Skip to main content
Log in

Touchless Electrostatic Three-dimensional Detumbling of Large Axi-symmetric Debris

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Touchless detumbling of space debris is investigated to enable orbital servicing or active debris removal. Using active charge transfer between a servicer and debris object, control torques are created to reduce the debris spin rate prior to making any physical contact. In this work, the servicer shape is spherical and the debris is assumed to be cylindrical and tumbling. The attitude control goal is to reduce the debris tumbling motion while maintaining a fixed position ahead of the debris object. Prior work has identified the feasibility of electrostatic detumble for one degree of rotational freedom. This work extends the theory to three-dimensional tumbling motion. Using the previously developed Multi-Sphere modeling method for electrostatic forces and torques on non-spherical objects, detumble behavior is predicted and Lyapunov control theory and numerical simulations are used to demonstrate a stabilizing attitude control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karavaev, Y.S., Kopyatkevich, R.M., Mishina, M.N., Mishin, G.S., Papushev, P.G., Shaburov, P.N.: The dynamic properties of rotation and optical characteristics of space debris at geostationary orbit. Adv. Astronaut. Sci. 119, 1457–1466 (2004). Paper No. AAS-04-192

    Google Scholar 

  2. Couzin, P., Teti, F., Rembala, R.: Active Removal of Large Debris : Rendez-vous and Robotic Capture Issues. 2nd European Workshop on Active Debris Removal, Paris, France (2012). Paper #7.5

    Google Scholar 

  3. Couzin, P., Teti, F., Rembala, R.: Active Removal of Large Debris: System approach of deorbiting concepts and Technological issues. In: 6th European Conference on Space Debris, Darmstadt, Germany, April 22–25 2013. Paper No. 6a.P-17

  4. Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS’08), pp. 25–29 (2008)

  5. Xu, W., Liang, B., Li, B., Xu, Y.: A universal on-orbit servicing system used in the geostationary orbit. Adv. Space Res. 48(1), 95–119 (2011). doi:10.1016/j.asr.2011.02.012

    Article  Google Scholar 

  6. Schaub, H., Stevenson, D.: Prospects Of Relative Attitude Control Using Coulomb Actuation. In: Jer-Nan Juang Astrodynamics Symposium, College Station, TX, June 25–26 2012. Paper AAS 12–607

  7. Schaub, H., Moorer, D.F.: Geosynchronous Large Debris Reorbiter: Challenges and Prospects. In: AAS Kyle T. Alfriend Astrodynamics Symposium, Monterey, CA, May 17–19 2010. Paper No. AAS 10-311

  8. Moorer, D.F., Schaub, H.: Hybrid Electrostatic Space Tug. US Patent 0036951-A1, 17 (2011)

  9. Moorer, D.F., Schaub, H.: Electrostatic Spacecraft Reorbiter. US Patent 8,205,838 B2, 17 (2011)

  10. Murdoch, N., Izzo, D., Bombardelli, C., Carnelli, I., Hilgers, A., Rodgers, D.: Electrostatic tractor for near Earth object deflection. 59th International Astronautical Congress, Glasgow Scotland (2008). Paper IAC-08-A3.I.5

  11. Murdoch, N., Izzo, D., Bombardelli, C., Carnelli, I., Hilgers, A., Rodgers, D.: The Electrostatic Tractor for Asteroid Deflection (2008). Paper IAC-08-A3.I.5

  12. Cover, J.H., Knauer, W., Maurer, H.A.: Lightweight Reflecting Structures Utilizing Electrostatic Inflation. US Patent 3,546,706 (1966)

  13. King, L.B., Parker, G.G., Deshmukh, S., Chong, J.-H.: Spacecraft Formation-Flying using Inter-Vehicle Coulomb Forces. Technical Report, NASA/NIAC (2002). http://www.niac.usra.edu

  14. Berryman, J., Schaub, H.: Analytical charge analysis for 2- and 3-craft coulomb formations. AIAA J. Guid. Control Dyn. 30, 1701–1710 (2007)

    Article  Google Scholar 

  15. Seubert, C.R., Panosian, S., Schaub, H.: Analysis of a tethered coulomb structure applied to close proximity situational awareness. ASIA J. Spacecr. Rocket. 49, 1183–1193 (2012)

    Article  Google Scholar 

  16. Stiles, L.A., Schaub, H., Maute, K.K., Moorer, D.F.: Electrostatically inflated gossamer space structure voltage requirements due to orbital perturbations. Acta Astronaut. 84, 109–121 (2013). doi:10.1016/j.actaastro.2012.11.007

    Article  Google Scholar 

  17. Wang, S., Schaub, H.: Nonlinear charge control for a collinear fixed shape three-craft equilibrium. AIAA J. Guid. Control Dyn. 34, 359–366 (2011). doi:10.2514/1.52117

    Article  Google Scholar 

  18. Peck, M.A.: Prospects and Challenges for Lorentz-Augmented Orbits. In: AIAA Guidance, Navigation and Control Conference, San Francisco, CA, August 15–18 2005. Paper No. AIAA 2005-5995

  19. Streetman, B., Peck, M.A.: New synchronous orbits using the geomagentic lorentz force. AIAA J. Guid. Control. Dyn. 30, 1677–1690 (2007)

    Article  Google Scholar 

  20. Stiles, L.A., Schaub, H., Maute, K., Moorer, D.F.: Electrostatic Inflation of Membrane Space Structures. In: AAS/AIAA Astrodynamics Specialist Conference, Toronto, Canada, Aug. 2–5 2010. AIAA-2010-8134

  21. Stevenson, D., Schaub, H.: Multi-sphere method for modeling electrostatic forces and torques. Adv. Space Res. 51, 10–20 (2013). doi:10.1016/j.asr.2012.08.014

  22. Stevenson, D.: Optimization of Sphere Population for Electrostatic Multi Sphere Model. In: 12th Spacecraft Charging Technology Conference, Kitakyushu, Japan, May 14–18 (2012)

  23. Stevenson, D., Schaub, H.: Terrestrial Testbed For Remote Coulomb Spacecraft Rotation Control. International Journal of Space Science and Engineering 2(1), 96–112 (2014). doi:10.1504/IJSPACESE.2014.060111

    Article  Google Scholar 

  24. Smythe, W.R.: Static and Dynamic Electricity, 3rd. McGraw–Hill (1968)

  25. Sliško, J., Brito-Orta, R.A.: On approximate formulas for the electrostatic force between two conducting spheres,” Am. J. Phys. 66(4), 352–355 (1998)

    Article  Google Scholar 

  26. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd. Reston, VA: AIAA Education Series (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Bennett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, T., Schaub, H. Touchless Electrostatic Three-dimensional Detumbling of Large Axi-symmetric Debris. J of Astronaut Sci 62, 233–253 (2015). https://doi.org/10.1007/s40295-015-0075-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0075-8

Keywords

Navigation