Skip to main content

Advertisement

Log in

Commercial ctDNA Assays for Minimal Residual Disease Detection of Solid Tumors

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The detection of circulating tumor DNA via liquid biopsy has become an important diagnostic test for patients with cancer. While certain commercial liquid biopsy platforms designed to detect circulating tumor DNA have been approved to guide clinical decisions in advanced solid tumors, the clinical utility of these assays for detecting minimal residual disease after curative-intent treatment of nonmetastatic disease is currently limited. Predicting disease response and relapse has considerable potential for increasing the effective implementation of neoadjuvant and adjuvant therapies. As a result, many companies are rapidly investing in the development of liquid biopsy platforms to detect circulating tumor DNA in the minimal residual disease setting. In this review, we discuss the development and clinical implementation of commercial liquid biopsy platforms for circulating tumor DNA minimal residual disease detection of solid tumors. Here, we aim to highlight the technological features that enable highly sensitive detection of tumor-derived genomic alterations, the factors that differentiate these commercial platforms, and the ongoing trials that seek to increase clinical implementation of liquid biopsies using circulating tumor DNA-based minimal residual disease detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88.

    Article  PubMed  CAS  Google Scholar 

  2. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  PubMed  CAS  Google Scholar 

  3. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.

    Article  PubMed  CAS  Google Scholar 

  4. Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018;379(18):1754–65.

    Article  PubMed  CAS  Google Scholar 

  5. Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic: implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18(5):297–312.

    Article  PubMed  Google Scholar 

  6. US Food and Drug Administration. cobas EGFR Mutation Test v2. 2016. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/cobas-egfr-mutation-test-v2. Accessed 1 May 2021.

  7. Kwapisz D. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med. 2017;5(3):46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. US Food and Drug Administration. The therascreen PIK3CA RGQ PCR Kit: P190001 and P190004. 2019. Available from: https://www.fda.gov/medical-devices/recently-approved-devices/therascreen-pik3ca-rgq-pcr-kit-p190001-and-p190004. Accessed 1 May 2021.

  9. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40.

    Article  PubMed  Google Scholar 

  10. Dudley JC, Diehn M. Detection and diagnostic utilization of cellular and cell-free tumor DNA. Ann Rev Pathol. 2021;16(1):199–222.

    Article  CAS  Google Scholar 

  11. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC: challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15(9):577–86.

    Article  PubMed  CAS  Google Scholar 

  12. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci. 2011;108(23):9530–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chin R-I, Chen K, Usmani A, Chua C, Harris PK, Binkley MS, et al. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA). Mol Diagn Ther. 2019;23(3):311–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.

    Article  PubMed  Google Scholar 

  15. Gale D, Lawson ARJ, Howarth K, Madi M, Durham B, Smalley S, et al. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS ONE. 2018;13(3):e0194630.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ijzerman MJ, De Boer J, Azad A, Degeling K, Geoghegan J, Hewitt C, et al. Towards routine implementation of liquid biopsies in cancer management: it is always too early, until suddenly it is too late. Diagnostics. 2021;11(1):103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chabon JJ, Hamilton EG, Kurtz DM, Esfahani MS, Moding EJ, Stehr H, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580(7802):245–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10(466):eaat4921.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True LD, Radich JP, et al. Sequencing small genomic targets with high efficiency and extreme accuracy. Nat Methods. 2015;12(5):423–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Abbosh C, Swanton C, Birkbak NJ. Clonal haematopoiesis: a source of biological noise in cell-free DNA analyses. Ann Oncol. 2019;30(3):358–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. US Food and Drug Administration. Guardant360 CDx: P200010. 2020. Available from: https://www.fda.gov/medical-devices/recently-approved-devices/guardant360-cdx-p200010. Accessed 1 May 2021.

  24. US Food and Drug Administration. FDA approves liquid biopsy NGS companion diagnostic test for multiple cancers and biomarkers. 2020. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-liquid-biopsy-ngs-companion-diagnostic-test-multiple-cancers-and-biomarkers. Accessed 1 May 2021.

  25. Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K, et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 2013;5(4):30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun. 2017;8(1):1324.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Przybyl J, Chabon JJ, Spans L, Ganjoo KN, Vennam S, Newman AM, et al. Combination approach for detecting different types of alterations in circulating tumor DNA in leiomyosarcoma. Clin Cancer Res. 2018;24(11):2688–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Springer SU, Chen C-H, Rodriguez Pena MDC, Li L, Douville C, Wang Y, et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. Elife. 2018;7:e32143.

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Leary B, Cutts RJ, Liu Y, Hrebien S, Huang X, Fenwick K, et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 2018;8(11):1390–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Davis AA, Iams WT, Chan D, Oh MS, Lentz RW, Peterman N, et al. Early assessment of molecular progression and response by whole-genome circulating tumor DNA in advanced solid tumors. Mol Cancer Ther. 2020;19(7):1486–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Szymanski JJ, Sundby RT, Jones PA, Srihari D, Earland N, Harris PK, et al. Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: a cross-sectional study. PLoS Med. 2021;18(8):e1003734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 2017;7(12):1394–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7(302):302ra133.

    Article  PubMed  Google Scholar 

  35. Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8(346):346ra92.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6(1):7686.

    Article  PubMed  Google Scholar 

  37. Leal A, Van Grieken NCT, Palsgrove DN, Phallen J, Medina JE, Hruban C, et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat Commun. 2020;11(1):525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Azad TD, Chaudhuri AA, Fang P, Qiao Y, Esfahani MS, Chabon JJ, et al. Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology. 2020;158(3):494-505.e6.

    Article  PubMed  CAS  Google Scholar 

  39. Powles T, Assaf ZJ, Davarpanah N, Banchereau R, Szabados BE, Yuen KC, et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature. 2021;595(7867):432–7.

    Article  PubMed  CAS  Google Scholar 

  40. Chauhan PS, Chen K, Babbra RK, Feng W, Pejovic N, Nallicheri A, et al. Urine tumor DNA detection of minimal residual disease in muscle-invasive bladder cancer treated with curative-intent radical cystectomy: a cohort study. PLoS Med. 2021;18(8):e1003732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol. 2018;36(16):1631–41.

    Article  PubMed  CAS  Google Scholar 

  42. Coakley M, Garcia-Murillas I, Turner NC. Molecular residual disease and adjuvant trial design in solid tumors. Clin Cancer Res. 2019;25(20):6026–34.

    Article  PubMed  CAS  Google Scholar 

  43. Teutsch SM, Bradley LA, Palomaki GE, Haddow JE, Piper M, Calonge N, et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet Med. 2009;11(1):3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Clinical and Laboratory Standards Institute. A framework for using CLSI documents to evaluate clinical laboratory measurement procedures, 2nd edn. Report EP19. Wayne: CLSI; 2015.

  45. Deveson IW, Gong B, Lai K, LoCoco JS, Richmond TA, Schageman J, et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat Biotechnol. 2021;39(9):1115–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. US Food and Drug Administration. Design considerations for pivotal clinical investigations for medical devices. 2013. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/design-considerations-pivotal-clinical-investigations-medical-devices. Accessed 1 May 2021.

  47. Grosse SD, Khoury MJ. What is the clinical utility of genetic testing? Genet Med. 2006;8(7):448–50.

    Article  PubMed  Google Scholar 

  48. National Institutes of Health. Hoffman-La Roche. A study of atezolizumab versus placebo as adjuvant therapy in patients with high-risk muscle-invasive bladder cancer who are ctDNA positive following cystectomy (IMvigor011) [ClinicalTrials.gov Identifier: NCT04660344]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  49. Driscoll JJ, Rixe O. Overall survival: still the gold standard: why overall survival remains the definitive end point in cancer clinical trials. Cancer J. 2009;15(5):401–5.

    Article  PubMed  CAS  Google Scholar 

  50. Saad ED, Buyse M. Statistical controversies in clinical research: end points other than overall survival are vital for regulatory approval of anticancer agents. Ann Oncol. 2016;27(3):373–8.

    Article  PubMed  CAS  Google Scholar 

  51. Wu Y-L, Tsuboi M, He J, John T, Grohe C, Majem M, et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2020;383(18):1711–23.

    Article  PubMed  CAS  Google Scholar 

  52. Gyawali B, West H. Lessons from ADAURA on adjuvant cancer drug trials: evidence, ethics, and economics. J Clin Oncol. 2021;39(3):175–7.

    Article  PubMed  Google Scholar 

  53. Centers for Medicare & Medicaid Services. Medicare program; Medicare Coverage of Innovative Technology (MCIT) and definition of “reasonable and necessary”. 2020. Available from: https://www.federalregister.gov/documents/2021/03/17/2021-05490/medicare-program-medicare-coverage-of-innovative-technology-mcit-and-definition-of-reasonable-and. Accessed 1 May 2021.

  54. Natera. Seeing beyond the limit: detect residual disease and assess treatment response. Natera. 2019. Available from: https://www.natera.com/wp-content/uploads/2020/11/Oncology-Clinical-Seeing-beyond-the-limit-Detect-residual-disease-and-assess-treatment-response-SGN_AV_WP.pdf. Accessed 1 May 2021.

  55. Sethi H, Salari R, Navarro S, et al. Analytical validation of the Signatera™ RUO assay, a highly sensitive patient-specific multiplex PCR NGS-based noninvasive cancer recurrence detection and therapy monitoring assay. In: Proceedings from the American Association for Cancer Research Annual Meeting; 17 April 2019; Chicago (IL); abstract 4542.

  56. Christensen E, Birkenkamp-Demtröder K, Sethi H, Shchegrova S, Salari R, Nordentoft I, et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol. 2019;37(18):1547–57.

    Article  PubMed  CAS  Google Scholar 

  57. Natera. Natera announces plans to commercialize tumor whole exome sequencing from plasma. 2019. Available from: https://www.natera.com/company/news/natera-announces-plans-to-commercialize-tumor-whole-exome-sequencing-from-plasma/. Accessed 1 May 2021.

  58. Chakrabarti S, Xie H, Urrutia R, Mahipal A. The promise of circulating tumor DNA (ctDNA) in the management of early-stage colon cancer: a critical review. Cancers. 2020;12(10):2808.

    Article  PubMed Central  CAS  Google Scholar 

  59. Natera. FDA grants breakthrough device designation to Natera's Signatera Test. 2019. Available from: https://www.natera.com/company/news/fda-grants-breakthrough-device-designation-to-nateras-signatera-test/. Accessed 1 May 2021.

  60. Natera. FDA grants two new breakthrough device designations for Natera’s Signatera™ MRD Test. Natera. 2021. Available from: https://www.natera.com/company/news/fda-grants-two-new-breakthrough-device-designations-for-nateras-signatera-mrd-test/. Accessed 1 May 2021.

  61. Natera. Natera receives final Medicare voverage for its Signatera™ MRD Test in stage II-III colorectal cancer. 2020. Available from: https://www.natera.com/company/news/natera-receives-final-medicare-coverage-for-its-signatera-mrd-test-in-stage-ii-iii-colorectal-cancer/. Accessed 1 May 2021.

  62. Reinert T, Henriksen TV, Christensen E, Sharma S, Salari R, Sethi H, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 2019;5(8):1124.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–21.

    Article  PubMed  CAS  Google Scholar 

  64. National Institutes of Health. University College, London. TRAcking Non-small Cell Lung Cancer Evolution Through Therapy (Rx) (TRACERx) [ClinicalTrials.gov Identifier: NCT01888601]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  65. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res. 2019;25(14):4255–63.

    Article  PubMed  CAS  Google Scholar 

  67. Magbanua MJM, Swigart LB, Wu HT, Hirst GL, Yau C, Wolf DM, et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol. 2021;32(2):229–39.

    Article  PubMed  CAS  Google Scholar 

  68. National Institutes of Health. Hoffman-La Roche. A study of atezolizumab versus observation as adjuvant therapy in participants with high-risk muscle-invasive urothelial carcinoma (UC) after surgical resection (IMvigor010) [ClinicalTrials.gov Identifier: NCT02450331]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  69. National Institutes of Health. Criterium, Inc. DNA-guided second line adjuvant therapy for high residual risk, stage II-III, hormone receptor positive, HER2 negative breast cancer (DARE) [ClinicalTrials.gov Identifier: NCT04567420]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  70. National Institutes of Health. Alliance Foundation Trials, LLC. PALbociclib CoLlaborative Adjuvant Study (PALLAS) [ClinicalTrials.gov Identifier: NCT02513394]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  71. Mayer EL, Dueck AC, Martin M, Rubovszky G, Burstein HJ, Bellet-Ezquerra M, et al. Palbociclib with adjuvant endocrine therapy in early breast cancer (PALLAS): interim analysis of a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2021;22(2):212–22.

    Article  PubMed  CAS  Google Scholar 

  72. National Institutes of Health. Eli Lilly and Company. Endocrine therapy with or without abemaciclib (LY2835219) following surgery in participants with breast cancer (monarchE) [ClinicalTrials.gov Identifier: NCT03155997]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  73. Johnston SRD, Harbeck N, Hegg R, Toi M, Martin M, Shao ZM, et al. Abemaciclib combined with endocrine therapy for the adjuvant treatment of HR+, HER2−, node-positive, high-risk, early breast cancer (monarchE). J Clin Oncol. 2020;38(34):3987–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Di Cosimo S, Porcu L, Cardoso F. CDK 4/6 inhibitors mired in uncertainty in HR positive and HER2 negative early breast cancer. Breast. 2021;55:75–8.

    Article  PubMed  Google Scholar 

  75. National Institutes of Health. Massachusetts General Hospital. CDK 4/6 inhibitor, ribociclib, with adjuvant endocrine therapy for ER-positive breast cancer (LEADER) [ClinicalTrials.gov Identifier: NCT03285412]. Available from: https://www.clinicaltrials.gov. Accessed 1 May 2021.

  76. Guardant. Guardant Health launches Guardant Reveal™ liquid biopsy test for residual disease and recurrence monitoring in patients with early-stage colorectal cancer. 2021. Available from: https://investors.guardanthealth.com/press-releases/press-releases/2021/Guardant-Health-Launches-Guardant-Reveal-Liquid-Biopsy-Test-for-Residual-Disease-and-Recurrence-Monitoring-in-Patients-with-Early-Stage-Colorectal-Cancer/default.aspx. Accessed 1 May 2021.

  77. Parikh AR, Van Seventer EE, Siravegna G, Hartwig AV, Jaimovich A, He Y, et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin Cancer Res. 2021. https://doi.org/10.1158/1078-0432.CCR-21-0410.

  78. Parikh A, Van Seventer E, Boland G, Siravegna G, Hartwig A, Jaimovich A, et al. 419P Minimal residual disease (MRD) detection in colorectal cancer (CRC) using a plasma-only integrated genomic and epigenomic circulating tumor DNA (ctDNA) assay. Ann Oncol. 2020;31:S419.

    Article  Google Scholar 

  79. Artieri C, Axelrod H, Baca A, Burke J, Chudova D, Dahdouli M, et al. Analytical validation of a tissue agnostic ctDNA MRD assay using tumor specific methylation and somatic variant profiles in early-stage CRC. J Clin Oncol. 2020;38(15):e15549.

    Article  Google Scholar 

  80. Guardant. The first blood-only liquid biopsy test for residual disease and recurrence monitoring, starting with early-stage colorectal cancer. 2021. Available from: https://guardanthealth.com/wp-content/uploads/Backgrounder-Guardant-Reveal-2.10.pdf. Accessed 1 May 2021.

  81. Peng J, Li Y, Mo S, Ma X, Hu X, Zhang L, et al. Prognostic value of circulating tumor DNA (ctDNA) detection during adjuvant chemotherapy in patients with stage III colorectal cancer: the interim report of a prospective, observational study. J Clin Oncol. 2020;38(4):29.

    Article  Google Scholar 

  82. American Cancer Society. Key statistics for colorectal cancer. 2021. Available from: https://www.cancer.org/cancer/colon-rectal-cancer/about/key-statistics.html. Accessed 1 May 2021.

  83. El-Shami K, Oeffinger KC, Erb NL, Willis A, Bretsch JK, Pratt-Chapman ML, et al. American Cancer Society colorectal cancer survivorship care guidelines. CA Cancer J Clin. 2015;65(6):427–55.

    Article  Google Scholar 

  84. Duineveld LAM, Van Asselt KM, Bemelman WA, Smits AB, Tanis PJ, Van Weert HCPM, et al. Symptomatic and asymptomatic colon cancer recurrence: a multicenter cohort study. Ann Fam Med. 2016;14(3):215–20.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sobrero A, Andre T, Meyerhardt J, et al. OS and long-term DFS of 3 versus 6 months of adjuvant oxaliplatin and fluoropyrimidine-based therapy for patients with stage III colon cancer: final results from the IDEA collaboration. J Clin Oncol. 2020;38(15):4004.

    Article  Google Scholar 

  86. Clinical OMICS. Philippidis A. Guardant throws hat in early cancer detection ring with CRC test. 2021. Available from: https://www.clinicalomics.com/topics/molecular-dx-topic/liquid-biopsies/guardant-throws-hat-in-early-cancer-detection-ring-with-crc-test. Accessed 1 May 2021.

  87. National Institutes of Health. Grupo Espanol Multidisciplinario del Cancer Digestivo. Induction FOLFOX with or without aflibercept followed by chemoradiation in high risk locally advanced rectal cancer (RIA) [ClinicalTrials.gov Identifier: NCT02340949]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  88. Monjazeb AM, Giobbie-Hurder A, Lako A, Thrash EM, Brennick RC, Kao KZ, et al. A randomized trial of combined PD-L1 and CTLA-4 inhibition with targeted low-dose or hypofractionated radiation for patients with metastatic colorectal cancer. Clin Cancer Res. 2021;27(9):2470-80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vidal J, Casadevall D, Bellosillo B, Pericay C, Garcia-Carbonero R, Losa F, et al. Clinical impact of presurgery circulating tumor DNA after total neoadjuvant treatment in locally advanced rectal cancer: a biomarker study from the GEMCAD 1402 trial. Clin Cancer Res. 2021;27(10):2890–8.

    Article  PubMed  CAS  Google Scholar 

  90. National Institutes of Health. IFOM, The FIRC Institute of Molecular Oncology. Post-surgical liquid biopsy-guided treatment of stage III and high-risk stage II colon cancer patients: the PEGASUS Trial [ClinicalTrials.gov Identifier: NCT04259944]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  91. Lonardi S ea. The PEGASUS trial: Post-surgical liquid biopsy-guided treatment of stage III and high-risk stage II colon cancer patients. J Clin Oncol. 2020;38(15)_suppl.

  92. National Institutes of Health. Gruppo Italiano per lo studio dei Carcinomi dell'Apparato Digerente. FOLFOX-4 3 months versus 6 months and bevacizumab as adjuvant therapy for patients with stage II/III colon cancer (TOSCA) [ClinicalTrials.gov Identifier: NCT00646607]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  93. National Institutes of Health. IFOM, The FIRC Institute of Molecular Oncology. ALFAOMEGA Master Observational Trial (ALFAOMEGA) [ClinicalTrials.gov Identifier: NCT04120935]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  94. Chera BS, Kumar S, Beaty BT, Marron D, Jefferys S, Green R, et al. Rapid clearance profile of plasma circulating tumor HPV type 16 DNA during chemoradiotherapy correlates with disease control in HPV-associated oropharyngeal cancer. Clin Cancer Res. 2019;25(15):4682–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chera BS, Kumar S, Shen C, Amdur R, Dagan R, Green R, et al. Plasma circulating tumor HPV DNA for the surveillance of cancer recurrence in HPV-associated oropharyngeal cancer. J Clin Oncol. 2020;38(10):1050–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Routman DM, Chera BS, Jethwa KR, Van Abel K, Kumar S, DeWees TA, et al. Detectable HPV ctDNA in post-operative oropharyngeal squamous cell carcinoma patients is associated with progression. Int J Radiat Oncol Biol Phys. 2019;105(3):682–3.

    Article  Google Scholar 

  97. Stanford University. Adjuvant Durvalumab for Early Stage NSCLC Patients With ctDNA Minimal Residual Disease [ClinicalTrials.gov Identifier: NCT04585477]. National Institutes of Health. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  98. Pellini B, Pejovic N, Feng W, Earland N, Harris PK, Usmani A, et al. ctDNA MRD detection and personalized oncogenomic analysis in oligometastatic colorectal cancer from plasma and urine. JCO Precis Oncol. 2021;5:378–88.

    Article  Google Scholar 

  99. National Institutes of Health. Stanford University. Personalized escalation of consolidation treatment following chemoradiotherapy and immunotherapy in stage III NSCLC [ClinicalTrials.gov Identifier: NCT04585490]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  100. Moding EJ, Liu Y, Nabet BY, Chabon JJ, Chaudhuri AA, Hui AB, et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nat Cancer. 2020;1(2):176–83.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Clinical OMICS. ArcherDX’s personalized cancer monitoring (PCM) tech gets FDA breakthrough device designation. 2020. Available from: https://www.clinicalomics.com/news-and-features/archerdxs-personalized-cancer-monitoring-pcm-tech-gets-fda-breakthrough-device-designation. Accessed 1 May 2021.

  102. National Institutes of Health. AstraZeneca. Phase III study to determine the efficacy of durvalumab in combination with chemotherapy in completely resected stage II-III non-small cell lung cancer (NSCLC) (MERMAID-1) [ClinicalTrials.gov Identifier: NCT04385368]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  103. National Institutes of Health. AstraZeneca. Phase III study to determine efficacy of durvalumab in stage II-III non-small cell lung cancer (NSCLC) after curative intent therapy (MERMAID-2) [ClinicalTrials.gov Identifier: NCT04642469]. Available from: https://clinicaltrials.gov. Accessed 1 May 2021.

  104. AstraZeneca. AstraZeneca collaborates with ArcherDX to use personalised cancer assays to detect minimal residual disease in lung cancer trials. 2020. Available from: https://www.astrazeneca.com/media-centre/press-releases/2020/astrazeneca-collaborates-with-archerdx-to-use-personalised-cancer-assays-to-detect-minimal-residual-disease-in-lung-cancer-trials.html. Accessed 1 May 2021.

  105. Abbosh C, Frankell A, Garnett A, et al. Phylogenetic tracking and minimal residual disease detection using ctDNA in early-stage NSCLC: a lung TRACERx study. Proceedings from the American Association for Cancer Research Annual Meeting; 27-28 April 2020; Philadelphia (PA): abstract CT023.

  106. Inivata. FDA grants breakthrough device designation for Inivata’s RaDaR™ assay. 2021. Available from: https://www.inivata.com/fda-grants-breakthrough-device-designation-for-inivatas-radar-assay. Accessed 1 May 2021.

  107. Marsico G, Sharma G, Perry M, Hackinger S, Forshew T, Howarth K, et al. Analytical development of the RaDaR™ assay, a highly sensitive and specific assay for the monitoring of minimal residual disease. In: Proceedings from the American Association for Cancer Research Virtual Annual Meeting II; June 2020: poster 3097.

  108. Cutts RJ, Coakley M, Garcia-Murillas I, et al. Molecular residual disease detection in early stage breast cancer with a personalized sequencing approach. In: Proceedings from the American Association for Cancer Research Annual Meeting; 10 April 2021: poster 536.

  109. Flach S, Howarth K, Hackinger S, Pipinikas C, McLay K, Marsico G, et al. Personalized circulating tumor DNA analysis in head and neck squamous cell carcinoma: preliminary results of the Liquid BIOpsy for MiNimal RESidual DiSease Detection in Head and NeckSquamous Cell Carcinoma (LIONESS) study. In: Proceedings from the American Association for Cancer Research Annual Meeting; 10 April 2021: poster 553.

  110. PredicineALERT™. Predicine. 2021. Available from: https://www.predicine.com/solutions-overview/predicinealert. Accessed 1 May 2021.

  111. Wang AX, Zhao Z, Dai C, Zhou K, Jia S, Du P, Luo S. Comprehensive analysis of cell-free DNA with whole-exome sequencing and its application to minimal residual disease (MRD) monitoring. In: Proceedings from the American Association for Cancer Research Annual Meeting; 10 April 2021: abstract 578.

  112. Kwan EM, Dai C, Fettke H, Hauser C, Docanto MM, Bukczynska P, et al. Plasma cell-free DNA profiling of PTEN-PI3K-AKT pathway aberrations in metastatic castration-resistant prostate cancer. JCO Precis Oncol. 2021;5:622–37.

    Article  Google Scholar 

  113. Zviran A, Schulman RC, Shah M, Hill STK, Deochand S, Khamnei CC, et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat Med. 2020;26(7):1114–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403):eaan2415.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, De Borja R, et al. Comprehensive analysis of hypermutation in human cancer. Cell. 2017;171(5):1042.e10-1056.e10.

    Article  Google Scholar 

  116. Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell. 2018;33(4):676.e3-689.e3.

    Article  Google Scholar 

  117. Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol. 2021. https://doi.org/10.1038/s41587-021-00981-w.

  118. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AF, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM, Esfahani MS, et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J Clin Oncol. 2018;36(28):2845–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Medina Diaz I, Nocon A, Mehnert DH, Fredebohm J, Diehl F, Holtrup F. Performance of Streck cfDNA blood collection tubes for liquid biopsy testing. PLoS ONE. 2016;11(11):e0166354.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Parpart-Li S, Bartlett B, Popoli M, Adleff V, Tucker L, Steinberg R, et al. The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res. 2017;23(10):2471–7.

    Article  PubMed  CAS  Google Scholar 

  122. Greytak SR, Engel KB, Parpart-Li S, Murtaza M, Bronkhorst AJ, Pertile MD, et al. Harmonizing cell-free DNA collection and processing practices through evidence-based guidance. Clin Cancer Res. 2020;26(13):3104–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Godsey JH, Silvestro A, Barrett JC, Bramlett K, Chudova D, Deras I, et al. Generic protocols for the analytical validation of next-generation sequencing-based ctDNA asays: a joint consensus recommendation of the BloodPAC’s Analytical Variables Working Group. Clin Chem. 2020;66(9):1156–66.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Friends of Cancer Research. Friends of Cancer Research Launches ctMoniTR. 2019. Available from: https://friendsofcancerresearch.org/news/friends-cancer-research-launches-ctmonitr/. Accessed 1 May 2021.

Download references

Acknowledgements

We are grateful to the National Cancer Institute, the V Foundation for Cancer Research, the Cancer Research Foundation, and Washington University Alvin J. Siteman Cancer Center for funding our work. Images from BioRender.com were used to create Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew A. Davis, Bruna Pellini or Aadel A. Chaudhuri.

Ethics declarations

Funding

This work was supported by the NCI under award number K08CA238711 (AAC), the V Foundation for Cancer Research V Scholar Award (AAC), the Cancer Research Foundation Young Investigator Award (AAC), and the Washington University Alvin J. Siteman Cancer Research Fund (AAC). The funders had no role in the preparation of the manuscript.

Conflict of interest

KC, PSC, and RJR have patent filings related to cancer biomarkers. JPZ has patent filings related to cancer biomarkers, research support from Naveris, served as medical director to Summit Biolabs, and has ownership interests in Droplet Biosciences. BP has research support from BMS; speaker honoraria from BioAscend, OncLive, and MJH Life Sciences; and has served as an advisor/consultant to AstraZeneca, Guardant Health, and Guidepoint. AAC has patent filings related to cancer biomarkers, and has served as a consultant/advisor to Roche, Tempus, Geneoscopy, Daiichi Sankyo, AstraZeneca, NuProbe, Fenix Group International, and Guidepoint; AAC has stock options in Geneoscopy, research support from Roche, and ownership interests in Droplet Biosciences. MDS, PKH, MAR, and AAD declare that they have no conflicts of interest that might be relevant to the contents of this review.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

KC, MDS, AAD, BP, and AAC conceived of the study. KC, MDS, PSC, RJR, PKH, AAD, BP, and AAC performed the literature search, data collection, data curation, data interpretation, and writing of the manuscript. All authors edited the manuscript and commented on the manuscript at all stages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Shields, M.D., Chauhan, P.S. et al. Commercial ctDNA Assays for Minimal Residual Disease Detection of Solid Tumors. Mol Diagn Ther 25, 757–774 (2021). https://doi.org/10.1007/s40291-021-00559-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00559-x