Skip to main content
Log in

A Nanodiagnostic Colorimetric Assay for 18S rRNA of Leishmania Pathogens using Nucleic Acid Sequence-Based Amplification and Gold Nanorods

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background and Objective

We describe here a nanodiagnostic colorimetric assay for 18S rRNA of Leishmania pathogens that uses nucleic acid sequence-based amplification (NASBA) and gold nanorods (GNRs).

Methods

NASBA primers targeting 18S rRNA were used for amplification of RNA in an isothermal process. The electrostatic interactions between the phosphate groups of the RNA amplicons and the cetyl trimethylammonium bromide layer on the GNRs resulting in their aggregation. This phenomenon changes the color of the GNR solution from red to purple.

Results

Our data showed 100 % sensitivity and 80 % specificity with the colorimetric assay compared with results using reverse transcription polymerase chain reaction.

Conclusion

The nanodiagnostic method we describe simplifies the detection of NASBA amplicons without the need for gel electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bates PA. Transmission of Leishmania metacyclic promastigote by Phlebotomine sand flies. Int J Parasitol. 2007;37(10):1097–9. doi:10.1016/j.ijpara.2007.04.003.

    Article  PubMed  CAS  Google Scholar 

  2. van der Meide WF, Schoone GJ, Faber WR, Zeegelaar JE, De Vries HJ, Ozbel Y, Lai A, Fat RF, Coelho LI, Kassi M, Schallig HD. Quantitative nucleic acid sequence-based assay as a new molecular tool for detection and quantification of Leishmania parasites in skin biopsy samples. J Clin Microbiol. 2005;43(11):5560–6. doi:10.1128/JCM.43.11.5560-5566.2005.

    Article  PubMed  Google Scholar 

  3. Berman JD. Human leishmaniasis: clinical, diagnostic and chemotherapeutic developments in the last 10 years. Clin Infect Dis. 1997;24(4):684–703. doi:10.1093/clind/24.4.684.

    Article  PubMed  CAS  Google Scholar 

  4. Schallig HD, Oskam L. Molecular biological applications in the diagnosis and control of leishmaniasis and parasite identification. Trop Med Int. 2002;7(8):641–51. doi:10.1046/j.1365-3156.2002.00911.x.

    Article  CAS  Google Scholar 

  5. Aransay AM, Scoulica E, Tselentis Y. Detection and identification of Leishmania DNA within naturally infected flies. Appl Environ Microbiol. 2002;66(5):1933–8. doi:10.1128/AEM.66.5.1933-1938.2000.

    Article  Google Scholar 

  6. Faber WR, Oskam L, van Gool T, Kroong NCM, Knegt-Junk KJ, Hofwegenf H, van der Wal AC, Kager PA. Value of diagnostic techniques for cutaneous leishmaniasis. J Am Acad Dermatol. 2003;49(1):70–4. doi:10.1067/mjd.2003.492.

    Article  PubMed  Google Scholar 

  7. Laskay T, Miko TL, Negesse Y, Solbach W, Rollinghoff M, Frommel D. Detection of cutaneous Leishmania infection in paraffin embedded skin biopsies using the polymerase chain reaction. Trans R Soc Trop Med Hyg. 1995;89(3):273–5. doi:10.1016/0035-9203(95)90537-5.

    Article  PubMed  CAS  Google Scholar 

  8. Schubach AF, Haddad MP, Oliveira-Neto W. Detection of Leishmania DNA by PCR in scars of treated human patients. J Infect Dis. 1998;178(3):911–4. doi:10.1086/515355.

    Article  PubMed  CAS  Google Scholar 

  9. Mendonça MG, Brito MEF, Rodrigues EHG, Bandeira V, Jardim ML, Abath FGC. Persistence of Leishmania parasites in scars after clinical cure of American cutaneous Leishmaniasis: is there a sterile cure? J Infect Dis. 2004;189(6):1018–23. doi:10.1086/382135.

    Article  PubMed  Google Scholar 

  10. Omar SA, Mens PF, Schoone GJ, Yusuf A, Mwangi J, Kaniaru S. Plasmodium falciparum: evaluation of a quantitative nucleic acid sequence-based amplification assay to predict the outcome of sulfadoxine pyrimethamine treatment of uncomplicated malaria. Exp Parasitol. 2005;110(1):73–9. doi:10.1016/j.exppara.2005.02.001.

    Article  PubMed  CAS  Google Scholar 

  11. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350(6313):91–2. doi:10.1038/350091a0.

    Article  PubMed  CAS  Google Scholar 

  12. Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Appl Biochem Biotechnol B Mol Biotechnol. 2002;20(2):163–79. doi:10.1385/MB:20:2:163.

    CAS  Google Scholar 

  13. Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies: a review. Nucleosides Nucleotides Nucleic Acids. 2008;27(3):224–43. doi:10.1080/15257770701845204.

    Article  PubMed  CAS  Google Scholar 

  14. Malek L, Sooknanan R, Compton J. Nucleic acid sequence-based amplification. In: Isaac PG, editor. Methods in molecular biology, vol 28, protocols for nucleic acid analysis by nonradioactive probes. Totowa: Humana Press; 1994. p. 253–60.

    Google Scholar 

  15. Gill P, Ramezani R, Amiri MV, Ghaemi A, Hashempour T, Eshraghi N, Ghalami M, Tehrani HA. Enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification for molecular detection of M. tuberculosis. Biochem Biophys Res Commun. 2006;347(4):1151–7. doi:10.1016/j.bbrc.2006.07.039.

    Article  PubMed  CAS  Google Scholar 

  16. van Gemen B, van Beuningen R, Nabbe A, van Strijp D, Jurriaans S, Lens P, Kievits T. A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labeled probes. J Virol Methods. 1994;49(2):157–67. doi:10.1016/0166-0934(94)90040-X.

    Article  PubMed  Google Scholar 

  17. Leone G, van Gemen B, Schoen CD, van Schijndel H, Kramer FR. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 1998;26(9):2150–5. doi:10.1093/nar/26.9.2150.

    Article  PubMed  CAS  Google Scholar 

  18. Gill P, Ghalami M, Ghaemi A, Mosavari N, Abdul-Tehrani H, Sadeghizadeh M. Nanodiagnostic method for colorimetric detection of Mycobacterium tuberculosis 16S rRNA. Nanobiotechnology. 2008;4(1–4):28–35. doi:10.1007/s12030-009-9021-9.

    Article  CAS  Google Scholar 

  19. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63(10):3741–51. doi:63/10/3741.

    PubMed  CAS  Google Scholar 

  20. Lee KS, El-Sayed MA. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B. 2006;109(43):20331–8. doi:10.1021/jp054385p.

    Article  Google Scholar 

  21. Chen CD, Cheng SF, Chau LK, Wang CRC. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron. 2007;22(6):926–32. doi:10.1016/j.bios.2006.03.021.

    Article  PubMed  CAS  Google Scholar 

  22. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P. Chemical sensing and imaging with metallic nanorods. Chem Commun. 2008;8(5):544–57. doi:10.1039/b711069c.

    Article  Google Scholar 

  23. Ma Z, Tian L, Wang T, Wang C. Optical DNA detection based on gold nanorods aggregation. Anal Chim Acta. 2010;673(2):179–84. doi:10.1016/j.aca.2010.05.036.

    Article  PubMed  CAS  Google Scholar 

  24. Saber R, Shakoori Z, Sarkar S, Tavoosidana G, Kharrazi S, Gill P. Spectroscopic and microscopic analyses of rod-shaped gold nanoparticles interacted with ssDNA oligomers. IET Nanobiotechnol. 2013;7(2):1–8. doi:10.1049/iet-nbt.2012.0009.

    Article  Google Scholar 

  25. Saad AA, Ahmed NG, Osman OS, Al-Basheer AA, Hamad A, Deborggraeve S, Büscher P, Schoone GJ, Schallig HD, Laurent T, Haleem A, Osman OF, Eltom AM, Elbashir MI, El-Safi S. Diagnostic accuracy of the Leishmania oligoC-tesT and NASBA oligochromatography for diagnosis of leishmaniasis in Sudan. PLoS Negl Trop Dis. 2010;4(8):1–5. doi:10.1371/journal.pntd.0000776.

    Article  Google Scholar 

  26. Moskowitz CS, Pepe MS. Comparing the predictive values of diagnostic tests: sample size and analysis for paired study designs. Clin Trials. 2006;3(3):272–9. doi:10.1191/1740774506cn147oa.

    Article  PubMed  Google Scholar 

  27. Schoone GJ, Oskam L, Kroon NCM, Schallig HDFH, Omar SA. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. J Clin Microbiol. 1993;38(11):4072–5. doi:38/11/4072.

    Google Scholar 

  28. Ming-Cheng M, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam J, Terracciano R, Thundat T, Ferrari M. Nanotechnologies for biomolecular detection and medical diagnostics. Cur Opin Chem Biol. 2006;10(1):11–9. doi:10.1016/j.cbpa.2006.01.006.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Vice-Chancellor in Research and Technology Affairs, Golestan University of Medical Sciences. The Iran Nanotechnology Initiative (INI) also supported partially this project. The authors thank Fatemeh Ghaffarifar, Fatemeh Mesgarian, Sareh Zhand, and Mohammad Shariati for their help in the laboratory experiments.

Author Contributions

P. Gill conceived and designed the experiments. A. Niazi and H. Nikbakht performed the experiments. P. Gill and O-N Jorjani analyzed the data. O-N. Jorjani and P. Gill contributed reagents/materials/analysis tools. A. Niazi and P. Gill wrote the paper.

Conflict of Interest

The authors declare that they have no conflict of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oghol-Niaz Jorjani or Pooria Gill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niazi, A., Jorjani, ON., Nikbakht, H. et al. A Nanodiagnostic Colorimetric Assay for 18S rRNA of Leishmania Pathogens using Nucleic Acid Sequence-Based Amplification and Gold Nanorods. Mol Diagn Ther 17, 363–370 (2013). https://doi.org/10.1007/s40291-013-0044-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0044-5

Keywords

Navigation