the same behavior, as evident in Figs. 13 and 14 for the NRHO and \(L_2\) Lyapunov, respectively.

Fig. 11
figure 11

Maximum deformation using \({\tilde{{\textbf{C}}}}\) for NRHO (3 revolutions)

Fig. 12
figure 12

Maximum deformation using \({\tilde{{\textbf{C}}}}\) for Lyapunov (3 revolutions)

Fig. 13
figure 13

Maximum deformation using \({\tilde{{\textbf{C}}}}_{x0}\) for NRHO (3 revolutions)

Fig. 14
figure 14

Maximum deformation using \({\tilde{{\textbf{C}}}}_{x0}\) for Lyapunov (3 revolutions)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera Lopez, K., Holzinger, M. Statistical Analysis of Optimal Stationkeeping Location and Coast Duration Using Stretching Directions. J Astronaut Sci 71, 7 (2024). https://doi.org/10.1007/s40295-023-00427-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00427-2

Keywords

Navigation