Skip to main content
Log in

Analytic Transfer Functions for the Dynamics & Control of Flexible Rotating Spacecraft Performing Large Angle Maneuvers

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

A symmetric flexible rotating spacecraft can be modeled as a distributed parameter system of a rigid hub attached to two flexible appendages with tip masses. First, Hamilton’s extended principle is utilized to establish a general treatment for deriving the dynamics of multi-body dynamical systems to establish a hybrid system of integro-partial differential equations that model the evolution of the system in space and time. A Generalized State Space (GSS) system of equations is constructed in the frequency domain to obtain analytic transfer functions for the rotating spacecraft. This model does not include spatial discretization. The frequency response of the generally modeled spacecraft and a special case with no tip masses are presented. Numerical results for the system frequency response obtained from the analytic transfer functions are presented and compared against the classical assumed modes numerical method with two choices of admissible functions. The truncation-error-free analytic results are used to validate the numerical approximations and to agree well with the classical widely used finite dimensional numerical solutions. Fundamentally, we show that the rigorous transfer function, without introduction of spatial discretization, can be directly used in control law design with a guarantee of Lyapunov stable closed loop dynamics. The frequency response of the system is used in a classical control problem where the Lyapunov stable controller is derived and tested for gain selection. The correlation between the controller design in the frequency domain utilizing the analytic transfer functions and the system response is analyzed and verified. The derived analytic transfer functions provide a powerful tool to test various control schemes in the frequency domain and a validation platform for existing numerical methods for distributed parameters models. The same platform has been used to obtain the frequency response of more complex beam models following Timoshenko beam theory and the control problem for such models can be pursued in future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Atluri, S.N.: Methods of computer modeling in engineering & the sciences, vol. 1. Tech Science Press Palmdale (2005)

  2. Ben-Asher, J., Burns, J., Cliff, E.: Time-optimal slewing of flexible spacecraft. J. Guid. Control. Dyn. 15(2) (1992). doi:10.2514/3.20844

  3. Boṡkovic, J., Li, S., Mehra, R.: Robust adaptive variable structure control of spacecraft under control input saturation. J. Guid., Control Dyn. 24(1) (2001). doi:10.2514/2.4704

  4. Breakwell, J.: Optimal feedback slewing of flexible spacecraft. J. Guid. Control. Dyn. 4(5) (1981). doi:10.2514/3.19749

  5. Dwivedy, S., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006). doi:10.1016/j.mechmachtheory.2006.01.014

    Article  MathSciNet  MATH  Google Scholar 

  6. Elgohary, T.A., Turner, J.D.: Generalized frequency domain modeling and analysis for a flexible rotating spacecraft. In: AIAA Modeling and Simulation Technologies (MST) Conference. AIAA, Boston, MA (2013), 10.2514/6.2013-4914

  7. Elgohary, T.A., Turner, J.D.: Generalized frequency domain solution for a hybrid rigid hub timoshenko beam rotating aerospace structure. In: AIAA/AAS Astrodynamics Specialist Conference. doi: 10.2514/6.2014-4121

  8. Elgohary, T.A., Turner, J.D., Junkins, J.L.: Dynamics and controls of a generalized frequency domain model flexible rotating spacecraft. In: AIAA SpaceOps Conference. AIAA, Pasadena, CA (2014), doi: 10.2514/6.2014-1797

  9. HALE, A.L., Lisowski, R.J., DAHL, W.E.: Optimal simultaneous structural and control design of maneuvering flexible spacecraft. J. Guid. Control. Dyn. 8(1) (1985). doi:10.2514/3.19939

  10. Hu, Q., Ma, G.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9(4), 307–317 (2005). doi:10.1016/j.ast.2005.02.001

    Article  MATH  Google Scholar 

  11. Hu, Q., Ma, G.: Spacecraft vibration suppression using variable structure output feedback control and smart materials. J. Vib. Acoust. 128(2), 221–230 (2006). doi:10.1016/j.ast.2005.02.001

    Article  MathSciNet  Google Scholar 

  12. Junkins, J., Rahman, Z., Bang, H.: Near-minimum-time control of distributed parameter systems-analytical and experimental results. J. Guid. Control. Dyn. 14(2) (1991). doi:10.2514/3.20653

  13. Junkins, J., Turner, J.: Optimal Spacecraft Rotational Maneuvers, Studies in Astronautics. Elsevier Scientific Publishing company, New York, NY (1985)

  14. Junkins, J.L., Bang, H.: Maneuver and vibration control of hybrid coordinate systems using lyapunov stability theory. J. Guid. Control. Dyn. 16(4), 668–676 (1993). doi:10.2514/3.21066

    Article  Google Scholar 

  15. Junkins, J.L., Kim, Y.: Introduction to dynamics and control of flexible structures. AIAA (1993)

  16. Lee, S., Junkins, J.: Explicit generalizations of lagranges’ equations for hybrid coordinate dynamical systems. J. Guid. Control. Dyn. 15(6), 1443–1452 (1992). doi: 10.2514/3.11408

    Article  MathSciNet  MATH  Google Scholar 

  17. Lupi, V., Chun, H., Turner, J.: Distributed modeling and control of flexible structures. In: Presented at the IFAC Workshop in Dynamics and control of Flexible Aerospace Structures: Modeling and Experimental Verification, Huntsville, Alabama (1991)

  18. Lupi, V., Chun, H., Turner, J.: Distributed control and simulation of a bernoulli-euler beam. J. Guid. Control. Dyn. 15(3), 729–734 (1992)

    Article  Google Scholar 

  19. Lupi, V., Turner, J., Chun, H.: Transform methods for precision continuum and control models of flexible space structures. In: Proceedings of the AIAA/AAS ASTRODYNAMICS Conference, pp. 680–689, Portland, Oregon (1990)

  20. Maganti, G.B., Singh, S.N.: Simplified adaptive control of an orbiting flexible spacecraft. Acta Astronaut. 61(7), 575–589 (2007). doi:10.1016/j.actaastro.2007.02.004

    Article  Google Scholar 

  21. Meirovitch, L., Quinn, R.: Equations of motion for maneuvering flexible spacecraft. J. Guid. Control. Dyn. 10(5) (1987). doi:10.2514/3.20240

  22. Meirovitch, L., Stemple, T.: Hybrid equations of motion for flexible multibody systems using quasicoordinates. J. Guid. Control. Dyn. 18(4) (1995). doi: 10.2514/3.21447

  23. Singh, G., Kabamba, P., McClamroch, N.: Planar, time-optimal, rest-to-rest slewing maneuvers of flexible spacecraft. J. Guid. Control. Dyn. 12(1) (1989). doi: 10.2514/3.20370

  24. Turner, J., Chun, H.: Optimal distributed control of a flexible spacecraft during a large-angle maneuver. J. Guid. Control. Dyn. 7(3), 257–264 (1984). doi: 10.2514/3.19853

    Article  Google Scholar 

  25. Turner, J., Junkins, J.: Optimal large-angle single-axis rotational maneuvers of flexible spacecraft. J. Guid. Control. Dyn. 3(6) (1980). doi:10.2514/3.56036

  26. Turner, J.D., Elgohary, T.A.: Generalized frequency domain state-space models for analyzing flexible rotating spacecraft. In: Advances in Astronautical Science: The Kyle T. Alfriend Astrodynamics Symposium, vol. 139, pp. 483–500 (2011)

  27. Turner, J.D., Elgohary, T.A.: Generalized frequency domain state-space models for analyzing flexible rotating spacecraft. J. Astronaut. Sci. 59(1-2), 459–476 (2012). doi:10.1007/s40295-013-0028-7

  28. Wie, B.: Space vehicle dynamics and control. AIAA (1998)

  29. Wie, B., Sinha, R., Liu, Q.: Robust time-optimal control of uncertain structural dynamic systems. J. Guid. Control. Dyn. 16(5), 980–983 (1993). doi: 10.2514/3.21114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek A. Elgohary.

Additional information

T.A. Elgohary is a AAS Member.

J.D. Turner and J.L Junkins are AAS Fellows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgohary, T.A., Turner, J.D. & Junkins, J.L. Analytic Transfer Functions for the Dynamics & Control of Flexible Rotating Spacecraft Performing Large Angle Maneuvers. J of Astronaut Sci 62, 168–195 (2015). https://doi.org/10.1007/s40295-015-0038-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0038-0

Keywords

Navigation