Skip to main content
Log in

Prognostic Significance of FOXC1 in Various Cancers: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 31 October 2019

A Letter to the Editor to this article was published on 31 October 2019

Abstract

Background

Forkhead box C1 (FOXC1), a member of the Forkhead box (Fox) transcription factor family, plays an essential role in lymphatic vessel formation, angiogenesis and metastasis. Observational studies examining the relationship between the protein biomarker FOXC1 and breast cancer prognosis have reported conflicting findings. This systematic review and meta-analysis evaluates the prognostic value of the FOXC1 expression in association with patient survival in breast cancer and other types of cancers in order to identify the overall prognostic effectiveness of FOXC1.

Methods

This study followed the guidelines established in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We conducted a broad search on the online bibliographic databases EMBASE, PubMed, Science Direct and Scopus, limiting search to publications from 2010 to 2018. The prognostic value was demonstrated by a random effects model meta-analysis using the hazard ratio (HR) with 95% confidence interval (CI) for overall survival (OS) in various cancer patients. The heterogeneity was measured by the I2 statistic. Publication bias and quality assessment for the selected articles was performed. Subgroup analysis was conducted based on the data available from the selected articles.

Results

A total of 16 studies met the predefined selection criteria established for our systematic review and meta-analysis, with multiple studies using diverse methodologies and reported on differing clinical outcomes, falling under a common banner of FOXC1 expression and survival in cancer. Overall, we observed a statistically non-significant association between FOXC1 protein expression and patients survival (HR: 1.186 and 95% CI 1.122–1.255, p = 0.000, I2 = 88.83%).

Conclusion

In summary, FOXC1 protein expression indicated poor survival outcome in various carcinomas, especially in patients with breast cancer, suggesting it as a possible biomarker for the prognosis in multiple carcinomas. Further clinical evaluation and large-scale cohort studies are required to accurately identify its possible clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7(11):847–59.

    Article  CAS  PubMed  Google Scholar 

  2. Kidson SH, Kume T, Deng K, Winfrey V, Hogan BL. The forkhead/winged-helix gene, Mf1, is necessary for the normal development of the cornea and formation of the anterior chamber in the mouse eye. Dev Biol. 1999;211(2):306–22.

    Article  CAS  PubMed  Google Scholar 

  3. Mears AJ, Jordan T, Mirzayans F, Dubois S, Kume T, Parlee M, et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am J Hum Genet. 1998;63(5):1316–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE, Cui X. FOXC1: an emerging marker and therapeutic target for cancer. Oncogene. 2017;36(28):3957–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ray PS, Wang J, Qu Y, Sim M-S, Shamonki J, Bagaria SP, et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 2010;70(10):3870–6.

    Article  CAS  PubMed  Google Scholar 

  6. DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 2017;67(6):439–48.

    Article  PubMed  Google Scholar 

  7. Jensen TW, Ray T, Wang J, Li X, Naritoku WY, Han B, et al. Diagnosis of basal-like breast cancer using a FOXC1-based assay. J Natl Cancer Inst. 2015;107(8):djv148.

  8. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. J Proc Natal Acad Sci. 2010;107(35):15449–54.

    Article  Google Scholar 

  9. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17(24):2815–34.

    Article  CAS  PubMed  Google Scholar 

  10. National Institute of Health National Heart, Lung and Blood Institute. Quality Assessment Tool for Quality Assessment of Systematic Reviews and Meta-Analyses. 2015. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 11 Dec 2018.

  11. Sabarimurugan S, Royam MM, Das A, Das S, Gothandam K, Jayaraj R, et al. Systematic review and meta-analysis of the prognostic significance of miRNAs in melanoma patients. Mol Diagn Ther. 2018;22(6):653–69.

    Article  CAS  PubMed  Google Scholar 

  12. Kumarasamy C, Devi A, Jayaraj R. Prognostic value of microRNAs in head and neck cancers: a systematic review and meta-analysis protocol. Syst Rev. 2018;7(1):150.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. J Ann Intern Med. 2009;151(4):264–9.

    Article  Google Scholar 

  14. Hooijmans CR, IntHout J, Ritskes-Hoitinga M, Rovers MM. Meta-analyses of animal studies: an introduction of a valuable instrument to further improve healthcare. ILAR J. 2014;55(3):418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. In: Higgings JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions: cochrane book series. Chichester: Wiley; 2008. p. 243–96.

    Chapter  Google Scholar 

  16. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Delgado Rodríguez M, Massons JMD. Revisión sistemática de estudios. Metaanálisis. Barcelona: Signo. 2005.

  18. Jayaraj R, Kumarasamy C, Madhav MR, Pandey V, Sabarimurugan S, Ramesh N, et al. Comment on “Systematic review and meta-analysis of diagnostic accuracy of miRNAs in patients with pancreatic cancer”. Dis Mark. 2018;2018:6904569.

    Google Scholar 

  19. Jayaraj R, Kumarasamy C. Systematic review and meta-analysis of cancer studies evaluating diagnostic test accuracy and prognostic values: approaches to improve clinical interpretation of results. Cancer Manag Res. 2018;10:4669–70.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Madhav MR, Nayagam SG, Biyani K, Pandey V, Kamal DG, Sabarimurugan S, et al. Epidemiologic analysis of breast cancer incidence, prevalence, and mortality in India: protocol for a systematic review and meta-analyses. Med (Baltim). 2018;97(52):e13680.

    Article  Google Scholar 

  21. Madurantakam RM, Kumarasamy C, Baxi S, Gupta A, Ramesh N, Kodiveri MG, et al. Current evidence on miRNAs as potential theranostic markers for detecting chemoresistance in colorectal cancer: a systematic review and meta-analysis of preclinical and clinical studies. J Mol Diagn Ther. 2019;23(1):65–82.

    Article  CAS  Google Scholar 

  22. Cao S, Wang Z, Gao X, He W, Cai Y, Chen H, et al. FOXC1 induces cancer stem cell-like properties through upregulation of beta-catenin in NSCLC. J Exp Clin Cancer Res. 2018;37(1):220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han B, Qu Y, Jin Y, Yu Y, Deng N, Wawrowsky K, et al. FOXC1 activates smoothened-independent hedgehog signaling in basal-like breast cancer. Cell Rep. 2015;13(5):1046–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang L, Huang Z, Fan Y, He L, Ye M, Shi K, et al. FOXC1 promotes proliferation and epithelial-mesenchymal transition in cervical carcinoma through the PI3K-AKT signal pathway. Am J Transl Res. 2017;9(3):1297–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang Y, Huang H, Li M, Zhang X, Liu Y, Wang Y. MicroRNA-374c-5p regulates the invasion and migration of cervical cancer by acting on the Foxc1/snail pathway. Biomed Pharmacother. 2017;94:1038–47.

    Article  CAS  PubMed  Google Scholar 

  26. Kim J-Y, Jung HH, Ahn S, Bae S, Lee SK, Kim SW, et al. The relationship between nuclear factor (NF)-κB family gene expression and prognosis in triple-negative breast cancer (TNBC) patients receiving adjuvant doxorubicin treatment. Sci Rep. 2016;6:31804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin Z, Sun L, Chen W, Liu B, Wang Y, Fan S, et al. miR-639 regulates transforming growth factor beta-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting FOXC 1. Cancer Sci. 2014;105(10):1288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan F, Yao J, Chen Y, Zhou C, Geng P, Mao H, et al. A novel long non-coding RNA FOXCUT and mRNA FOXC1 pair promote progression and predict poor prognosis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(6):2838–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ray PS, Bagaria SP, Wang J, Shamonki JM, Ye X, Sim MS, et al. Basal-like breast cancer defined by FOXC1 expression offers superior prognostic value: a retrospective immunohistochemical study. Ann Surg Oncol. 2011;18(13):3839–47.

    Article  PubMed  Google Scholar 

  30. Sizemore ST, Keri RA. The forkhead box transcription factor FOXC1 promotes breast cancer invasion by inducing matrix metalloprotease 7 (MMP7) expression. J Biol Chem. 2012;287(29):24631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang L, Gu F, Liu C-Y, Wang R-J, Li J, Xu J-Y. High level of FOXC1 expression is associated with poor prognosis in pancreatic ductal adenocarcinoma. Tumor Biol. 2013;34(2):853–8.

    Article  CAS  Google Scholar 

  32. Wang W-W, Chen B, Lei C-B, Liu G-X, Wang Y-G, Yi C, et al. miR-582-5p inhibits invasion and migration of salivary adenoid cystic carcinoma cells by targeting FOXC1. Jpn J Clin Oncol. 2017;47(8):690–8.

    Article  PubMed  Google Scholar 

  33. Wei L-X, Zhou R-S, Xu H-F, Wang J-Y, Yuan M-H. High expression of FOXC1 is associated with poor clinical outcome in non-small cell lung cancer patients. Tumor Biol. 2013;34(2):941–6.

    Article  CAS  Google Scholar 

  34. Xia L, Huang W, Tian D, Zhu H, Qi X, Chen Z, et al. Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology. 2013;57(2):610–24.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Shao QS, Yao HB, Jin Y, Ma YY, Jia LH. Overexpression of FOXC1 correlates with poor prognosis in gastric cancer patients. Histopathology. 2014;64(7):963–70.

    Article  PubMed  Google Scholar 

  36. Xu Y, Yao R, Li J, Zhou Y, Mao F, Pan B, et al. FOXC1 overexpression is a marker of poor response to anthracycline-based adjuvant chemotherapy in sporadic triple-negative breast cancer. Cancer Chemother Pharmacol. 2017;79(6):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kume T, Shackour T. Meta-analysis of the likelihood of FOXC1 expression in early-and late-stage tumors. Oncotarget. 2018;9(93):36625–30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bach D-H, Long N, Luu TT, Anh N, Kwon S, Lee S. The dominant role of Forkhead box proteins in cancer. Int J Mol Sci. 2018;19(10):3279.

    Article  CAS  PubMed Central  Google Scholar 

  39. Elian FA, Yan E, Walter MA. FOXC1, the new player in the cancer sandbox. Oncotarget. 2018;9(8):8165–78.

    Article  PubMed  Google Scholar 

  40. Yang Z, Jiang S, Cheng Y, Li T, Hu W, Ma Z, et al. FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Ther Adv Med Oncol. 2017;9(12):797–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berry FB, Saleem RA, Walter MA. FOXC1 transcriptional regulation is mediated by N-and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain. J Biol Chem. 2002;277(12):10292–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nishimura DY, Searby CC, Alward WL, Walton D, Craig JE, Mackey DA, et al. A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet. 2001;68(2):364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao J, He B, Zou Y, Chen X, Lu X, Xie M, et al. Prognostic value of decreased FOXP1 protein expression in various tumors: a systematic review and meta-analysis. Sci Rep. 2016;6:30437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sabarimurugan S, Kumarasamy C, Baxi S, Devi A, Jayaraj R. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS One. 2019;14(2):e0209760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jayaraj R, Kumarasamy C, Ramalingam S, Devi A. Systematic review and meta-analysis of risk-reductive dental strategies for medication related osteonecrosis of the jaw among cancer patients: approaches and strategies. Oral Oncol. 2018;86:312–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Meta-Analysis Concepts and Applications Workshop Manual by Michael Borenstein for its guidelines on reporting meta-analysis, subgroup analysis and publication bias (www.meta-analysis-workshops.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Jayaraj.

Ethics declarations

Conflict of Interest

Nadana Sabapathi, Shanthi Sabarimurugan, Madurantakam Royam Madhav, Chellan Kumarasamy, Xingzhi Xu, Gaixia Xu, and Rama Jayaraj declare that they have no conflicts of interest related to this systematic review.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Ethics approval and consent to participate

Ethical approval is not a requirement because all data in this review were retrieved from published studies. Since there is no specific direct patient involvement, ethical committee approval is not required.

Author contributions

RJ, XX and GX conceived this study and provided supervision and mentorship to NS. RJ and NS led the development of the study design, wrote the first draft, and coordinated and integrated comments from co-authors XX, GX, SS, MRM and CK. The editing of the final draft were done by SS, MRM and CK. RJ provided methodological guidance on the overall development of the protocol. All authors read, refined and approved the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabapathi, N., Sabarimurugan, S., Madurantakam Royam, M. et al. Prognostic Significance of FOXC1 in Various Cancers: A Systematic Review and Meta-Analysis. Mol Diagn Ther 23, 695–706 (2019). https://doi.org/10.1007/s40291-019-00416-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00416-y

Navigation