Skip to main content

Advertisement

Log in

Novel Early Phase Clinical Trial Design in Oncology

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

The development of investigational medicinal products from pre-clinical package to product launch is a process that may be beset by pitfalls and expensive failures. The focus of this review is to provide an overview of how the conventional design of early phase oncology clinical trials has been modified with the advent of molecular profiling into treatment paradigms. We identify classical and alternative trial endpoints in an era of molecularly targeted agents and immunotherapy, and consider how personalised medicine has impacted on clinical trial design with reference to basket, umbrella and multi-arm expansion cohorts. Finally, we assess the impact of agile, adaptive and ‘intelligent’ trial design for patients, clinicians and trial centres, and how these challenges may be overcome to accelerate the approval of novel drugs for patient benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

IMP:

Investigational medicinal product

IT:

Immunotherapy

MTA:

Molecularly targeted agent

MTD:

Maximum tolerated dose

OBD:

Optimal biological dose

References

  1. European Medicines Agency. Guidelines on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. 2017. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/07/WC500232186.pdf. Accessed 15 Aug 2017.

  2. Food and Drug Administration. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. 2005. https://www.fda.gov/ohrms/dockets/98fr/02d-0492-gdl0002.pdf. Accessed 15 Aug 2017.

  3. European Medicines Agency: Committee for Medicinal Products for Human Use (CHMP). Guideline on strategies to identify and mitigate risks for first-in-human clinical trials with investigational medicinal products. 2007. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002988.pdf. Accessed 15 Aug 2017.

  4. Hansen AR, et al. Choice of starting dose for biopharmaceuticals in first-in-human Phase I cancer clinical trials. Oncologist. 2015;20(6):653–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. European Medicines Agency. ICH guideline M3(R2) on non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals. 2009. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002720.pdf. Accessed 15 Aug 2017.

  6. Wong KM, Capasso A, Eckhardt SG. The changing landscape of phase I trials in oncology. Nat Rev Clin Oncol. 2016;13(2):106–17.

    Article  CAS  PubMed  Google Scholar 

  7. National Cancer Institute. NCI common terminology criteria for adverse events (CTCAE) v.4 data files. 2017. https://evs.nci.nih.gov/ftp1/CTCAE/About.html. Accessed 15 May 2017.

  8. Storer BE. Design and analysis of phase I clinical trials. Biometrics. 1989;45(3):925–37.

    Article  CAS  PubMed  Google Scholar 

  9. MRC Hubs for Trials Methodology Research. A qucik guide why not to use A + B designs. 2016. http://methodologyhubs.mrc.ac.uk/files/6814/6253/2385/A_quick_guide_why_not_to_use_AB_designs.pdf. Accessed 15 Aug 2017.

  10. Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. Biometrics. 2004;60(3):684–93.

    Article  PubMed  Google Scholar 

  11. Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat Med. 1998;17(10):1103–20.

    Article  CAS  PubMed  Google Scholar 

  12. Tighiouart M, Rogatko A. Dose finding with escalation with overdose contorl (EWOC) in cancer clinical trials. Stat Sci. 2010;25(2):217–26.

    Article  Google Scholar 

  13. Ji Y, Wang SJ. Modified toxicity probability interval design: a safer and more reliable method than the 3 + 3 design for practical phase I trials. J Clin Oncol. 2013;31(14):1785–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Collins JM, Grieshaber CK, Chabner BA. Pharmacologically guided phase I clinical trials based upon preclinical drug development. J Natl Cancer Inst. 1990;82(16):1321–6.

    Article  CAS  PubMed  Google Scholar 

  15. Le Tourneau C, et al. Efficiency of new dose escalation designs in dose-finding phase I trials of molecularly targeted agents. PLoS One. 2012;7(12):e51039.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harrington D, Parmigiani G. I-SPY 2—a glimpse of the future of Phase 2 drug development? N Engl J Med. 2016;375(1):7–9.

    Article  PubMed  Google Scholar 

  17. Cook N, et al. Early phase clinical trials to identify optimal dosing and safety. Mol Oncol. 2015;9(5):997–1007.

    Article  CAS  PubMed  Google Scholar 

  18. Ang JE, Kaye S, Banerji U. Tissue-based approaches to study pharmacodynamic endpoints in early phase oncology clinical trials. Curr Drug Targets. 2012;13(12):1525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. they are data. Radiology. 2016;278(2):563–77.

    Article  PubMed  Google Scholar 

  20. Krebs MG, et al. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11(3):129–44.

    Article  CAS  PubMed  Google Scholar 

  21. Frenel JS, et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clin Cancer Res. 2015;21(20):4586–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murtaza M, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497(7447):108–12.

    Article  CAS  PubMed  Google Scholar 

  23. Reck M, et al. ctDNA determination of EGFR mutation status in European and Japanese patients with advanced NSCLC: the ASSESS study. J Thorac Oncol. 2016;11(10):1682–9.

    Article  PubMed  Google Scholar 

  24. Jardim DL, et al. Predictive value of phase I trials for safety in later trials and final approved dose: analysis of 61 approved cancer drugs. Clin Cancer Res. 2014;20(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  25. Postel-Vinay S, et al. Towards new methods for the determination of dose limiting toxicities and the assessment of the recommended dose for further studies of molecularly targeted agents—dose-limiting toxicity and toxicity assessment recommendation group for early trials of targeted therapies, an European Organisation for Research and Treatment of Cancer-led study. Eur J Cancer. 2014;50(12):2040–9.

    Article  PubMed  Google Scholar 

  26. Hamid O, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Von Hoff DD, et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol. 2010;28(33):4877–83.

    Article  Google Scholar 

  28. Hyman DM, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McNeil, C. NCI-MATCH launch highlights new trial design in precision-medicine era. J Natl Cancer Inst, 2015. 107(7).

  30. Herbst RS, et al. Lung master protocol (Lung-MAP)—a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin Cancer Res. 2015;21(7):1514–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rugo HS, et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med. 2016;375(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park JW, et al. Adaptive randomization of neratinib in early breast cancer. N Engl J Med. 2016;375(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Tourneau C, et al. The spectrum of clinical trials aiming at personalizing medicine. Chin Clin Oncol. 2014;3(2):13.

    PubMed  Google Scholar 

  34. Le Tourneau, C., et al., Treatment algorithms based on tumor molecular profiling: the essence of precision medicine trials. J Natl Cancer Inst, 2016. 108(4).

  35. Rodon J, et al. Challenges in initiating and conducting personalized cancer therapy trials: perspectives from WINTHER, a Worldwide Innovative Network (WIN) Consortium trial. Ann Oncol. 2015;26(8):1791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. American Association for Cancer Research. Project GENIE goes public. Cancer Discov. 2017;7(2):118.

    Google Scholar 

  37. Saad ED, et al. Precision medicine needs randomized clinical trials. Nat Rev Clin Oncol. 2017;14(5):317–23.

    Article  PubMed  Google Scholar 

  38. Sherman RE, et al. Expediting drug development–the FDA’s new “breakthrough therapy” designation. N Engl J Med. 2013;369(20):1877–80.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, J.C., et al., Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study Phase II extension component. J Clin Oncol. 2017: JCO2016703223.

  40. Goss G, et al. Osimertinib for pretreated EGFR Thr790 Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016;17(12):1643–52.

    Article  CAS  PubMed  Google Scholar 

  41. Manji A, et al. Evolution of clinical trial design in early drug development: systematic review of expansion cohort use in single-agent phase I cancer trials. J Clin Oncol. 2013;31(33):4260–7.

    Article  CAS  PubMed  Google Scholar 

  42. Joosse SA, Pantel K. Tumor-educated platelets as liquid biopsy in cancer patients. Cancer Cell. 2015;28(5):552–4.

    Article  CAS  PubMed  Google Scholar 

  43. Girotti MR, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27(1):85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ou SH, et al. ROS1 as a ‘druggable’ receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway. Expert Rev Anticancer Ther. 2012;12(4):447–56.

    Article  CAS  PubMed  Google Scholar 

  45. Shaw AT, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Burrell RA, et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338–45.

    Article  CAS  PubMed  Google Scholar 

  47. Piotrowska Z, et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 2015;5(7):713–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia-Murillas I, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7(302):302ra133.

    Article  PubMed  Google Scholar 

  49. Carter L, et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med. 2017;23(1):114–9.

    Article  CAS  PubMed  Google Scholar 

  50. Gao S, et al. Applications of RNA interference high-throughput screening technology in cancer biology and virology. Protein Cell. 2014;5(11):805–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Day D, Siu LL. Approaches to modernize the combination drug development paradigm. Genome Med. 2016;8(1):115.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gao H, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318–25.

    Article  CAS  PubMed  Google Scholar 

  53. Mathews Griner LA, et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA. 2014;111(6):2349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Riviere MK, et al. Designs of drug-combination phase I trials in oncology: a systematic review of the literature. Ann Oncol. 2015;26(4):669–74.

    Article  PubMed  Google Scholar 

  55. Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012;30(7):679–92.

    Article  CAS  PubMed  Google Scholar 

  56. Blomme EA, Will Y. Toxicology strategies for drug discovery: present and future. Chem Res Toxicol. 2016;29(4):473–504.

    Article  CAS  PubMed  Google Scholar 

  57. Bedard PL, et al. A phase Ib dose-escalation study of the oral pan-PI3 K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors. Clin Cancer Res. 2015;21(4):730–8.

    Article  CAS  PubMed  Google Scholar 

  58. Reardon DA, et al. A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma. Clin Cancer Res. 2013;19(4):900–8.

    Article  CAS  PubMed  Google Scholar 

  59. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  Google Scholar 

  60. Fojo T, Mailankody S, Lo A. Unintended consequences of expensive cancer therapeutics-the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley Lecture. JAMA Otolaryngol Head Neck Surg. 2014;140(12):1225–36.

    Article  PubMed  Google Scholar 

  61. Bennouna J, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. 2013;14(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  62. Ellis LM, et al. American Society of Clinical Oncology perspective: raising the bar for clinical trials by defining clinically meaningful outcomes. J Clin Oncol. 2014;32(12):1277–80.

    Article  PubMed  Google Scholar 

  63. Brose MS, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62(23):6997–7000.

    CAS  PubMed  Google Scholar 

  64. McDermott DF, et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J Clin Oncol. 2008;26(13):2178–85.

    Article  CAS  PubMed  Google Scholar 

  65. Flaherty KT, et al. A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res. 2008;14(15):4836–42.

    Article  CAS  PubMed  Google Scholar 

  66. Eisen T, et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95(5):581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Margolin KA, et al. Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clin Cancer Res. 2012;18(4):1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Corcoran RB, et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J Clin Oncol. 2015;33(34):4023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kopetz S, et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33(34):4032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Herbst RS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jilaveanu LB, et al. PD-L1 expression in clear cell renal cell carcinoma: an analysis of nephrectomy and sites of metastases. J Cancer. 2014;5(3):166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kwak EL, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hay M, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  75. DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25(2):209–16.

    Article  PubMed  Google Scholar 

  76. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3.

    Article  CAS  PubMed  Google Scholar 

  77. O’Shaughnessy J, et al. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2014;32(34):3840–7.

    Article  PubMed  Google Scholar 

  78. Workman P, et al. Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst. 2006;98(9):580–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Dean.

Ethics declarations

Funding

No funding assistance was provided for the work contained within this review article.

Conflict of interest

Drs O’Brien, Carter and Cook have no disclosures to declare. Dr Emma Dean has subsequently taken up employment with AstraZeneca. The Christie NHS Foundation Trust receives funding from the National Institute for Health Research and Experimental Cancer Medicine Centre, Grant award C1467/A15578.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, C., Carter, L., Cook, N. et al. Novel Early Phase Clinical Trial Design in Oncology. Pharm Med 31, 297–307 (2017). https://doi.org/10.1007/s40290-017-0205-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-017-0205-7

Profiles

  1. Louise Carter
  2. Natalie Cook