Skip to main content

Advertisement

Log in

Epigenetic Biomarkers in Colorectal Cancer

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Developments in the diagnosis and treatment of colorectal cancer (CRC) have been made in the last decade, but the overall survival rate of patients with CRC has not improved dramatically. Genetic and epigenetic events contribute to CRC pathogenesis. Tumor heterogeneity results in a range of prognoses and responses to CRC management and therapy. Epigenetic biomarkers have potential in CRC diagnosis and in measuring response to therapy. Combining information from genetic and epigenetic alterations provides an opportunity to predict response to therapy. Epigenetic biomarkers can be used in disease stratification, which also helps in designing therapeutic approaches for CRC. Challenges in the understanding of CRC development and gaps in knowledge are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Nash GM, Gimbel M, Cohen AM, et al. KRAS mutation and microsatellite instability: two genetic markers of early tumor development that influence the prognosis of colorectal cancer. Ann Surg Oncol. 2010;17(2):416–24.

    Article  PubMed  Google Scholar 

  3. Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 2016;15(3):195–203.

    Article  PubMed  Google Scholar 

  4. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59(6):366–78.

    Article  PubMed  Google Scholar 

  5. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomark Prev. 2010;19(8):1893–907.

    Article  Google Scholar 

  6. Dolatkhah R, Somi MH, Kermani IA, Ghojazadeh M, Jafarabadi MA, Farassati F, Dastgiri S. Increased colorectal cancer incidence in Iran: a systematic review and meta-analysis. BMC Public Health. 2015;15:997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bastani R, Glenn BA, Maxwell AE, et al. Randomized trial to increase colorectal cancer screening in an ethnically diverse sample of first-degree relatives. Cancer. 2015;121(17):2951–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kohler BA, Ward E, McCarthy BJ, et al. Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 2011;103(9):714–36.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Neklason DW, Done MW, Sargent NR, et al. Activating mutation in MET oncogene in familial colorectal cancer. BMC Cancer. 2011;11:424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138(6):2044–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lieberman D. Colon-polyp surveillance–do patients benefit? N Engl J Med. 2014;371(9):860–1.

    Article  CAS  PubMed  Google Scholar 

  12. Lieberman DA, American Gastroenterological Association. Colon polyp surveillance: clinical decision tool. Gastroenterology. 2014;146(1):305–6.

    Article  PubMed  Google Scholar 

  13. Lieberman DA, Weiss DG, Harford WV, et al. Five-year colon surveillance after screening colonoscopy. Gastroenterology. 2007;133(4):1077–85.

    Article  PubMed  Google Scholar 

  14. Rex DK, Lehman GA, Ulbright TM, et al. Colonic neoplasia in asymptomatic persons with negative fecal occult blood tests: influence of age, gender, and family history. Am J Gastroenterol. 1993;88(6):825–31.

    CAS  PubMed  Google Scholar 

  15. Kahi CJ, Boland CR, Dominitz JA, et al. United states multi-society task force on colorectal, colonoscopy surveillance after colorectal cancer resection: recommendations of the US multi-society task force on colorectal cancer. Gastroenterology. 2016;150(3):758–768 e11.

  16. Klatsky AL, Li Y, Nicole Tran H, et al. Alcohol intake, beverage choice, and cancer: a cohort study in a large kaiser permanente population. Perm J. 2015;19(2):28–34.

    PubMed  PubMed Central  Google Scholar 

  17. Jacobs ET, Jurutka PW, Martinez ME, Alberts DS. Vitamin D, calcium, and colorectal neoplasia: new insights on mechanisms of action. Cancer Prev Res (Phila). 2009;2(3):197–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148(6):1244–60 e16.

  19. Resler AJ, Makar KW, Heath L, et al. Genetic variation in prostaglandin synthesis and related pathways, NSAID use and colorectal cancer risk in the Colon Cancer Family Registry. Carcinogenesis. 2014;35(9):2121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alexander DD, Weed DL, Miller PE, Mohamed MA. Red meat and colorectal cancer: a quantitative update on the state of the epidemiologic science. J Am Coll Nutr. 2015;34(6):521–43.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McCullough ML, Gapstur SM, Shah R, Jacobs EJ, Campbell PT. Association between red and processed meat intake and mortality among colorectal cancer survivors. J Clin Oncol. 2013;31(22):2773–82.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peppone LJ, Reid ME, Moysich KB, et al. The effect of secondhand smoke exposure on the association between active cigarette smoking and colorectal cancer. Cancer Causes Control. 2010;21(8):1247–55.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abdelfatah E, Kerner Z, Nanda N, Ahuja N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol. 2016;9(4):560–79.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chung WS, Walker AW, Louis P, et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 2016;14:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  26. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72.

    Article  CAS  PubMed  Google Scholar 

  27. Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411.

    Article  CAS  PubMed  Google Scholar 

  28. Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014;74(5):1311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lamparella NE, Saroya BS, Yang Z, et al. Contradictory KRAS mutation test results in a patient with metastatic colon cancer: a clinical dilemma in the era of personalized medicine. Cancer Biol Ther. 2013;14(8):699–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zanutto S, Pizzamiglio S, Lampis A, et al. Methylation status in patients with early stage colon cancer: a new prognostic marker? Int J Cancer. 2012;130(2):488–9.

    Article  CAS  PubMed  Google Scholar 

  31. Coppede F, Migheli F, Lopomo A, et al. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism. Epigenetics. 2014;9(4):621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bae JM, Kim JH, Cho NY, Kim TY, Kang GH. Prognostic implication of the CpG island methylator phenotype in colorectal cancers depends on tumour location. Br J Cancer. 2013;109(4):1004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dawson H, Koelzer VH, Lukesch AC, et al. Loss of Cdx2 expression in primary tumors and lymph node metastases is specific for mismatch repair-deficiency in colorectal cancer. Front Oncol. 2013;3:265.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sayar I, Akbas EM, Isik A, et al. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry. Pol J Pathol. 2015;66(3):246–53.

    Article  PubMed  Google Scholar 

  35. Mummaneni P, Shord SS. Epigenetics and oncology. Pharmacotherapy. 2014;34(5):495–505.

    Article  CAS  PubMed  Google Scholar 

  36. Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J. 2016;52(1):1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park SK, Song CS, Yang HG, et al. Field cancerization in sporadic colon cancer. Gut Liver. 2016;10(5):773–80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baba Y, Ishimoto T, Kurashige J, et al. Epigenetic field cancerization in gastrointestinal cancers. Cancer Lett. 2016;375(2):360–6.

    Article  CAS  PubMed  Google Scholar 

  39. Markowitz O, Schwartz M, Feldman E, et al. Defining field cancerization of the skin using noninvasive optical coherence tomography imaging to detect and monitor actinic keratosis in ingenol mebutate 0.015%-treated patients. J Clin Aesthet Dermatol. 2016;9(5):18–25.

  40. Jakubek Y, Lang W, Vattathil S, et al. Genomic landscape established by allelic imbalance in the cancerization field of a normal appearing airway. Cancer Res. 2016;76(13):3676–83.

    Article  CAS  PubMed  Google Scholar 

  41. Asioli S, Morandi L, Cavatorta C, Cucchi MC, Foschini MP. The impact of field cancerization on the extent of duct carcinoma in situ (DCIS) in breast tissue after conservative excision. Eur J Surg Oncol. 2016;pii:S0748-7983(16)30672-2. doi:10.1016/j.ejso.2016.07.005.

  42. Verma M. The role of epigenomics in the study of cancer biomarkers and in the development of diagnostic tools. Adv Exp Med Biol. 2015;867:59–80.

    Article  PubMed  Google Scholar 

  43. Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol. 2016;12(13):1645–64.

    Article  CAS  PubMed  Google Scholar 

  44. Verma M, Khoury MJ, Ioannidis JP. Opportunities and challenges for selected emerging technologies in cancer epidemiology: mitochondrial, epigenomic, metabolomic, and telomerase profiling. Cancer Epidemiol Biomark Prev. 2013;22(2):189–200.

    Article  CAS  Google Scholar 

  45. Verma M, Rogers S, Divi RL, et al. Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomark Prev. 2014;23(2):223–33.

    Article  Google Scholar 

  46. Weisenberger DJ, Levine AJ, Long TI, et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomark Prev. 2015;24(3):512–9.

    Article  CAS  Google Scholar 

  47. Renaud F, Vincent A, Mariette C, et al. MUC5AC hypomethylation is a predictor of microsatellite instability independently of clinical factors associated with colorectal cancer. Int J Cancer. 2015;136(12):2811–21.

    Article  CAS  PubMed  Google Scholar 

  48. Jair KW, Bachman KE, Suzuki H, et al. De novo CpG island methylation in human cancer cells. Cancer Res. 2006;66(2):682–92.

    Article  CAS  PubMed  Google Scholar 

  49. Antelo M, Balaguer F, Shia J, et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One. 2012;7(9):e45357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng Y, Xie N, Jin P, Wang T. DNA methylation and hydroxymethylation in stem cells. Cell Biochem Funct. 2015;33(4):161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ko M, An J, Rao A. DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr Opin Cell Biol. 2015;37:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jin B, Yao B, Li JL, et al. DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res. 2009;69(18):7412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang L, Zeng J, Zeng Z, et al. MGMT in colorectal cancer: a promising component of personalized treatment. Tumour Biol. 2016;37(8):11443–56.

    Article  CAS  PubMed  Google Scholar 

  54. Mohammad HP, Cai Y, McGarvey KM, et al. Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Res. 2009;69(15):6322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siggens L, Ekwall K. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Intern Med. 2014;276(3):201–14.

    Article  CAS  PubMed  Google Scholar 

  56. Verma M. Epigenome-Wide Association Studies (EWAS) in Cancer. Curr Genom. 2012;13(4):308–13.

    Article  CAS  Google Scholar 

  57. Li L, Yang XJ. Molecular and functional characterization of histone deacetylase 4 (HDAC4). Methods Mol Biol. 2016;1436:31–45.

    Article  PubMed  Google Scholar 

  58. De Souza C, Chatterji BP. HDAC inhibitors as novel anti-cancer therapeutics. Recent Pat Anticancer Drug Discov. 2015;10(2):145–62.

    Article  PubMed  CAS  Google Scholar 

  59. de la Paz Sanchez M, Aceves-Garcia P, Petrone E. The impact of polycomb group (PcG) and trithorax group (TrxG) epigenetic factors in plant plasticity. New Phytol. 2015;208(3):684–94.

    Article  Google Scholar 

  60. Geisler SJ, Paro R. Trithorax and polycomb group-dependent regulation: a tale of opposing activities. Development. 2015;142(17):2876–87.

    Article  CAS  PubMed  Google Scholar 

  61. Ma RG, Zhang Y, Sun TT, Cheng B. Epigenetic regulation by polycomb group complexes: focus on roles of CBX proteins. J Zhejiang Univ Sci B. 2014;15(5):412–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ahlquist T, Lind GE, Costa VL, et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer. 2008;2008(7):94.

    Article  CAS  Google Scholar 

  63. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci. 1999;96(15):8681–6.

  64. Overman MJ, Morris V, Moinova H, et al. Phase I/II study of azacitidine and capecitabine/oxaliplatin (CAPOX) in refractory CIMP-high metastatic colorectal cancer: evaluation of circulating methylated vimentin. Oncotarget. 2016. doi:10.18632/oncotarget.11317.

  65. Hoffmann AC, Vallbohmer D, Prenzel K, et al. Methylated DAPK and APC promoter DNA detection in peripheral blood is significantly associated with apparent residual tumor and outcome. J Cancer Res Clin Oncol. 2009;135(9):1231–7.

    Article  CAS  PubMed  Google Scholar 

  66. Lee BB, Lee EJ, Jung EH, et al. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res. 2009;15(19):6185–91.

    Article  CAS  PubMed  Google Scholar 

  67. Lambert R, Tanaka S. Laterally spreading tumors in the colon and rectum. Eur J Gastroenterol Hepatol. 2012;24(10):1123–34.

    Article  PubMed  Google Scholar 

  68. Yagi K, Akagi K, Hayashi H, et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res. 2010;16(1);21–33.

  69. Sakai E, Ohata K, Chiba H, et al. Methylation epigenotypes and genetic features in colorectal laterally spreading tumors. Int J Cancer. 2014;135(7):1586–95.

    Article  CAS  PubMed  Google Scholar 

  70. Salehi R, Atapour N, Vatandoust N, et al. Methylation pattern of ALX4 gene promoter as a potential biomarker for blood-based early detection of colorectal cancer. Adv Biomed Res. 2015;2015(4):252.

    Article  Google Scholar 

  71. Gezer U, Yoruker EE, Keskin M, et al. Histone methylation marks on circulating nucleosomes as novel blood-based biomarker in colorectal cancer. Int J Mol Sci. 2015;16(12):29654–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benard A, Goossens-Beumer IJ, van Hoesel AQ, et al. Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer. BMC Cancer. 2014;2014(14):531.

    Article  Google Scholar 

  73. Deb M, Sengupta D, Rath SK, et al. Clusterin gene is predominantly regulated by histone modifications in human colon cancer and ectopic expression of the nuclear isoform induces cell death. Biochim Biophys Acta. 2015;1852(8):1630–45.

    Article  CAS  PubMed  Google Scholar 

  74. Karczmarski J, Rubel T, Paziewska A, et al. Histone H3 lysine 27 acetylation is altered in colon cancer. Clin Proteomics. 2014;11(1):24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li Q, Chen H. Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics. 2012;7(6):551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chi Y, Zhou D. MicroRNAs in colorectal carcinoma - from pathogenesis to therapy. J Exp Clin Cancer Res. 2016;35(1):43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yan L, Zhao W, Yu H, et al. A comprehensive meta-analysis of microRNAs for predicting colorectal cancer. Medicine (Baltimore). 2016;95(9):e2738.

    Article  CAS  Google Scholar 

  78. Wang C, Zhao K, Rong Q. Diagnostic value of fecal microRNAs for colorectal cancer: a meta-analysis. Clin Lab. 2015;61(12):1845–53.

    CAS  PubMed  Google Scholar 

  79. Al-Sheikh YA, Ghneim HK, Softa KI, et al. Expression profiling of selected microRNA signatures in plasma and tissues of Saudi colorectal cancer patients by qPCR. Oncol Lett. 2016;11(2):1406–12.

    PubMed  Google Scholar 

  80. Sun Y, Liu Y, Cogdell D, et al. Examining plasma microRNA markers for colorectal cancer at different stages. Oncotarget. 2016;7(10):11434–49.

    PubMed  PubMed Central  Google Scholar 

  81. Sinicrope FA, Okamoto K, Kasi PM, Kawakami H. Molecular biomarkers in the personalized treatment of colorectal cancer. Clin Gastroenterol Hepatol. 2016;14(5):651–8.

    Article  CAS  PubMed  Google Scholar 

  82. Burki TK. Overtreatment of younger patients with colon cancer. Lancet Oncol. 2015;16(5):e203.

    Article  PubMed  Google Scholar 

  83. Kneuertz PJ, Chang GJ, Hu CY, et al. Overtreatment of young adults with colon cancer: more intense treatments with unmatched survival gains. JAMA Surg. 2015;150(5):402–9.

    Article  PubMed  CAS  Google Scholar 

  84. Smolle M, Uranitsch S, Gerger A, Pichler M, Haybaeck J. Current status of long non-coding RNAs in human cancer with specific focus on colorectal cancer. Int J Mol Sci. 2014;15(8):13993–4013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xie X, Tang B, Xiao YF, et al. Long non-coding RNAs in colorectal cancer. Oncotarget. 2016;7(5):5226–39.

    PubMed  Google Scholar 

  86. Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci. 2004;41(5–6):585–607.

    Article  CAS  PubMed  Google Scholar 

  87. Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol. 2002;3(12):755–63.

    Article  CAS  PubMed  Google Scholar 

  88. Chen H, Werner S, Butt J, et al. Prospective evaluation of 64 serum autoantibodies as biomarkers for early detection of colorectal cancer in a true screening setting. Oncotarget. 2016;7(13):16420–32.

    PubMed  PubMed Central  Google Scholar 

  89. Perrone F, Lampis A, Bertan C, et al. Circulating free DNA in a screening program for early colorectal cancer detection. Tumori. 2014;100(2):115–21.

    CAS  PubMed  Google Scholar 

  90. Huang MY, Tsai HL, Huang JJ, Wang JY. Clinical implications and future perspectives of circulating tumor cells and biomarkers in clinical outcomes of colorectal cancer. Transl Oncol. 2016;9(4):340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bandaletova T, Chhaya V, Poullis A, Loktionov A. Colorectal mucus non-invasively collected from patients with inflammatory bowel disease and its suitability for diagnostic cytology. APMIS. 2016;124(3):160–8.

    Article  CAS  PubMed  Google Scholar 

  92. Shima K, Nosho K, Baba Y, et al. Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: cohort study and literature review. Int J Cancer. 2011;128(5):1080–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dallol A, Al-Maghrabi J, Buhmeida A, et al. Methylation of the polycomb group target genes is a possible biomarker for favorable prognosis in colorectal cancer. Cancer Epidemiol Biomark Prev. 2012;21(11):2069–75.

    Article  CAS  Google Scholar 

  94. Zlobec I, Bihl M, Foerster A, et al. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features. J Pathol. 2011;225(3):336–43.

    Article  CAS  PubMed  Google Scholar 

  95. Zlobec I, Bihl MP, Foerster A, Rufle A, Lugli A. The impact of CpG island methylator phenotype and microsatellite instability on tumour budding in colorectal cancer. Histopathology. 2012;61(5):777–87.

    Article  PubMed  Google Scholar 

  96. Network Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  CAS  Google Scholar 

  97. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  98. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93.

    Article  CAS  PubMed  Google Scholar 

  99. Shiovitz S, Bertagnolli MM, Renfro LA, et al. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer. Gastroenterology. 2014;147(3):637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goel A, Boland CR. Epigenetics of colorectal cancer. Gastroenterology. 2012;143(6):1442–1460 e1.

  101. Yan W, Guo M. Epigenetics of colorectal cancer. Methods Mol Biol. 2015;2015(1238):405–24.

    Article  Google Scholar 

  102. Ronsch K, Jager M, Schopflin A. Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of CDX1 and EPHB tumor suppressor genes in colorectal cancer. Epigenetics. 2011;6(5):610–22.

    Article  PubMed  CAS  Google Scholar 

  103. Wei FZ, Cao Z, Wang X, et al. Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway. Autophagy. 2015;11(12):2309–22.

    Article  CAS  PubMed  Google Scholar 

  104. Noguchi T, Toiyama Y, Kitajima T, et al. miRNA-503 promotes tumor progression and is associated with early recurrence and poor prognosis in human colorectal cancer. Oncology. 2016;90(4):221–31.

    Article  CAS  PubMed  Google Scholar 

  105. Yang IP, Tsai HL, Huang CW, et al. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2. Oncotarget. 2016;7(14):18837–50.

    PubMed  PubMed Central  Google Scholar 

  106. Mokutani Y, Uemura M, Munakata K, et al. Down-regulation of microRNA-132 is associated with poor prognosis of colorectal cancer. Ann Surg Oncol. 2016;1–10. doi:10.1245/s10434-016-5133-3.

  107. Li Z, Wang H, Xu Z, Sun Y, Han J. Expression and mechanism of microRNA-181A on incidence and survival in late liver metastases of colorectal cancer. Oncol Rep. 2016;35(3):1403–8.

    CAS  PubMed  Google Scholar 

  108. Qin J, Ke J, Xu J, et al. Downregulation of microRNA-132 by DNA hypermethylation is associated with cell invasion in colorectal cancer. Onco Targets Ther. 2015;2015(8):3639–48.

    Google Scholar 

  109. Basati G, Razavi AE, Pakzad I, Malayeri FA. Circulating levels of the miRNAs, miR-194, and miR-29b, as clinically useful biomarkers for colorectal cancer. Tumour Biol. 2016;37(2):1781–8.

    Article  CAS  PubMed  Google Scholar 

  110. Jia M, Gao X, Zhang Y, Hoffmeister M, Brenner H. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review. Clin Epigenet. 2016;2016(8):25.

    Article  Google Scholar 

  111. Nishihara R, Morikawa T, Kuchiba A, et al. A prospective study of duration of smoking cessation and colorectal cancer risk by epigenetics-related tumor classification. Am J Epidemiol. 2013;178(1):84–100.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Willett WC. Diet and cancer: an evolving picture. JAMA. 2005;293(2):233–4.

    Article  CAS  PubMed  Google Scholar 

  113. Satia-Abouta J, Galanko JA, Martin CF, Ammerman A, Sandler RS. Food groups and colon cancer risk in African-Americans and Caucasians. Int J Cancer. 2004;109(5):728–36.

    Article  CAS  PubMed  Google Scholar 

  114. Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Vipperla K, O’Keefe SJ. Diet, microbiota, and dysbiosis: a ‘recipe’ for colorectal cancer. Food Funct. 2016;7(4):1731–40.

    Article  CAS  PubMed  Google Scholar 

  116. Mosen DM, Feldstein AC, Perrin NA, et al. More comprehensive discussion of CRC screening associated with higher screening. Am J Manag Care. 2013;19(4):265–71.

    PubMed  PubMed Central  Google Scholar 

  117. Javanparast S, Ward PR, Carter SM, Wilson CJ. Barriers to and facilitators of colorectal cancer screening in different population subgroups in Adelaide, South Australia. Med J Aust. 2012;196(8):521–3.

    Article  PubMed  Google Scholar 

  118. Mousavinezhad M, Majdzadeh R, Akbari Sari A, Delavari A, Mohtasham F. The effectiveness of FOBT vs. FIT: a meta-analysis on colorectal cancer screening test. Med J Islam Repub Iran. 2016;2016(30):366.

    Google Scholar 

  119. Pickhardt PJ. Emerging stool-based and blood-based non-invasive DNA tests for colorectal cancer screening: the importance of cancer prevention in addition to cancer detection. Abdom Radiol (NY). 2016;41(8):1441–4.

  120. Hirai K, Ishikawa Y, Fukuyoshi J, et al. Tailored message interventions versus typical messages for increasing participation in colorectal cancer screening among a non-adherent population: a randomized controlled trial. BMC Public Health. 2016;2016(16):431.

    Article  Google Scholar 

  121. Robertson DJ, Lee JK, Boland CR, et al. Recommendations on fecal immunochemical testing to screen for colorectal neoplasia: a consensus statement by the US multi-society task force on colorectal cancer. Gastroenterology. 2016;pii:S0016-5085(16)35025-9. doi:10.1053/j.gastro.2016.08.053.

  122. Lee JK, Liles EG, Bent S, Levin TR, Corley DA. Accuracy of fecal immunochemical tests for colorectal cancer: systematic review and meta-analysis. Ann Intern Med. 2014;160(3):171.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Liang PS, Wheat CL, Abhat A, et al. Adherence to competing strategies for colorectal cancer screening over 3 years. Am J Gastroenterol. 2016;111(1):105–14.

    Article  PubMed  Google Scholar 

  124. Rousseau B, Chibaudel B, Bachet JB, et al. Stage II and stage III colon cancer: treatment advances and future directions. Cancer J. 2010;16(3):202–9.

    Article  CAS  PubMed  Google Scholar 

  125. Benard A, Zeestraten EC, Goossens-Beumer IJ, et al. DNA methylation of apoptosis genes in rectal cancer predicts patient survival and tumor recurrence. Apoptosis. 2014;19(11):1581–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zlobec I, Minoo P, Baker K, et al. Loss of APAF-1 expression is associated with tumour progression and adverse prognosis in colorectal cancer. Eur J Cancer. 2007;43(6):1101–7.

    Article  CAS  PubMed  Google Scholar 

  127. Garziera M, Bidoli E, Cecchin E, et al. HLA-G 3′UTR polymorphisms impact the prognosis of stage II-III CRC patients in fluoropyrimidine-based treatment. PLoS One. 2015;10(12):e0144000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Patel SG, Lowery JT, Gatof D, Ahnen DJ. Practical opportunities to improve early detection and prevention of colorectal cancer (CRC) in members of high-risk families. Dig Dis Sci. 2015;60(3):748–61.

    Article  CAS  PubMed  Google Scholar 

  129. Schaeffer DF, Donnellan F. Endoscopic resection of malignant colonic polyps: why clinicopathological correlation (CPC) is needed for optimal treatment of CRC? Dig Dis Sci. 2015;60(9):2574–5.

    Article  PubMed  Google Scholar 

  130. Berretta M, Zanet E, Nasti G, et al. Oxaliplatin-based chemotherapy in the treatment of elderly patients with metastatic colorectal cancer (CRC). Arch Gerontol Geriatr. 2012;55(2):271–5.

    Article  CAS  PubMed  Google Scholar 

  131. Carethers JM. Biomarker-directed targeted therapy in colorectal cancer. J Dig Cancer Rep. 2015;3(1):5–10.

    PubMed  PubMed Central  Google Scholar 

  132. Vaish V, Khare T, Verma M, et al. Epigenetic therapy for colorectal cancer. Methods Mol Biol. 2015;2015(1238):771–82.

    Article  Google Scholar 

  133. Gilsing AM, Weijenberg MP, Goldbohm RA, et al. The Netherlands Cohort Study-Meat Investigation Cohort; a population-based cohort over-represented with vegetarians, pescetarians and low meat consumers. Nutr J. 2013;2013(12):156.

    Article  Google Scholar 

  134. Colditz GA, Manson JE, Hankinson SE. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Womens Health. 1997;6(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  135. Kenfield SA, DuPre N, Richman EL, et al. Mediterranean diet and prostate cancer risk and mortality in the Health Professionals Follow-up Study. Eur Urol. 2014;65(5):887–94.

    Article  PubMed  Google Scholar 

  136. Giles GG, English DR. The Melbourne Collaborative Cohort Study. IARC Sci Publ. 2002;2002(156):69–70.

    Google Scholar 

  137. Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–24.

    Article  CAS  PubMed  Google Scholar 

  138. Andriole GL, Reding D, Hayes RB, et al. The prostate, lung, colon, and ovarian (PLCO) cancer screening trial: status and promise. Urol Oncol. 2004;22(4):358–61.

    Article  PubMed  Google Scholar 

  139. Samowitz WS, Albertsen H, Sweeney C, et al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst. 2006;98(23):1731–8.

    Article  CAS  PubMed  Google Scholar 

  140. Curtin K, Samowitz WS, Wolff RK, Herrick J, Caan BJ, Slattery ML. Somatic alterations, metabolizing genes and smoking in rectal cancer. Int J Cancer. 2009;125(1):158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Limsui D, Vierkant RA, Tillmans LS, et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst. 2010;102(14):1012–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ogino S, Lochhead P, Chan AT, et al. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol. 2013;26(4):465–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Henderson D, Ogilvie LA, Hoyle N, et al. Personalized medicine approaches for colon cancer driven by genomics and systems biology: OncoTrack. Biotechnol J. 2014;9(9):1104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nguyen MN, Choi TG, Nguyen DT, et al. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer. Oncotarget. 2015;6(31):31674–92.

    PubMed  PubMed Central  Google Scholar 

  145. Hibi K, Mizukami H, Saito M, Kigawa G, Nemoto H, Sanada Y. FBN2 methylation is detected in the serum of colorectal cancer patients with hepatic metastasis. Anticancer Res. 2012;32(10):4371–4.

    CAS  PubMed  Google Scholar 

  146. Nilsson TK, Löf-Öhlin ZM, Sun XF. DNA methylation of the p14ARF, RASSF1A and APC1A genes as an independent prognostic factor in colorectal cancer patients. Int J Oncol. 2013;42(1):127–33.

    CAS  PubMed  Google Scholar 

  147. Moya P, Esteban S, Fernandez-Suarez A, et al. KiSS-1 methylation and protein expression patterns contribute to diagnostic and prognostic assessments in tissue specimens for colorectal cancer. Tumour Biol. 2013;34(1):471–9.

    Article  CAS  PubMed  Google Scholar 

  148. Alonso S, González B, Ruiz-Larroya T, et al. Epigenetic inactivation of the extracellular matrix metallopeptidase ADAMTS19 gene and the metastatic spread in colorectal cancer. Clin Epigenet. 2015;7(1):1.

    Article  Google Scholar 

  149. Moon JW, Choi JH, Lee SK, et al. Promoter hypermethylation of membrane type 3 matrix metalloproteinase is associated with cell migration in colorectal adenocarcinoma. Cancer Genet. 2015;208(5):261–70.

    Article  CAS  PubMed  Google Scholar 

  150. Liu M, Peng Y, Wang X, et al. NGX6 gene mediated by promoter methylation as a potential molecular marker in colorectal cancer. BMC Cancer. 2010;2010(10):160.

    Article  CAS  Google Scholar 

  151. Chen H, Xu Z. Hypermethylation-associated silencing of miR-125a and miR-125b: a potential marker in colorectal cancer. Dis Markers. 2015;2015:345080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kalmar A, Peterfia B, Hollosi P, et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. BMC Cancer. 2015;2015(15):736.

    Article  Google Scholar 

  153. Philipp AB, Nagel D, Stieber P, et al. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer. BMC Cancer. 2014;2014(14):245.

    Article  CAS  Google Scholar 

  154. Tham C, Chew M, Soong R, et al. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer. 2014;120(20):3131–41.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang ZM, Wang Y, Huang R, et al. TFAP2E hypermethylation was associated with survival advantage in patients with colorectal cancer. J Cancer Res Clin Oncol. 2014;140(12):2119–27.

    Article  CAS  PubMed  Google Scholar 

  156. Goossens-Beumer IJ, Benard A, van Hoesel AQ, et al. Age-dependent clinical prognostic value of histone modifications in colorectal cancer. Transl Res. 2015;165(5):578–88.

    Article  CAS  PubMed  Google Scholar 

  157. Ye YP, Wu P, Gu CC, et al. miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget. 2016. doi:10.18632/oncotarget.11016.

Download references

Acknowledgements

The authors are thankful to the staff of the Epidemiology and Genomics Program, Division of Cancer Control and population Sciences for providing the intellectual atmosphere to complete this project, reading the manuscript, and providing comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Verma.

Ethics declarations

Conflict of interest

Mukesh Verma and Vineet Kumar have no conflicts of interest.

Funding

No funding was used for this work because it was considered part of the author’s duties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Kumar, V. Epigenetic Biomarkers in Colorectal Cancer. Mol Diagn Ther 21, 153–165 (2017). https://doi.org/10.1007/s40291-016-0244-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0244-x

Keywords