Skip to main content
Log in

MicroRNAs Function in Dental Stem Cells as a Promising Biomarker and Therapeutic Target for Dental Diseases

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Undifferentiated, highly proliferative, clonogenic, and self-renewing dental stem cells have paved the way for novel approaches to mending cleft palates, rebuilding lost jawbone and periodontal tissue, and, most significantly, recreating lost teeth. New treatment techniques may be guided by a better understanding of these cells and their potential in terms of the specificity of the regenerative response. MicroRNAs have been recognized as an essential component in stem cell biology due to their role as epigenetic regulators of the processes that determine stem cell destiny. MicroRNAs have been proven to be crucial in a wide variety of molecular and biological processes, including apoptosis, cell proliferation, migration, and necrocytosis. MicroRNAs have been recognized to control protein translation, messenger RNA stability, and transcription and have been reported to play essential roles in dental stem cell biology, including the differentiation of dental stem cells, the immunological response, apoptosis, and the inflammation of the dental pulp. Because microRNAs increase dental stem cell differentiation, they may be used in regenerative medicine to either preserve the stem cell phenotype or to aid in the development of tooth tissue. The development of novel biomarkers and therapies for dental illnesses relies heavily on progress made in our knowledge of the roles played by microRNAs in regulating dental stem cells. In this article, we discuss how dental stem cells and their associated microRNAs may be used to cure dental illness.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yasamineh S, Kalajahi HG, Yasamineh P, Gholizadeh O, Youshanlouei HR, Matloub SK, et al. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Res Ther. 2022;13(1):257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, et al. Application of biocompatible scaffolds in stem-cell-based dental tissue engineering. Cell Biology and Translational Medicine, Volume 18: Tissue Differentiation, Repair in Health and Disease. 2022:83–110.

  3. Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng. 2017;8: 2041731417702531.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soudi A, Yazdanian M, Ranjbar R, Tebyanian H, Yazdanian A, Tahmasebi E, et al. Role and application of stem cells in dental regeneration: a comprehensive overview. EXCLI J. 2021;20:454.

    PubMed  PubMed Central  Google Scholar 

  5. Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010;20(12):715–22.

    Article  CAS  PubMed  Google Scholar 

  6. Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther. 2018;18(2):187–96.

    Article  PubMed  Google Scholar 

  7. Morsczeck C. Dental stem cells for tooth regeneration: how far have we come and where next? Expert Opin BiolTher. 2023;23:1–11.

    Google Scholar 

  8. Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol. 2023;20(6):558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Invest. 2019;6:19.

    Article  Google Scholar 

  10. Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration. Oral Dis. 2018;24(5):696–705.

    Article  CAS  PubMed  Google Scholar 

  11. Granz CL, Gorji A. Dental stem cells: the role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells. 2020;12(9):897.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sanz JL, Rodriguez-Lozano FJ, Lopez-Gines C, Monleon D, Llena C, Forner L. Dental stem cell signaling pathway activation in response to hydraulic calcium silicate-based endodontic cements: a systematic review of in vitro studies. Dent Mater. 2021;37(4):e256–68.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Yelick PC. Tooth repair and regeneration: potential of dental stem cells. Trends Mol Med. 2021;27(5):501–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mai Z, Chen H, Ye Y, Hu Z, Sun W, Cui L, et al. Translational and clinical applications of dental stem cell-derived exosomes. Front Genet. 2021;12: 750990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, et al. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal. 2023;21(1):1–26.

    Article  Google Scholar 

  16. Gong Q, Wang R, Jiang H, Lin Z, Ling J. Alteration of microRNA expression of human dental pulp cells during odontogenic differentiation. J Endod. 2012;38(10):1348–54.

    Article  PubMed  Google Scholar 

  17. Zhong S, Zhang S, Bair E, Nares S, Khan AA. Differential expression of microRNAs in normal and inflamed human pulps. J Endod. 2012;38(6):746–52.

    Article  PubMed  Google Scholar 

  18. Liu W, Gong Q, Ling J, Zhang W, Liu Z, Quan J. Role of miR-424 on angiogenic potential in human dental pulp cells. J Endod. 2014;40(1):76–82.

    Article  PubMed  Google Scholar 

  19. Kulthanaamondhita P, Kornsuthisopon C, Photichailert S, Manokawinchoke J, Limraksasin P, Osathanon T. Specific microRNAs regulate dental pulp stem cell behavior. J Endod. 2022;48:688–98.

    Article  PubMed  Google Scholar 

  20. Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Engineer. 2017;8:2041731417702531.

    Google Scholar 

  21. Tsutsui TW. Dental pulp stem cells: advances to applications. Stem Cells Clon Adv Appl. 2020;13:33–42.

    Google Scholar 

  22. Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow–derived mesenchymal stem cells. Biochem Biophys Res Commun. 2018;501(1):193–8.

    Article  CAS  PubMed  Google Scholar 

  23. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Engineer Regen Med. 2015;9(11):1205–16.

    Article  Google Scholar 

  24. Taguchi T, Yanagi Y, Yoshimaru K, Zhang X-Y, Matsuura T, Nakayama K, et al. Regenerative medicine using stem cells from human exfoliated deciduous teeth (SHED): a promising new treatment in pediatric surgery. Surg Today. 2019;49:316–22.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1(1):1–11.

    Article  Google Scholar 

  26. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009;35(11):1536–42.

    Article  PubMed  Google Scholar 

  27. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci. 2003;100(10):5807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55.

    Article  CAS  PubMed  Google Scholar 

  29. Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthodont Craniofacial Res. 2007;10(3):149–60.

    Article  CAS  Google Scholar 

  30. Trubiani O, Pizzicannella J, Caputi S, Marchisio M, Mazzon E, Paganelli R, et al. Periodontal ligament stem cells: current knowledge and future perspectives. Stem Cells Dev. 2019;28(15):995–1003.

    Article  PubMed  Google Scholar 

  31. Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28(15):974–85.

    Article  PubMed  Google Scholar 

  32. Nada OA, El Backly RM. Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol. 2018;6:103.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang GTJ, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod. 2008;34(6):645–51.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011;56(7):709–21.

    Article  CAS  PubMed  Google Scholar 

  35. Lovelace TW, Henry MA, Hargreaves KM, Diogenes A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod. 2011;37(2):133–8.

    Article  PubMed  Google Scholar 

  36. Zhao M, Xiao G, Berry JE, Franceschi RT, Reddi A, Somerman MJ. Bone morphogenetic protein 2 induces dental follicle cells to differentiate toward a cementoblast/osteoblast phenotype. J Bone Miner Res. 2002;17(8):1441–51.

    Article  CAS  PubMed  Google Scholar 

  37. Yao S, Pan F, Prpic V, Wise G. Differentiation of stem cells in the dental follicle. J Dent Res. 2008;87(8):767–71.

    Article  CAS  PubMed  Google Scholar 

  38. Guo W, Chen L, Gong K, Ding B, Duan Y, Jin Y. Heterogeneous dental follicle cells and the regeneration of complex periodontal tissues. Tissue Engineer Part A. 2012;18(5–6):459–70.

    Article  CAS  Google Scholar 

  39. Sehic A, Tulek A, Khuu C, Nirvani M, Sand LP, Utheim TP. Regulatory roles of microRNAs in human dental tissues. Gene. 2017;596:9–18.

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Li C, Yue J, Huang X, Chen M, Gao J, et al. miR-21 and miR-101 regulate PLAP-1 expression in periodontal ligament cells. Mol Med Rep. 2012;5(5):1340–6.

    CAS  PubMed  Google Scholar 

  41. Jin Y, Wang C, Cheng S, Zhao Z, Li J. MicroRNA control of tooth formation and eruption. Arch Oral Biol. 2017;73:302–10.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang W, Sun S, Wang D, Qiu J, Song Y, Zhang Q, et al. MicroRNA-22 suppresses NLRP3/CASP1 inflammasome pathway-mediated proinflammatory cytokine production by targeting the HIF-1α and NLRP3 in human dental pulp fibroblasts. Int Endod J. 2022;55(11):1225–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gu M, Yu X, Fan L, Zhu G, Yang F, Lou S, et al. Genetic variants in miRNAs are associated with risk of non-syndromic tooth agenesis. Front Physiol. 2020;11:1052.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Al Gashaamy ZJ, Alomar T, Al-Sinjary L, Wazzan M, Saeed MH, Al-Rawi NH. MicroRNA expression in apical periodontitis and pulpal inflammation: a systematic review. PeerJ. 2023;11: e14949.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu P, Feng J, Wang W. Expression of miR-155 and miR-146a in the saliva of patients with periodontitis and its clinical value. Am J Transl Res. 2021;13(6):6670.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sipert CR, Morandini AC, Dionísio TJ, Trachtenberg AJ, Kuo WP, Santos CF. MicroRNA-146a and microRNA-155 show tissue-dependent expression in dental pulp, gingival and periodontal ligament fibroblasts in vitro. J Oral Sci. 2014;56(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  47. Uttamani JR, Naqvi AR, Estepa AMV, Kulkarni V, Brambila MF, Martínez G, et al. Downregulation of miRNA-26 in chronic periodontitis interferes with innate immune responses and cell migration by targeting phospholipase C beta 1. J Clin Periodontol. 2023;50:102–13.

    Article  CAS  PubMed  Google Scholar 

  48. Gao J, Li L, Wu M, Liu M, Xie X, Guo J, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS ONE. 2013;8(6): e65138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ortiz GGR, Mohammadi Y, Nazari A, Ataeinaeini M, Kazemi P, Yasamineh S, et al. MicroRNAs: influencers and targets in hematopoietic stem cell aging. 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123996/.

  50. Hu J, Stojanović J, Yasamineh S, Yasamineh P, Karuppannan SK, Hussain Dowlath MJ, et al. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch Virol. 2021;166:2649–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Norouzi M, Yasamineh S, Montazeri M, Dadashpour M, Sheervalilou R, Abasi M, et al. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Eng C Mater Biol Appl. 2019;104: 110007.

    Article  CAS  PubMed  Google Scholar 

  52. Osaki M, Takeshita F, Ochiya T. MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers. 2008;13(7–8):658–70.

    Article  CAS  PubMed  Google Scholar 

  53. Manikkath J, Jishnu PV, Wich PR, Manikkath A, Radhakrishnan R. Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine. 2022;17(3):181–95.

    Article  CAS  PubMed  Google Scholar 

  54. Santonocito S, Polizzi A, Palazzo G, Isola G. The emerging role of microRNA in periodontitis: pathophysiology, clinical potential and future molecular perspectives. Int J Mol Sci. 2021;22(11):5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han X, Fan Z. MicroRNAs regulation in osteogenic differentiation of mesenchymal stem cells. Front Dent Med. 2021;72.

  56. Han T-S, Voon DC-C, Oshima H, Nakayama M, Echizen K, Sakai E, et al. Interleukin 1 up-regulates microRNA 135b to promote inflammation-associated gastric carcinogenesis in mice. Gastroenterology. 2019;156(4):1140-55.e4.

    Article  CAS  PubMed  Google Scholar 

  57. Tomé M, López-Romero P, Albo C, Sepúlveda JC, Fernández-Gutiérrez B, Dopazo A, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011;18(6):985–95.

    Article  PubMed  Google Scholar 

  58. Fan J, An X, Yang Y, Xu H, Fan L, Deng L, et al. MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the Wnt/β-catenin pathway. Aging Dis. 2018;9(6):1103.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol. 2009;10(2):116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li N, Long B, Han W, Yuan S, Wang K. microRNAs: important regulators of stem cells. Stem Cell Res Ther. 2017;8:1–7.

    Article  Google Scholar 

  61. Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness.’ Nature. 2008;452(7184):225–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iranmanesh P, Vedaei A, Salehi-Mazandarani S, Nikpour P, Khazaei S, Khademi A, et al. MicroRNAs-mediated regulation of the differentiation of dental pulp-derived mesenchymal stem cells: a systematic review and bioinformatic analysis. Stem Cell Res Ther. 2023;14(1):1–20.

    Article  Google Scholar 

  63. Sun DG, Xin BC, Wu D, Zhou L, Wu HB, Gong W, et al. miR-140-5p-mediated regulation of the proliferation and differentiation of human dental pulp stem cells occurs through the lipopolysaccharide/toll-like receptor 4 signaling pathway. Eur J Oral Sci. 2017;125(6):419–25.

    Article  CAS  PubMed  Google Scholar 

  64. Sun Y, Shi J, Luo X, Xu X. microRNA-142–3p regulates osteogenic differentiation of human periodontal ligament stem cells via mediating SGK1. J Stomatol Oral Maxillofac Surg. 2023;124(1): 101369.

    Article  PubMed  Google Scholar 

  65. Gao S, Ge LH, Zhao YM, Li P, Li YY, Zhao W. Hsa-miRNA-143-3p regulates the odontogenic differentiation of human stem cells from the apical papilla by targeting NFIC. Int Endod J. 2022;55(3):263–74.

    Article  PubMed  Google Scholar 

  66. Klingelhöffer C, Codrin C, Ettl T, Reichert T, Morsczeck C. miRNA-101 supports the osteogenic differentiation in human dental follicle cells. Arch Oral Biol. 2016;72:47–50.

    Article  PubMed  Google Scholar 

  67. Ito K, Tomoki R, Ogura N, Takahashi K, Eda T, Yamazaki F, et al. MicroRNA-204 regulates osteogenic induction in dental follicle cells. J Dent Sci. 2020;15(4):457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang J, Zheng Y, Bai B, Song Y, Zheng K, Xiao J, et al. MicroRNA-125a-3p participates in odontoblastic differentiation of dental pulp stem cells by targeting Fyn. Cytotechnology. 2020;72:69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang X, Liu F, Hou J, Chen K. Inflammation-induced overexpression of microRNA-223-3p regulates odontoblastic differentiation of human dental pulp stem cells by targeting SMAD3. Int Endod J. 2019;52(4):491–503.

    Article  CAS  PubMed  Google Scholar 

  70. Matsui S, Ogata Y. Effects of miR-223 on expression of IL-1β and IL-6 in human gingival fibroblasts. J Oral Sci. 2016;58(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  71. Tian S, Liu Y, Dong F, Dou Y, Li W, Wang J. Knockdown of microRNA-584 promotes dental pulp stem cells proliferation by targeting TAZ. Cell Cycle. 2020;19(9):1048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang Y, Zheng Y, Wang Z, Li J, Wang Z, Zhang G, et al. 10(-7) m 17β-oestradiol enhances odonto/osteogenic potency of human dental pulp stem cells by activation of the NF-κB pathway. Cell Prolif. 2013;46(6):677–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yuan H, Zhao H, Wang J, Zhang H, Hong L, Li H, et al. MicroRNA let-7c-5p promotes osteogenic differentiation of dental pulp stem cells by inhibiting lipopolysaccharide-induced inflammation via HMGA2/PI3K/Akt signal blockade. Clin Exp Pharmacol Physiol. 2019;46(4):389–97.

    Article  CAS  PubMed  Google Scholar 

  74. Baru O, Raduly L, Bica C, Chiroi P, Budisan L, Mehterov N, et al. Identification of a miRNA panel with a potential determinant role in patients suffering from periodontitis. Curr Issues Mol Biol. 2023;45(3):2248–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qiao W, Li D, Shi Q, Wang H, Wang H, Guo J. miR-224-5p protects dental pulp stem cells from apoptosis by targeting Rac1. Exp Ther Med. 2020;19(1):9–18.

    CAS  PubMed  Google Scholar 

  76. Xu K, Xiao J, Zheng K, Feng X, Zhang J, Song D, et al. MiR-21/STAT3 signal is involved in odontoblast differentiation of human dental pulp stem cells mediated by TNF-α. Cell Reprogramming. 2018;20(2):107–16.

    Article  CAS  Google Scholar 

  77. Gu S, Ran S, Liu B, Liang J. miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT 7 expression. FEBS Lett. 2016;590(8):1123–31.

    Article  CAS  PubMed  Google Scholar 

  78. Wei F, Yang S, Guo Q, Zhang X, Ren D, Lv T, et al. MicroRNA-21 regulates osteogenic differentiation of periodontal ligament stem cells by targeting Smad5. Sci Rep. 2017;7(1):1–12.

    Article  Google Scholar 

  79. Ou C, He X, Liu Y, Zhang X. lncRNA cytoskeleton regulator RNA (CYTOR): diverse functions in metabolism, inflammation and tumorigenesis, and potential applications in precision oncology. Genes Dis. 2021;10(2):415–29.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tu S, Chen Y, Feng Y, Kuang Z, Wang Y, Chen L, et al. lncRNA CYTOR facilitates osteogenic differentiation of human periodontal ligament stem cells by modulating SOX11 via sponging miR-6512-3p. Stem Cells Int. 2023;2023.

  81. Wei F, Liu D, Feng C, Zhang F, Yang S, Hu Y, et al. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells. Stem Cells Dev. 2015;24(3):312–9.

    Article  CAS  PubMed  Google Scholar 

  82. Wu M, Liu X, Li Z, Huang X, Guo H, Guo X, et al. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β/SMAD2/3 signalling. Cell Prolif. 2021;54(7): e13074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tan X, Dai Q. Characterization of microRNAs expression profiles in human dental-derived pluripotent stem cells. PLoS ONE. 2017;12(5): e0177832.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang Y, Pang X, Wu J, Jin L, Yu Y, Gobin R, et al. MicroRNA hsa-let-7b suppresses the odonto/osteogenic differentiation capacity of stem cells from apical papilla by targeting MMP1. J Cell Biochem. 2018;119(8):6545–54.

    Article  CAS  PubMed  Google Scholar 

  85. Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J, et al. Crosstalk between miR-34a and notch signaling promotes differentiation in apical papilla stem cells (SCAPs). J Dent Res. 2014;93(6):589–95.

    Article  CAS  PubMed  Google Scholar 

  86. Li N, Li Z, Yan M, Wang Y, Gu Y, Wu J, et al. miRNA-124-3p. 1 inhibits the osteogenic and odontogenic differentiation of SCAPs via MACF1/smad7 Axis. 2021.

  87. Liu J, Wang X, Song M, Du J, Yu J, Zheng W, et al. MiR-497-5p regulates osteo/odontogenic differentiation of stem cells from apical papilla via the Smad signaling pathway by targeting Smurf2. Front Genet. 2020;11: 582366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Y, Bian M, Zhou Z, Wu X, Ge X, Xiao T, et al. Circular RNA SIPA1L1 regulates osteoblastic differentiation of stem cells from apical papilla via miR-204-5p/ALPL pathway. Stem Cell Res Ther. 2020;11(1):1–15.

    Article  Google Scholar 

  89. Li Z, Ge X, Lu J, Bian M, Li N, Wu X, et al. MiR-141-3p regulates proliferation and senescence of stem cells from apical papilla by targeting YAP. Exp Cell Res. 2019;383(2): 111562.

    Article  CAS  PubMed  Google Scholar 

  90. Chen P, Wei D, Xie B, Ni J, Xuan D, Zhang J. Effect and possible mechanism of network between Micro RNA s and RUNX 2 gene on human dental follicle cells. J Cell Biochem. 2014;115(2):340–8.

    Article  CAS  PubMed  Google Scholar 

  91. Ge J, Guo S, Fu Y, Zhou P, Zhang P, Du Y, et al. Dental follicle cells participate in tooth eruption via the RUNX2-MiR-31-SATB2 loop. J Dent Res. 2015;94(7):936–44.

    Article  CAS  PubMed  Google Scholar 

  92. Tomoki R, Ogura N, Takahashi K, Ito K, Kondoh T. MicroRNA-29 family suppresses mineralization in dental follicle cells. J Hard Tissue Biol. 2015;24(1):23–8.

    Article  CAS  Google Scholar 

  93. Li Y, Duan X, Chen Y, Liu B, Chen G. Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci. 2022;14(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-derived mesenchymal stem cells: potential application in tissue engineering and regenerative medicine-a comprehensive review. Front Immunol. 2021;12: 667221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li Y, Liu C, Han G. Research progress of odontogenic extracellular vesicles in regeneration of dental pulp. Oral Dis. 2022.

  96. Hu X, Zhong Y, Kong Y, Chen Y, Feng J, Zheng J. Lineage-specific exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFβ1/smads signaling pathway via transfer of microRNAs. Stem Cell Res Ther. 2019;10:1–14.

    Article  Google Scholar 

  97. Zheng Y, Dong C, Yang J, Jin Y, Zheng W, Zhou Q, et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis. J Cell Physiol. 2019;234(11):20662–74.

    Article  CAS  PubMed  Google Scholar 

  98. Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24.

    Article  CAS  PubMed  Google Scholar 

  99. Zhou H, Li X, Wu RX, He XT, An Y, Xu XY, et al. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif. 2021;54(5): e13026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yan C, Li N, Xiao T, Ye X, Fu L, Ye Y, et al. Extracellular vesicles from the inflammatory microenvironment regulate the osteogenic and odontogenic differentiation of periodontal ligament stem cells by miR-758-5p/LMBR1/BMP2/4 axis. J Transl Med. 2022;20(1):208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang Y, Zhang X, Wang J, Zhang Y, Ye Q, Wang Y, et al. Inflammatory periodontal ligament stem cells drive M1 macrophage polarization via exosomal miR-143-3p-mediated regulation of PI3K/AKT/NF-κB signaling. Stem Cells. 2023;41(2):184–99.

    Article  PubMed  Google Scholar 

  102. Kim S-H, Lee S-Y, Lee Y-M, Lee Y-K. MicroRNAs as biomarkers for dental diseases. Singapore Dent J. 2015;36:18–22.

    Article  PubMed  Google Scholar 

  103. Sinha A, Bhattacharjee R, Bhattacharya B, Nandi A, Shekhar R, Jana A, et al. The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother. 2023;159: 114269.

    Article  CAS  PubMed  Google Scholar 

  104. Urvasizoglu G, Kilic A, Barlak N, Gundogdu M, Karatas OF. MiR-4484 acts as a potential saliva biomarker for early detection of peri-implantitis. Int J Oral Maxillofac Implants. 2021;36(1):115–21.

    Article  PubMed  Google Scholar 

  105. Chen SC, Constantinides C, Kebschull M, Papapanou PN. MicroRNAs regulate cytokine responses in gingival epithelial cells. Infect Immun. 2016;84(12):3282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Costantini E, Sinjari B, Di Giovanni P, Aielli L, Caputi S, Muraro R, et al. TNFα, IL-6, miR-103a-3p, miR-423-5p, miR-23a-3p, miR-15a-5p and miR-223-3p in the crevicular fluid of periodontopathic patients correlate with each other and at different stages of the disease. Sci Rep. 2023;13(1):126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang P, Jia L. MicroRNA-28-5p as a potential diagnostic biomarker for chronic periodontitis and its role in cell proliferation and inflammatory response. J Dent Sci. 2022;17(4):1501–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Han P, Bartold PM, Salomon C, Ivanovski S. Salivary small extracellular vesicles associated miRNAs in periodontal status: a pilot study. Int J Mol Sci. 2020;21(8):2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kaczor-Urbanowicz KE, Trivedi HM, Lima PO, Camargo PM, Giannobile WV, Grogan TR, et al. Salivary exRNA biomarkers to detect gingivitis and monitor disease regression. J Clin Periodontol. 2018;45(7):806–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH. Differential expression of basal micro RNA s’ patterns in human dental pulp stem cells. J Cell Mol Med. 2015;19(3):566–80.

    Article  CAS  PubMed  Google Scholar 

  111. Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med. 2019;13:152–9.

    Article  PubMed  Google Scholar 

  112. Lymperi S, Ligoudistianou C, Taraslia V, Kontakiotis E, Anastasiadou E. Dental stem cells and their applications in dental tissue engineering. Open Dentistry J. 2013;7:76.

    Article  CAS  Google Scholar 

  113. Alarcón-Apablaza J, Prieto R, Rojas M, Fuentes R. Potential of oral cavity stem cells for bone regeneration: a scoping review. Cells. 2023;12(10):1392.

    Article  PubMed  PubMed Central  Google Scholar 

  114. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;18(7):75–83.

    Article  PubMed  Google Scholar 

  115. Sheth N, Parmar B, Patel H, Makwana K. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells: a pilot study. Int J Oral Maxillofacial Surg. 2017;46:215.

    Article  Google Scholar 

  116. Chen Y, Wang X, Wu Z, Jia S, Wan M. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. PeerJ. 2023;11: e14550.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ortiz GGR, Mohammadi Y, Nazari A, Ataeinaeini M, Kazemi P, Yasamineh S, et al. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity. Cell Commun Signal. 2023;21(1):1–16.

    Article  Google Scholar 

  118. Jevnaker AM, Osmundsen H. MicroRNA expression profiling of the developing murine molar tooth germ and the developing murine submandibular salivary gland. Arch Oral Biol. 2008;53(7):629–45.

    Article  CAS  PubMed  Google Scholar 

  119. Xing X, Han S, Li Z, Li Z. Emerging role of exosomes in craniofacial and dental applications. Theranostics. 2020;10(19):8648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Byun JS, Hong SH, Choi JK, Jung JK, Lee HJ. Diagnostic profiling of salivary exosomal micro RNA s in oral lichen planus patients. Oral Dis. 2015;21(8):987–93.

    Article  PubMed  Google Scholar 

  121. Luo H, Chen D, Li R, Li R, Teng Y, Cao Y, et al. Genetically engineered CXCR4-modified exosomes for delivery of miR-126 mimics to macrophages alleviate periodontitis. J Nanobiotechnol. 2023;21(1):1–15.

    Article  Google Scholar 

  122. Huang C-C, Narayanan R, Alapati S, Ravindran S. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration. Biomaterials. 2016;111:103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miran S, Mitsiadis TA, Pagella P. Innovative dental stem cell-based research approaches: the future of dentistry. Stem Cells Int. 2016;2016.

  124. El Moshy S, Radwan IA, Rady D, Abbass MM, El-Rashidy AA, Sadek KM, et al. Dental stem cell-derived secretome/conditioned medium: the future for regenerative therapeutic applications. Stem Cells Int. 2020;2020.

  125. Kulthanaamondhita P, Kornsuthisopon C, Photichailert S, Manokawinchoke J, Limraksasin P, Osathanon T. Specific microRNAs regulate dental pulp stem cell behavior. J Endod. 2022;48(6):688–98.

    Article  PubMed  Google Scholar 

  126. Hussain A, Tebyaniyan H, Khayatan D. The role of epigenetic in dental and oral regenerative medicine by different types of dental stem cells: a comprehensive overview. Stem Cells Int. 2022;2022.

  127. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54(4):1237–48.

    Article  CAS  PubMed  Google Scholar 

  128. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen H, Xue R, Huang P, Wu Y, Fan W, He X, et al. Modified exosomes: A good transporter for miRNAs within stem cells to treat ischemic heart disease. Journal of Cardiovascular Translational Research. 2022:1-10.

  130. Ma S, Jiang Y, Qian Y, Du J, Yu X, Luo S, et al. The emerging biological functions of exosomes from dental tissue-derived mesenchymal stem cells. Cell Reprogram. 2023;25(2):53–64.

    Article  CAS  PubMed  Google Scholar 

  131. Shi X, Yang G, Liu M-y, Yuan M-t, Wang D, Wang X-f. Exosomes derived from human dental pulp stem cells increase flap survival with ischemia-reperfusion injuries. Regenerative Medicine. 2023(0).

  132. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9(11):1205–16.

    Article  PubMed  Google Scholar 

  133. Potdar PD, Jethmalani YD. Human dental pulp stem cells: applications in future regenerative medicine. World J Stem Cells. 2015;7(5):839.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Shen Z, Kuang S, Zhang Y, Yang M, Qin W, Shi X, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioactive Mater. 2020;5(4):1113–26.

    Article  Google Scholar 

  135. Rajan TS, Giacoppo S, Diomede F, Ballerini P, Paolantonio M, Marchisio M, et al. The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci Rep. 2016;6(1):38743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosa V, Dubey N, Islam I, Min K-S, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells International. 2016;2016.

  137. Zhuang X, Ji L, Jiang H, Liu Y, Liu X, Bi J, et al. Exosomes derived from stem cells from the apical papilla promote dentine-pulp complex regeneration by inducing specific dentinogenesis. Stem cells international. 2020;2020.

  138. Wei J, Song Y, Du Z, Yu F, Zhang Y, Jiang N, et al. Exosomes derived from human exfoliated deciduous teeth ameliorate adult bone loss in mice through promoting osteogenesis. J Mol Histol. 2020;51:455–66.

    Article  CAS  PubMed  Google Scholar 

  139. Zhou T, Pan J, Wu P, Huang R, Du W, Zhou Y, et al. Dental follicle cells: roles in development and beyond. Stem Cells International. 2019;2019.

  140. Zheng J, Kong Y, Hu X, Li Z, Li Y, Zhong Y, et al. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis. Stem Cell Res Ther. 2020;11(1):1–14.

    Article  Google Scholar 

  141. Ke Z, Qiu Z, Xiao T, Zeng J, Zou L, Lin X, et al. Downregulation of miR-224-5p promotes migration and proliferation in human dental pulp stem cells. BioMed Research International. 2019;2019.

  142. Kang L, Miao Y, Jin Y, Shen S, Lin X. Exosomal miR-205-5p derived from periodontal ligament stem cells attenuates the inflammation of chronic periodontitis via targeting XBP1. Immunity Inflamm Dis. 2023;11(1): e743.

    Article  CAS  Google Scholar 

  143. Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25(9):4501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all researchers who contributed to the advancement of science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morteza Banakar or Mohammad Hossein Yazdanpanah.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflicts of Interest/Competing Interests

Kamyar Nasiri, Mohammad Jahri, Shirin Kolahdouz, Milad Soleimani, Ali Makiya, Ravinder S. Saini, Muna S. Merza, Saman Yasamineh, Morteza Banakar, and Mohammad Hossein Yazdanpanah have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Author Contributions

SY was responsible for the writing (original draft). KN, MJ, SK, MS, AM, RS, and MM reviewed and edited the article. All authors, including MB and MY, participated in the critical review process of the manuscript and approved the final version.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, K., Jahri, M., Kolahdouz, S. et al. MicroRNAs Function in Dental Stem Cells as a Promising Biomarker and Therapeutic Target for Dental Diseases. Mol Diagn Ther 27, 703–722 (2023). https://doi.org/10.1007/s40291-023-00675-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00675-w

Navigation