Abstract
Genetic assessment of an embryo via preimplantation genetic testing (PGT) represents an important reproductive option for couples wanting to try and improve success rates from in vitro fertilisation (IVF) cycles, as well as reduce their risk of having a child born with a genetic condition. Currently, biopsy of the developing embryo prior to transfer allows genetic assessment of an embryo for either chromosome copy number (aneuploidy [PGT-A] or segmental rearrangement [PGT-SR]) or to avoid the transmission of a single gene condition (monogenic conditions [PGT-M]). However, this technology is invasive and commands considerable resources. Non-invasive PGT (niPGT) offers a potential alternate mode of embryonic analysis. Whilst the utility of niPGT-A has been recently explored, there has been limited consideration of niPGT-M as an option for couples at risk of passing on a single gene or chromosomal condition. This review examines the historical and current clinical context of preimplantation embryonic analysis for monogenic conditions, in addition to important considerations surrounding the origin and analysis of cell-free deoxyribose nucleic acid (cfDNA), whether it is sourced via blastocentesis or spent embryonic culture medium (SCM). Future capabilities of this testing modality will almost certainly be enhanced by integration of whole genome sequencing into everyday practice. In addition, the increased utilisation of reproductive carrier screening as part of standard reproductive healthcare will likely result in the identification of a larger high-risk population. As a result, stratification of limited and highly specialised reproductive genetic resources will be required. Prospective parents should continue to be made aware of the limitations of this technology, with prenatal confirmatory testing remaining an essential part of antenatal care in these patients. However, niPGT-M poses an important alternate testing modality for high-risk couples, particularly in the setting of embryos that cannot be biopsied for traditional PGT-M and as demand for this treatment continues to grow.

Similar content being viewed by others
References
Handyside AH, Pattinson JK, Penketh RJ, Delhanty JD, Winston RM, Tuddenham EG. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet. 1989;1(8634):347–9.
Dahdouh EM. Preimplantation genetic testing for aneuploidy: a review of the evidence. Obstet Gynecol. 2021;137(3):528–34.
Poulton A, Lewis S, Hui L, Halliday JL. Prenatal and preimplantation genetic diagnosis for single gene disorders: a population-based study from 1977 to 2016. Prenat Diagn. 2018;38(12):904–10.
Hardy T. The role of prenatal diagnosis following preimplantation genetic testing for single-gene conditions: a historical overview of evolving technologies and clinical practice. Prenat Diagn. 2020;40(6):647–51.
Shamonki MI, Jin H, Haimowitz Z, Liu L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil Steril. 2016;106(6):1312–8.
Rubio C, Racowsky C, Barad DH, Scott RT Jr, Simon C. Noninvasive preimplantation genetic testing for aneuploidy in spent culture medium as a substitute for trophectoderm biopsy. Fertil Steril. 2021;115(4):841–9.
Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16–42.
Handyside AH, Kontogianni EH, Hardy K, Winston RML. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.
Handyside AH, Lesko JG, Tarín JJ, Winston RML, Hughes MR. Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. N Engl J Med. 1992;327(13):905–9.
Findlay I, Matthews P, Quirke P. Multiple genetic diagnoses from single cells using multiplex PCR: reliability and allele dropout. Prenat Diagn. 1998;18(13):1413–21.
Harper JC, Wilton L, Traeger-Synodinos J, Goossens V, Moutou C, SenGupta SB, Pehlivan Budak T, Renwick P, De Rycke M, Geraedts JP, Harton G. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18(3):234–47.
Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC. The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod. 2009;24(5):1221–8.
Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw M-A, Grudzinskas JG, Rutherford A. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod. 2004;10(10):767–72.
Renwick PJ, Trussler J, Ostad-Saffari E, Fassihi H, Black C, Braude P, Ogilvie CM, Abbs S. Proof of principle and first cases using preimplantation genetic haplotyping—a paradigm shift for embryo diagnosis. Reprod Biomed Online. 2006;13(1):110–9.
Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, Gianaroli L, Ketterson K, Liebaers I, Lundin K, Mertes H, Morris M, Pennings G, Sermon K, Spits C, Soini S, van Montfoort APA, Veiga A, Vermeesch JR, Viville S, Macek M Jr, R. on behalf of the European Society of Human, Embryology and G. European Society of Human. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet EJHG. 2018;26(1):12–33.
Konstantinidis M, Prates R, Goodall NN, Fischer J, Tecson V, Lemma T, Chu B, Jordan A, Armenti E, Wells D, Munné S. Live births following Karyomapping of human blastocysts: experience from clinical application of the method. Reprod Biomed Online. 2015;31(3):394–403.
Gould RL, Griffin DK. Karyomapping and how is it improving preimplantation genetics? Expert Rev Mol Diagn. 2017;17(6):611–21.
Murphy NM, Samarasekera TS, Macaskill L, Mullen J, Rombauts LJF. Genome sequencing of human in vitro fertilisation embryos for pathogenic variation screening. Sci Rep. 2020;10(1):3795.
Yuan P, Xia J, Ou S, Liu P, Du T, Zheng L, Yin X, Xie L, Zhang S, Yan H, Gao Y, Zhang Q, Jiang H, Chen F, Wang W. A whole-genome sequencing–based novel preimplantation genetic testing method for de novo mutations combined with chromosomal balanced translocations. J Assist Reprod Genet. 2020;37(10):2525–33.
Hastings RA 2nd, Enders AC, Schlafke S. Permeability of the zona pellucida to protein tracers. Biol Reprod. 1972;7(2):288–96.
Legge M. Oocyte and zygote zona pellucida permeability to macromolecules. J Exp Zool. 1995;271(2):145–50.
Idelevich A, Vilella F. Mother and embryo cross-communication. Genes. 2020;11(4):376.
Hardy K. Cell death in the mammalian blastocyst. Mol Hum Reprod. 1997;3(10):919–25.
Hardy K, Handyside AH, Winston RM. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development. 1989;107(3):597–604.
Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, Distratis V, Borini A. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod Biomed Online. 2017;34(2):137–46.
Magli MC, Pomante A, Cafueri G, Valerio M, Crippa A, Ferraretti AP, Gianaroli L. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2016;105(3):676.e5–683.e5.
Capalbo A, Romanelli V, Patassini C, Poli M, Girardi L, Giancani A, Stoppa M, Cimadomo D, Ubaldi FM, Rienzi L. Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions. Fertil Steril. 2018;110(5):870.e5–879.e5.
Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30.
Yang Y, Zeng Y, Lv Z, Wan R, Tong M, Zhu H, Wang L, Zhou Z, Zhou Q, Sha J. Abnormal development at early postimplantation stage in mouse embryos after preimplantation genetic diagnosis. Anat Rec (Hoboken). 2012;295(7):1128–33.
Guzman L, Nuñez D, López R, Inoue N, Portella J, Vizcarra F, Noriega-Portella L, Noriega-Hoces L, Munné S. The number of biopsied trophectoderm cells may affect pregnancy outcomes. J Assist Reprod Genet. 2019;36(1):145–51.
Neal SA, Franasiak JM, Forman EJ, Werner MD, Morin SJ, Tao X, Treff NR, Scott RT Jr. High relative deoxyribonucleic acid content of trophectoderm biopsy adversely affects pregnancy outcomes. Fertil Steril. 2017;107(3):731.e1–736.e1.
Sacks GC, Altarescu G, Guedalia J, Varshaver I, Gilboa T, Levy-Lahad E, Eldar-Geva T. Developmental neuropsychological assessment of 4- to 5-year-old children born following preimplantation genetic diagnosis (PGD): a pilot study. Child Neuropsychol. 2016;22(4):458–71.
Kuiper D, Bennema A, la Bastide-van Gemert S, Seggers J, Schendelaar P, Mastenbroek S, Hoek A, Heineman MJ, Roseboom TJ, Kok JH, Hadders-Algra M. Developmental outcome of 9-year-old children born after PGS: follow-up of a randomized trial. Hum Reprod. 2018;33(1):147–55.
Schendelaar P, Middelburg KJ, Bos AF, Heineman MJ, Kok JH, La Bastide-Van Gemert S, Seggers J, Van den Heuvel ER, Hadders-Algra M. The effect of preimplantation genetic screening on neurological, cognitive and behavioural development in 4-year-old children: follow-up of a RCT. Hum Reprod. 2013;28(6):1508–18.
Natsuaki MN, Dimler LM. Pregnancy and child developmental outcomes after preimplantation genetic screening: a meta-analytic and systematic review. World J Pediatr. 2018;14(6):555–69.
Zhang WY, von Versen-Hoynck F, Kapphahn KI, Fleischmann RR, Zhao Q, Baker VL. Maternal and neonatal outcomes associated with trophectoderm biopsy. Fertil Steril. 2019;112(2):283 e2–290 e2.
Zhao HC, Zhao Y, Li M, Yan J, Li L, Li R, Liu P, Yu Y, Qiao J. Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Biol Reprod. 2013;89(5):117.
Wu Y, Lv Z, Yang Y, Dong G, Yu Y, Cui Y, Tong M, Wang L, Zhou Z, Zhu H, Zhou Q, Sha J. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cell Mol Life Sci. 2014;71(9):1761–74.
Iwayama H, Hochi S, Yamashita M. In vitro and in vivo viability of human blastocysts collapsed by laser pulse or osmotic shock prior to vitrification. J Assist Reprod Genet. 2011;28(4):355–61.
Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, Ferraretti AP. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102(6):1692.e6–1699.e6.
Brouillet S, Martinez G, Coutton C, Hamamah S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic review. Reprod Biomed Online. 2020;40(6):779–96.
Poli M, Ori A, Child T, Jaroudi S, Spath K, Beck M, Wells D. Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Mol Med. 2015;7(11):1465–79.
Bodri D, Sugimoto T, Yao Serna J, Kawachiya S, Kato R, Matsumoto T. Blastocyst collapse is not an independent predictor of reduced live birth: a time-lapse study. Fertil Steril. 2016;105(6):1476.e3–1483.e3.
Marcos J, Pérez-Albalá S, Mifsud A, Molla M, Landeras J, Meseguer M. Collapse of blastocysts is strongly related to lower implantation success: a time-lapse study. Hum Reprod. 2015;30(11):2501–8.
Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR, López L, De la Fuente E, Navarro R, Valbuena D, Sakkas D, Rienzi L, Simón C. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1–751.e13.
Consortium EP, Group S-EBW, Kokkali G, Coticchio G, Bronet F, Celebi C, Cimadomo D, Goossens V, Liss J, Nunes S, Sfontouris I, Vermeulen N, Zakharova E, De Rycke M. ESHRE PGT Consortium and SIG Embryology good practice recommendations for polar body and embryo biopsy for PGT. Hum Reprod Open. 2020;2020(3):hoaa020.
Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, Bulletti C. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26(6):603–10.
Zhang Y, Li N, Wang L, Sun H, Ma M, Wang H, Xu X, Zhang W, Liu Y, Cram DS, Sun B, Yao Y. Molecular analysis of DNA in blastocoele fluid using next-generation sequencing. J Assist Reprod Genet. 2016;33(5):637–45.
Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, Broman K, Thrift K, Brezina PR, Kearns WG. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25.
Tšuiko O, Zhigalina DI, Jatsenko T, Skryabin NA, Kanbekova OR, Artyukhova VG, Svetlakov AV, Teearu K, Trošin A, Salumets A, Kurg A, Lebedev IN. Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass. Fertil Steril. 2018;109(6):1127.e1–1134.e1.
Galluzzi L, Palini S, Stefani SD, Andreoni F, Primiterra M, Diotallevi A, Bulletti C, Magnani M. Extracellular embryo genomic DNA and its potential for genotyping applications. Future Sci OA. 2015;1(4):FSO62.
Shangguan T, He W, Li H, Shang X, Liu Y, Bai X, Li M, Xie J. Detection and analysis of DNA material in human blastocoel fluid. Biomed Genet Genomics. 2017;2(1):1–5.
Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28(10):2652–60.
Assou S, Aït-Ahmed O, El Messaoudi S, Thierry AR, Hamamah S. Non-invasive pre-implantation genetic diagnosis of X-linked disorders. Med Hypotheses. 2014;83(4):506–8.
Yang L, Lv Q, Chen W, Sun J, Wu Y, Wang Y, Chen X, Chen X, Zhang Z. Presence of embryonic DNA in culture medium. Oncotarget. 2017;8(40):67805–9.
Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, Chamley LW, Cree LM. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107(1):220.e5–228.e5.
Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, Mercader A, Meseguer M, Blesa D, Moreno I, Valbuena D, Rubio C, Simon C. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33(4):745–56.
Xu J, Fang R, Chen L, Chen D, Xiao J-P, Yang W, Wang H, Song X, Ma T, Bo S, Shi C, Ren J, Huang L, Cai L-Y, Yao B, Xie XS, Lu S. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci. 2016;113(42):11907.
Feichtinger M, Vaccari E, Carli L, Wallner E, Mädel U, Figl K, Palini S, Feichtinger W. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study. Reprod Biomed Online. 2017;34(6):583–9.
Lane M, Zander-Fox DL, Hamilton H, Jasper MJ, Hodgson BL, Fraser M, Bell F. Ability to detect aneuploidy from cell free DNA collected from media is dependent on the stage of development of the embryo. Fertil Steril. 2017;108(3):e61.
Liu W, Liu J, Du H, Ling J, Sun X, Chen D. Non-invasive pre-implantation aneuploidy screening and diagnosis of beta thalassemia IVSII654 mutation using spent embryo culture medium. Ann Med. 2017;49(4):319–28.
Ho JR, Arrach N, Rhodes-Long K, Ahmady A, Ingles S, Chung K, Bendikson KA, Paulson RJ, McGinnis LK. Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos. Fertil Steril. 2018;110(3):467.e2–475.e2.
Fang R, Yang W, Zhao X, Xiong F, Guo C, Xiao J, Chen L, Song X, Wang H, Chen J, Xiao X, Yao B, Cai L-Y. Chromosome screening using culture medium of embryos fertilised in vitro: a pilot clinical study. J Transl Med. 2019;17(1):73.
Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci USA. 2019;116(28):14105–12.
Rubio C, Rienzi L, Navarro-Sánchez L, Cimadomo D, García-Pascual CM, Albricci L, Soscia D, Valbuena D, Capalbo A, Ubaldi F, Simón C. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril. 2019;112(3):510–9.
Yeung QSY, Zhang YX, Chung JPW, Lui WT, Kwok YKY, Gui B, Kong GWS, Cao Y, Li TC, Choy KW. A prospective study of non-invasive preimplantation genetic testing for aneuploidies (NiPGT-A) using next-generation sequencing (NGS) on spent culture media (SCM). J Assist Reprod Genet. 2019;36(8):1609–21.
Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, Wang H, Song X, Ma T, Bo S, Shi C, Ren J, Huang L, Cai LY, Yao B, Xie XS, Lu S. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci USA. 2016;113(42):11907–12.
Committee Opinion No. 690: carrier screening in the age of genomic medicine. Obstet Gynecol. 2017;129(3):e35–e40.
Committee Opinion No. 691: carrier screening for genetic conditions. Obstet Gynecol. 2017. 129(3):e41–e55.
HGSA/RANZCOG Joint Committee on Prenatal Diagnosis and Screening. Prenatal screening and diagnosis of chromosomal and genetic conditions in the fetus in pregnancy. Melbourne: RANZCOG; 2018.
Archibald AD, Smith MJ, Burgess T, Scarff KL, Elliott J, Hunt CE, McDonald Z, Barns-Jenkins C, Holt C, Sandoval K, SivaKumar V, Ward L, Allen EC, Collis SV, Cowie S, Francis D, Delatycki MB, Yiu EM, Massie RJ, Pertile MD, Du Sart D, Bruno D, Amor DJ. Reproductive genetic carrier screening for cystic fibrosis, fragile X syndrome, and spinal muscular atrophy in Australia: outcomes of 12,000 tests. Genet Med. 2018;20(5):513–23.
Lazarin GA, Haque IS, Nazareth S, Iori K, Patterson AS, Jacobson JL, Marshall JR, Seltzer WK, Patrizio P, Evans EA, Srinivasan BS. An empirical estimate of carrier frequencies for 400+ causal Mendelian variants: results from an ethnically diverse clinical sample of 23,453 individuals. Genet Med. 2013;15(3):178–86.
Jiao J, Shi B, Sagnelli M, Yang D, Yao Y, Li W, Shao L, Lu S, Li D, Wang X. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum Reprod. 2019;34(7):1369–79.
Li X, Hao Y, Chen D, Ji D, Zhu W, Zhu X, Wei Z, Cao Y, Zhang Z, Zhou P. Non-invasive preimplantation genetic testing for putative mosaic blastocysts: a pilot study. Hum Reprod. 2021;36(7):2020–34.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This research was not supported by any external Grant funding.
Conflict of interest
AR, MM, SCK, DZ-F, and TH are employed by the Monash IVF Group, a commercial enterprise that offers preimplantation genetic testing. The views expressed in this manuscript are of the authors and do not reflect the views of the Monash IVF Group.
Availability of data and material
Not applicable.
Code availability
Not applicable.
Author contributions
All authors hereby attest that they meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND Drafting the work or revising it critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Rights and permissions
About this article
Cite this article
Rogers, A., Menezes, M., Kane, S.C. et al. Preimplantation Genetic Testing for Monogenic Conditions: Is Cell-Free DNA Testing the Next Step?. Mol Diagn Ther 25, 683–690 (2021). https://doi.org/10.1007/s40291-021-00556-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40291-021-00556-0