Skip to main content

Advertisement

Log in

Head Impact Research Using Inertial Sensors in Sport: A Systematic Review of Methods, Demographics, and Factors Contributing to Exposure

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The number and magnitude of head impacts have been assessed in-vivo using inertial sensors to characterise the exposure in various sports and to help understand their potential relationship to concussion.

Objectives

We aimed to provide a comprehensive review of the field of in-vivo sensor acceleration event research in sports via the summary of data collection and processing methods, population demographics and factors contributing to an athlete’s exposure to sensor acceleration events.

Methods

The systematic search resulted in 185 cohort or cross-sectional studies that recorded sensor acceleration events in-vivo during sport participation.

Results

Approximately 5800 participants were studied in 20 sports using 18 devices that included instrumented helmets, headbands, skin patches, mouthguards and earplugs. Female and youth participants were under-represented and ambiguous results were reported for these populations. The number and magnitude of sensor acceleration events were affected by a variety of contributing factors, suggesting sport-specific analyses are needed. For collision sports, being male, being older, and playing in a game (as opposed to a practice), all contributed to being exposed to more sensor acceleration events.

Discussion

Several issues were identified across the various sensor technologies, and efforts should focus on harmonising research methods and improving the accuracy of kinematic measurements and impact classification. While the research is more mature for high-school and collegiate male American football players, it is still in its early stages in many other sports and for female and youth populations. The information reported in the summarised work has improved our understanding of the exposure to sport-related head impacts and has enabled the development of prevention strategies, such as rule changes.

Conclusions

Head impact research can help improve our understanding of the acute and chronic effects of head impacts on neurological impairments and brain injury. The field is still growing in many sports, but technological improvements and standardisation of processes are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Noble JM, Hesdorffer DC. Sport-related concussions: a review of epidemiology, challenges in diagnosis, and potential risk factors. Neuropsych Rev. 2013;23(4):273–84. https://doi.org/10.1007/s11065-013-9239-0.

    Article  Google Scholar 

  2. Daneshvar DH, Nowinski CJ, McKee AC, Cantu RC. The epidemiology of sport-related concussion. Clin Sports Med. 2011;30(1):1–17. https://doi.org/10.1016/j.csm.2010.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fuller CW, Taylor A, Kemp SPT, Raftery M. Rugby World Cup 2015: World Rugby injury surveillance study. Br J Sports Med. 2016;51:51–7. https://doi.org/10.1136/bjsports-2016-096275.

    Article  PubMed  Google Scholar 

  4. Lincoln AE, Caswell SV, Almquist JL, Dunn RE, Norris JB, Hinton RY. Trends in concussion incidence in high school sports: a prospective 11-year study. Am J Sports Med. 2011;39(5):958–63. https://doi.org/10.1177/0363546510392326.

    Article  PubMed  Google Scholar 

  5. Pfister T, Pfister K, Hagel B, Ghali WA, Ronksley PE. The incidence of concussion in youth sports: a systematic review and meta-analysis. Br J Sports Med. 2015. https://doi.org/10.1136/bjsports-2015-094978.

    Article  PubMed  Google Scholar 

  6. Koh JO, Cassidy JD, Watkinson EJ. Incidence of concussion in contact sports: a systematic review of the evidence. Brain Inj. 2003;17(10):901–17. https://doi.org/10.1080/0269905031000088869.

    Article  PubMed  Google Scholar 

  7. McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S, et al. Consensus statement on concussion in sport: the 5th International Conference on Concussion in Sport held in Berlin, October 2016. Br J Sports Med. 2017. doi: https://doi.org/10.1136/bjsports-2017-097699.

  8. McCrea M, Guskiewicz K, Randolph C, Barr WB, Hammeke TA, Marshall SW, et al. Incidence, clinical course, and predictors of prolonged recovery time following sport-related concussion in high school and college athletes. J Int Neuropsychol Soc. 2013. https://doi.org/10.1017/s1355617712000872.

    Article  PubMed  Google Scholar 

  9. Polinder S, Cnossen MC, Real RGL, Covic A, Gorbunova A, Voormolen DC, et al. A multidimensional approach to post-concussion symptoms in mild traumatic brain injury. Front Neurol. 2018. https://doi.org/10.3389/fneur.2018.01113.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hume PA, Theadom A, Lewis GN, Quarrie KL, Brown SR, Hill R, et al. A comparison of cognitive function in former rugby union players compared with former non-contact-sport players and the impact of concussion history. Sports Med. 2016;47(6):1209–20. https://doi.org/10.1007/s40279-016-0608-8.

    Article  Google Scholar 

  11. Huber BR, Alosco ML, Stein TD, McKee AC. Potential long-term consequences of concussive and subconcussive injury. Phys Med Rehabil Clin N Am. 2016;27(2):503–11. https://doi.org/10.1016/j.pmr.2015.12.007.

    Article  PubMed  Google Scholar 

  12. Iverson GL, Gaetz M, Lovell MR, Collins MW. Cumulative effects of concussion in amateur athletes. Brain Inj. 2004;18(5):433–43. https://doi.org/10.1080/02699050310001617352.

    Article  PubMed  Google Scholar 

  13. Decq P, Gault N, Blandeau M, Kerdraon T, Berkal M, ElHelou A, et al. Long-term consequences of recurrent sports concussion. Acta Neurochir. 2016;158(2):289–300. https://doi.org/10.1007/s00701-015-2681-4.

    Article  PubMed  Google Scholar 

  14. Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30(1):179–88. https://doi.org/10.1016/j.csm.2010.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Broglio SP, Eckner JT, Paulson HL, Kutcher JS. Cognitive decline and aging: the role of concussive and subconcussive impacts. Exerc Sport Sci Rev. 2012;40(3):138.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McMillan TM, McSkimming P, Wainman-Lefley J, Maclean LM, Hay J, McConnachie A, et al. Long-term health outcomes after exposure to repeated concussion in elite level: rugby union players. J Neurol Neurosurg Psychiatry. 2016. https://doi.org/10.1136/jnnp-2016-314279.

    Article  PubMed  Google Scholar 

  17. Beckwith JG, Greenwald RM, Chu JJ, Crisco JJ, Rowson S, Duma SM, et al. Timing of concussion diagnosis is related to head impact exposure prior to injury. Med Sci Sports Exerc. 2013;45(4):747–54. https://doi.org/10.1249/MSS.0b013e3182793067.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med. 2004;14(1):13–7.

    Article  PubMed  Google Scholar 

  19. Gennarelli T, Segawa H, Wald U, Czernicki Z, Marsh K, Thompson C. Physiological response to angular acceleration of the head. Head Injury. 1982;1982:129–40.

    Google Scholar 

  20. Holbourn AHS. Mechanics of head injuries. Lancet. 1943;242(6267):438–41. https://doi.org/10.1016/S0140-6736(00)87453-X.

    Article  Google Scholar 

  21. King AI, Yang KH, Zhang L, Hardy W, Viano DC, editors. Is head injury caused by linear or angular acceleration. International IRCOBI conference on the biomechanics of injury, vol. 12; 2003.

  22. Post A, Hoshizaki TB. Mechanisms of brain impact injuries and their prediction: a review. Trauma. 2012;14(4):327–49. https://doi.org/10.1177/1460408612446573.

    Article  Google Scholar 

  23. Guskiewicz KM, Mihalik JP, Shankar V, Marshall SW, Crowell DH, Oliaro SM, et al. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery. 2007;61(6):1244–53.

    Article  PubMed  Google Scholar 

  24. Moon DW, Beedle CW, Kovacic CR. Peak head acceleration of athletes during competition: football. Med Sci Sports. 1971;3(1):44–50.

    CAS  PubMed  Google Scholar 

  25. Duma SM, Manoogian SJ, Bussone WR, Brolinson PG, Goforth MW, Donnenwerth JJ, et al. Analysis of real-time head accelerations in collegiate football players. Clin J Sport Med. 2005;15(1):3–8.

    Article  PubMed  Google Scholar 

  26. McCuen E, Svaldi D, Breedlove K, Kraz N, Cummiskey B, Breedlove EL, et al. Collegiate women’s soccer players suffer greater cumulative head impacts than their high school counterparts. J Biomech. 2015;48(13):3720–3. https://doi.org/10.1016/j.jbiomech.2015.08.003.

    Article  PubMed  Google Scholar 

  27. Bartsch A, Samorezov S, Benzel E, Miele V, Brett D. Validation of an “Intelligent Mouthguard” single event head impact dosimeter. Stapp Car Crash J. 2014;58:1–27.

    PubMed  Google Scholar 

  28. Mihalik JP, Guskiewicz KM, Jeffries JA, Greenwald RM, Marshall SW. Characteristics of head impacts sustained by youth ice hockey players. Proc Inst Mech Eng Part P J Sports Eng Technol. 2008;222(1):45–52. https://doi.org/10.1243/17543371JSET4.

    Article  Google Scholar 

  29. Stojsih S, Boitano M, Wilhelm M, Bir C. A prospective study of punch biomechanics and cognitive function for amateur boxers. Br J Sports Med. 2008;44(10):725–30. https://doi.org/10.1136/bjsm.2008.052845.

    Article  PubMed  Google Scholar 

  30. Hanlon EM, Bir CA. Real-time head acceleration measurement in girls’ youth soccer. Med Sci Sports Exerc. 2012;44(6):1102–8. https://doi.org/10.1249/MSS.0b013e3182444d7d.

    Article  PubMed  Google Scholar 

  31. Crisco JJ, Wilcox BJ, Beckwith JG, Chu JJ, Duhaime AC, Rowson S, et al. Head impact exposure in collegiate football players. J Biomech. 2011;44(15):2673–8. https://doi.org/10.1016/j.jbiomech.2011.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Beckwith JG, Greenwald RM, Chu JJ, Crisco JJ, Rowson S, Duma SM, et al. Head impact exposure sustained by football players on days of diagnosed concussion. Med Sci Sports Exerc. 2013;45(4):737–46. https://doi.org/10.1249/MSS.0b013e3182792ed7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brennan JH, Mitra B, Synnot A, McKenzie J, Willmott C, McIntosh AS, et al. Accelerometers for the assessment of concussion in male athletes: a systematic review and meta-analysis. Sports Med. 2016;47(3):469–78.

    Article  Google Scholar 

  34. Versace J. A review of the Severity Index. Coronado: SAE International; 1971.

    Google Scholar 

  35. Greenwald RM, Gwin JT, Chu JJ, Crisco JJ. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery. 2008;62(4):789–98. https://doi.org/10.1227/01.neu.0000318162.67472.ad.

    Article  PubMed  Google Scholar 

  36. Eckner JT, Sabin M, Kutcher JS, Broglio SP. No evidence for a cumulative impact effect on concussion injury threshold. J Neurotrauma. 2011;28(10):2079–90. https://doi.org/10.1089/neu.2011.1910.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pellman EJ, Viano DC, Tucker AM, Casson IR. Concussion in professional football: Location and direction of helmet impacts: Part 2. Neurosurgery. 2003;53(6):1328–41.

    Article  PubMed  Google Scholar 

  38. Takhounts EG, Craig MJ, Moorhouse K, McFadden J, Hasija V. Development of Brain Injury Criteria (Br IC). Stapp Car Crash J. 2013;57:243–66.

    PubMed  Google Scholar 

  39. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982;12(6):564–74.

    Article  CAS  PubMed  Google Scholar 

  40. Patton DA. A review of instrumented equipment to investigate head impacts in sport. Appl Bionics Biomech. 2016;2016:7049743. https://doi.org/10.1155/2016/7049743.

    Article  PubMed  PubMed Central  Google Scholar 

  41. O’Connor KL, Rowson S, Duma SM, Broglio S. Head-impact–measurement devices: a systematic review. J Athl Train. 2017;52(3):206–27. https://doi.org/10.4085/1062-6050.52.2.05.

    Article  PubMed  PubMed Central  Google Scholar 

  42. King D, Hume P, Gissane C, Brughelli M, Clark T. The influence of head impact threshold for reporting data in contact and collision sports: systematic review and original data analysis. Sports Med. 2016;46(2):151–69. https://doi.org/10.1007/s40279-015-0423-7.

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen JVK, Brennan JH, Mitra B, Willmott C. Frequency and magnitude of game-related head impacts in male contact sports athletes: a systematic review and meta-analysis. Sports Med. 2019. https://doi.org/10.1007/s40279-019-01135-4.

    Article  PubMed  Google Scholar 

  44. Fanton M, Wu L, Camarillo D. Comment on “Frequency and magnitude of game-related head impacts in male contact sports athletes: a systematic review and meta-analysis.” Sports Med. 2020;50(4):841–2. https://doi.org/10.1007/s40279-019-01230-6.

    Article  PubMed  Google Scholar 

  45. Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, Putukian M, et al. Video analysis verification of head impact events measured by wearable sensors. Am J Sports Med. 2017;45(10):2379–87. https://doi.org/10.1177/0363546517706703.

    Article  PubMed  Google Scholar 

  46. Press JN, Rowson S. Quantifying head impact exposure in collegiate women’s soccer. Clin J Sport Med. 2017;27(2):104–10.

    Article  PubMed  Google Scholar 

  47. Naunheim RS, Standeven J, Richter C, Lewis LM. Comparison of impact data in hockey, football, and soccer. J Trauma Inj Infect Crit Care. 2000;48(5):938–41.

    Article  CAS  Google Scholar 

  48. Self BP, Karins C, Knox T, editors. Head accelerations during impact events. Engineering of Sport, vol. 2. International Sports Engineering Association; 2004. p. 52–8.

  49. Rich AM, Filben TM, Miller LE, Tomblin BT, Van Gorkom AR, Hurst MA, et al. Development, validation and pilot field deployment of a custom mouthpiece for head impact measurement. Ann Biomed Eng. 2019;47(10):2109–21. https://doi.org/10.1007/s10439-019-02313-1.

    Article  PubMed  Google Scholar 

  50. Mathers CH, Mihalik JP, Andrews DM, Watkins SD, Puzzuto P, Kiecke DD. Using in-ear accelerometers to measure head acceleration in rough stock riders: a pilot study. ATSHC. 2012;4(4):158–64.

    Google Scholar 

  51. Willmott C, McIntosh AS, Howard T, Mitra B, Dimech-Betancourt B, Donovan J, et al. SCAT3 changes from baseline and associations with X2 Patch measured head acceleration in amateur Australian football players. J Sci Med Sport. 2017;21(5):442–6. https://doi.org/10.1016/j.jsams.2017.09.591.

    Article  PubMed  Google Scholar 

  52. Brolinson PG, Manoogian S, McNeely D, Goforth M, Greenwald R, Duma S. Analysis of linear head accelerations from collegiate football impacts. Curr Sports Med Rep. 2006;5(1):23–38.

    Article  PubMed  Google Scholar 

  53. Funk JR, Duma SM, Manoogian SJ, Rowson S. Biomechanical risk estimates for mild traumatic brain injury. Ann Proc Assoc Adv Automot Med. 2007;51:343–61.

    CAS  Google Scholar 

  54. Duma SM, Rowson S, editors. Every Newton Hertz: a macro to micro approach to investigating brain injury. Minneapolis: IEEE Engineering in Medicine and Biology Society; 2009.

    Google Scholar 

  55. Funk JR, Rowson S, Daniel RW, Duma SM. Validation of concussion risk curves for collegiate football players derived from HITS data. Ann Biomed Eng. 2012;40(1):79–89. https://doi.org/10.1007/s10439-011-0400-8.

    Article  PubMed  Google Scholar 

  56. Mihalik JP, Bell DR, Marshall SW, Guskiewicz KM. Measurement of head impacts in collegiate football players: an investigation of positional and event-type differences. Neurosurgery. 2007;61(6):1229–35. https://doi.org/10.1227/01.neu.0000306101.83882.c8.

    Article  PubMed  Google Scholar 

  57. Liao S, Lynall RC, Mihalik JP. The effect of head impact location on day of diagnosed concussion in college football. Med Sci Sports Exerc. 2016;48(7):1239–43. https://doi.org/10.1249/mss.0000000000000896.

    Article  PubMed  Google Scholar 

  58. Mihalik JP, Lynall RC, Wasserman EB, Guskiewicz KM, Marshall SW. Evaluating the “Threshold Theory”: can head impact indicators help? Med Sci Sports Exerc. 2017;49(2):247–53. https://doi.org/10.1249/mss.0000000000001089.

    Article  PubMed  Google Scholar 

  59. O’Connor KL, Peeters T, Szymanski S, Broglio SP. Individual impact magnitude vs. cumulative magnitude for estimating concussion odds. Ann Biomed Eng. 2017;45(8):1985–92. https://doi.org/10.1007/s10439-017-1843-3.

    Article  PubMed  Google Scholar 

  60. Broglio SP, Schnebel B, Sosnoff JJ, Shin S, Fend X, He X, et al. Biomechanical properties of concussions in high school football. Med Sci Sports Exerc. 2010;42(11):2064–71. https://doi.org/10.1249/MSS.0b013e3181dd9156.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Broglio SP, Eckner JT, Surma T, Kutcher JS. Post-concussion cognitive declines and symptomatology are not related to concussion biomechanics in high school football players. J Neurotrauma. 2011;28(10):2061–8. https://doi.org/10.1089/neu.2011.1905.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Broglio SP, Lapointe AP, O’Connor KL, McCrea M. Head impact density: a model to explain the elusive concussion threshold. J Neurotrauma. 2017;34(19):2675–83. https://doi.org/10.1089/neu.2016.4767.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Breedlove EL, Robinson M, Talavage TM, Morigaki KE, Yoruk U, O’Keefe K, et al. Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football. J Biomech. 2012;45(7):1265–72. https://doi.org/10.1016/j.jbiomech.2012.01.034.

    Article  PubMed  Google Scholar 

  64. Talavage TM, Nauman EA, Breedlove EL, Yoruk U, Dye AE, Morigaki KE, et al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. 2014;31(4):327–38.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rowson S, Duma SM. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration. Ann Biomed Eng. 2013;41(5):873–82. https://doi.org/10.1007/s10439-012-0731-0.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Duhaime AC, Beckwith JG, Maerlender AC, McAllister TW, Crisco JJ, Duma SM, et al. Spectrum of acute clinical characteristics of diagnosed concussions in college athletes wearing instrumented helmets: clinical article. J Neurosurg. 2012;117(6):1092–9. https://doi.org/10.3171/2012.8.jns112298.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schmidt JD, Guskiewicz KM, Blackburn JT, Mihalik JP, Siegmund GP, Marshall SW. The influence of cervical muscle characteristics on head impact biomechanics in football. Am J Sports Med. 2014;42(9):2056–66. https://doi.org/10.1177/0363546514536685.

    Article  PubMed  Google Scholar 

  68. Beckwith JG, Zhao W, Ji S, Ajamil AG, Bolander RP, Chu JJ, et al. Estimated brain tissue response following impacts associated with and without diagnosed concussion. Ann Biomed Eng. 2018. https://doi.org/10.1007/s10439-018-1999-5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schnebel B, Gwin JT, Anderson S, Gatlin R. In vivo study of head impacts in football: a comparison of National Collegiate Athletic Association Division I versus high school impacts. Neurosurgery. 2007;60(3):490–6. https://doi.org/10.1227/01.neu.0000249286.92255.7f.

    Article  PubMed  Google Scholar 

  70. McAllister TW, Ford JC, Ji S, Beckwith JG, Flashman LA, Paulsen K, et al. Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann Biomed Eng. 2012;40(1):127–40. https://doi.org/10.1007/s10439-011-0402-6.

    Article  PubMed  Google Scholar 

  71. Rowson S, Duma SM, Beckwith JG, Chu JJ, Greenwald RM, Crisco JJ, et al. Rotational head kinematics in football impacts: an injury risk function for concussion. Ann Biomed Eng. 2012;40(1):1–13. https://doi.org/10.1007/s10439-011-0392-4.

    Article  PubMed  Google Scholar 

  72. Rowson S, Duma SM, Stemper BD, Shah AS, Mihalik JP, Harezlak J, et al. Correlation of concussion symptom profile with head impact biomechanics: a case for individual-specific injury tolerance. J Neurotrauma. 2017;35(4):681–90. https://doi.org/10.1089/neu.2017.5169.

    Article  Google Scholar 

  73. Stemper BD, Shah AS, Harezlak J, Rowson S, Mihalik JP, Duma SM, et al. Comparison of head impact exposure between concussed football athletes and matched controls: evidence for a possible second mechanism of sport-related concussion. Ann Biomed Eng. 2019;47(10):2057–72.

    Article  PubMed  Google Scholar 

  74. Young TJ, Daniel RW, Rowson S, Duma SM. Head impact exposure in youth football: elementary school ages 7–8 years and the effect of returning players. Clin J Sport Med. 2014;24(5):416–21. https://doi.org/10.1097/jsm.0000000000000055.

    Article  PubMed  Google Scholar 

  75. Campolettano ET, Rowson S, Duma SM. Drill-specific head impact exposure in youth football practice. J Neurosurg Pediatr. 2016;18(5):536–41. https://doi.org/10.3171/2016.5.peds1696.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Campolettano ET, Gellner RA, Rowson S. High-magnitude head impact exposure in youth football. J Neurosurg Pediatr. 2017;20(6):604–12. https://doi.org/10.3171/2017.5.peds17185.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Campolettano ET, Brolinson G, Rowson S. Postural control and head impact exposure in youth football players: comparison of the Balance Error Scoring System and a force plate protocol. J Appl Biomech. 2017;34(2):127–33. https://doi.org/10.1123/jab.2017-0066.

    Article  Google Scholar 

  78. Urban JE, Flood WC, Zimmerman BJ, Kelley ME, Espeland MA, McNamara L, et al. Evaluation of head impact exposure measured from youth football game plays. J Neurosurg Pediatr. 2019;24(2):190–9. https://doi.org/10.3171/2019.2.PEDS18558.

    Article  PubMed  Google Scholar 

  79. Broglio SP, Martini D, Kasper L, Eckner JT, Kutcher JS. Estimation of head impact exposure in high school football: implications for regulating contact practices. Am J Sports Med. 2013;41(12):2877–84. https://doi.org/10.1177/0363546513502458.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Broglio SP, Eckner JT, Martini D, Sosnoff JJ, Kutcher JS, Randolph C. Cumulative head impact burden in high school football. J Neurotrauma. 2011;28(10):2069–78. https://doi.org/10.1089/neu.2011.1825.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Broglio SP, Williams RM, O’Connor KL, Goldstick J. Football players’ head-impact exposure after limiting of full-contact practices. J Athl Train. 2016;51(7):511–8. https://doi.org/10.4085/1062-6050-51.7.04.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Alois J, Bellamkonda S, Campolettano ET, Gellner RA, Genemaras A, Beckwith JG, et al. Do American youth football players intentionally use their heads for high-magnitude impacts? Am J Sports Med. 2019;47(14):3498–504. https://doi.org/10.1177/0363546519882034.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Asken BM, Brooke ZS, Stevens TC, Silvestri PG, Graham MJ, Jaffee MS, et al. Drill-specific head impacts in collegiate football practice: implications for reducing “Friendly Fire” exposure. Ann Biomed Eng. 2018;47(10):2094–108. https://doi.org/10.1007/s10439-018-2088-5.

    Article  PubMed  Google Scholar 

  84. Bahrami N, Sharma D, Rosenthal S, Davenport EM, Urban JE, Wagner B, et al. Subconcussive head impact exposure and white matter tract changes over a single season of youth football. Radiology. 2016;281(3):919–26. https://doi.org/10.1148/radiol.2016160564.

    Article  PubMed  Google Scholar 

  85. Broglio SP, Sosnoff JJ, Shin S, He X, Alcaraz C, Zimmerman J. Head impacts during high school football: a biomechanical assessment. J Athl Train. 2009;44(4):342–9. https://doi.org/10.4085/1062-6050-44.4.342.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Campolettano ET, Gellner RA, Rowson S, editors. Relationship between impact velocity and resulting head accelerations during head impacts in youth football. In: Conference proceedings of the international research council on the biomechanics of injury (IRCOBI), vol. 2018; 2018. p. 326–33.

  87. Campolettano ET, Rowson S, Duma SM, Stemper B, Shah A, Harezlak J, et al. Factors affecting head impact exposure in college football practices: a multi-institutional study. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02309-x.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Campolettano ET, Gellner RA, Smith EP, Bellamkonda S, Tierney CT, Crisco JJ, et al. Development of a concussion risk function for a youth population using head linear and rotational acceleration. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02382-2.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chun IY, Mao X, Breedlove EL, Leverenz LJ, Nauman EA, Talavage TM. DTI detection of longitudinal WM abnormalities due to accumulated head impacts. Dev Neuropsychol. 2015;40(2):92–7. https://doi.org/10.1080/87565641.2015.1020945.

    Article  CAS  PubMed  Google Scholar 

  90. Cobb BR, Urban JE, Davenport EM, Rowson S, Duma SM, Maldjian JA, et al. Head impact exposure in youth football: elementary school ages 9–12 years and the effect of practice structure. Ann Biomed Eng. 2013;41(12):2463–73. https://doi.org/10.1007/s10439-013-0867-6.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Crisco JJ, Fiore R, Beckwith JG, Chu JJ, Brolinson PG, Duma S, et al. Frequency and location of head impact exposures in individual collegiate football players. J Athl Train. 2010;45(6):549–59. https://doi.org/10.4085/1062-6050-45.6.549.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Crisco JJ, Wilcox BJ, Machan JT, McAllister TW, Duhaime AC, Duma SM, et al. Magnitude of head impact exposures in individual collegiate football players. J Appl Biomech. 2012;28(2):174–83.

    Article  PubMed  Google Scholar 

  93. Daniel RW, Rowson S, Duma SM. Head impact exposure in youth football: middle school ages 12–14 years. J Biomech Eng. 2014;136(9): 094501. https://doi.org/10.1115/1.4027872.

    Article  PubMed  Google Scholar 

  94. Davenport EM, Whitlow CT, Urban JE, Espeland MA, Jung Y, Rosenbaum DA, et al. Abnormal white matter integrity related to head impact exposure in a season of high school varsity football. J Neurotrauma. 2014;31(19):1617–24. https://doi.org/10.1089/neu.2013.3233.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Davenport EM, Apkarian K, Whitlow CT, Urban JE, Jensen JH, Szuch E, et al. Abnormalities in diffusional kurtosis metrics related to head impact exposure in a season of high school varsity football. J Neurotrauma. 2016;33(23):2133–46. https://doi.org/10.1089/neu.2015.4267.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ford JM, Campbell KR, Ford CB, Boyd KE, Padua DA, Mihalik JP. Can functional movement assessment predict football head impact biomechanics? Med Sci Sports Exerc. 2017;50(6):1233–40. https://doi.org/10.1249/mss.0000000000001538.

    Article  Google Scholar 

  97. Gwin JT, Chu JJ, Diamond SG, Halstead PD, Crisco JJ, Greenwald RM. An investigation of the NOCSAE linear impactor test method based on in vivo measures of head impact acceleration in American Football. J Biomech Eng. 2010;132(1): 011006. https://doi.org/10.1115/1.4000249.

    Article  PubMed  Google Scholar 

  98. Gysland SM, Mihalik JP, Register-Mihalik JK, Trulock SC, Shields EW, Guskiewicz KM. The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players. Ann Biomed Eng. 2012;40(1):14–22. https://doi.org/10.1007/s10439-011-0421-3.

    Article  PubMed  Google Scholar 

  99. Harpham JA, Mihalik JP, Littleton AC, Frank BS, Guskiewicz KM. The effect of visual and sensory performance on head impact biomechanics in college football players. Ann Biomed Eng. 2014;42(1):1–10. https://doi.org/10.1007/s10439-013-0881-8.

    Article  PubMed  Google Scholar 

  100. Hirad AA, Bazarian JJ, Merchant-Borna K, Garcea FE, Heilbronner S, Paul D, et al. A common neural signature of brain injury in concussion and subconcussion. Sci Adv. 2019;5(8):eaau3460. https://doi.org/10.1126/sciadv.aau3460.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jang I, Chun IY, Brosch JR, Bari S, Zou Y, Cummiskey BR, et al. Every hit matters: White matter diffusivity changes in high school football athletes are correlated with repetitive head acceleration event exposure. Neuroimage Clin. 2019;24:1–16. https://doi.org/10.1016/j.nicl.2019.101930.

    Article  CAS  Google Scholar 

  102. Joseph JR, Swallow JS, Willsey K, Lapointe AP, Khalatbari S, Korley FK, et al. Elevated markers of brain injury as a result of clinically asymptomatic high-acceleration head impacts in high-school football athletes. J Neurosurg. 2018. https://doi.org/10.3171/2017.12.jns172386.

    Article  PubMed  Google Scholar 

  103. Joseph JR, Swallow JS, Willsey K, Almeida AA, Lorincz MT, Fraumann RK, et al. Pupillary changes after clinically asymptomatic high-acceleration head impacts in high school football athletes. J Neurosurg. 2019. https://doi.org/10.3171/2019.7.Jns191272.

    Article  PubMed  Google Scholar 

  104. Kelley ME, Urban JE, Miller LE, Jones DA, Espeland MA, Davenport EM, et al. Head impact exposure in youth football: comparing age- and weight-based levels of play. J Neurotrauma. 2017;34(11):1939–47. https://doi.org/10.1089/neu.2016.4812.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kelley ME, Kane JM, Espeland MA, Miller LE, Powers AK, Stitzel JD, et al. Head impact exposure measured in a single youth football team during practice drills. J Neurosurg Pediatr. 2017;20(5):489–97. https://doi.org/10.3171/2017.5.peds16627.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Martini D, Eckner J, Kutcher J, Broglio SP. Subconcussive head impact biomechanics: comparing differing offensive schemes. Med Sci Sports Exerc. 2013;45(4):755–61. https://doi.org/10.1249/MSS.0b013e3182798758.

    Article  PubMed  PubMed Central  Google Scholar 

  107. McCaffrey MA, Mihalik JP, Crowell DH, Shields EW, Guskiewicz KM. Measurement of head impacts in collegiate football players: clinical measures of concussion after high- and low-magnitude impacts. Neurosurgery. 2007;61(6):1236–43. https://doi.org/10.1227/01.neu.0000306102.91506.8b.

    Article  PubMed  Google Scholar 

  108. Merchant-Borna K, Asselin P, Narayan D, Abar B, Jones CM, Bazarian JJ. Novel method of weighting cumulative helmet impacts improves correlation with brain white matter changes after one football season of sub-concussive head blows. Ann Biomed Eng. 2016;44(12):3679–92. https://doi.org/10.1007/s10439-016-1680-9.

    Article  PubMed  Google Scholar 

  109. Mihalik JP, Sumrall AZ, Yeargin SW, Guskiewicz KM, King KB, Trulock SC, et al. Environmental and physiological factors affect football head impact biomechanics. Med Sci Sports Exerc. 2017;49(10):2093–101. https://doi.org/10.1249/mss.0000000000001325.

    Article  PubMed  Google Scholar 

  110. Munce TA, Dorman JC, Thompson PA, Valentine VD, Bergeron MF. Head impact exposure and neurologic function of youth football players. Med Sci Sports Exerc. 2015;47(8):1567–76. https://doi.org/10.1249/mss.0000000000000591.

    Article  PubMed  Google Scholar 

  111. Ocwieja KE, Mihalik JP, Marshall SW, Schmidt JD, Trulock SC, Guskiewicz KM. The effect of play type and collision closing distance on head impact biomechanics. Ann Biomed Eng. 2012;40(1):90–6. https://doi.org/10.1007/s10439-011-0401-7.

    Article  PubMed  Google Scholar 

  112. Rowson S, Duma SM, editors. Rotational acceleration and velocity associated with concussion in humans. In: ASME 2011 Summer Bioengineering Conference; 2011; Farmington (PA).

  113. Rowson S, Campolettano ET, Duma SM, Stemper B, Shah A, Harezlak J, et al. Accounting for variance in concussion tolerance between individuals: comparing head accelerations between concussed and physically matched control subjects. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02329-7.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schmidt JD, Guskiewicz KM, Mihalik JP, Blackburn JT, Siegmund GP, Marshall SW. Does visual performance influence head impact severity among high school football athletes? Clin J Sport Med. 2015;25(6):494–501. https://doi.org/10.1097/jsm.0000000000000143.

    Article  PubMed  Google Scholar 

  115. Schmidt JD, Guskiewicz KM, Mihalik JP, Blackburn JT, Siegmund GP, Marshall SW. Head impact magnitude in American high school football. Pediatrics. 2016;138(2).

  116. Schmidt JD, Phan TT, Courson RW, Reifsteck FI, Merritt ED, Brown CN. The influence of heavier football helmet faceguards on head impact location and severity. Clin J Sport Med. 2017;28(2):106–10. https://doi.org/10.1097/jsm.0000000000000437.

    Article  Google Scholar 

  117. Stemper BD, Shah AS, Wild A, Humm JR, Pintar FA, Broglio SP, et al., editors. Role of repetitive head impact exposure in the onset of concussion: evidence of a possible second mechanism of concussion for contact sports. In: Conference proceedings of the international research council on the biomechanics of injury (IRCOBI), vol. 2018; 2018. p. 334–5.

  118. Stemper BD, Shah AS, Harezlak J, Rowson S, Duma S, Mihalik JP, et al. Repetitive head impact exposure in college football following an NCAA rule change to eliminate two-a-day preseason practices: a study from the NCAA-DoD CARE Consortium. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02335-9.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Urban JE, Davenport EM, Golman AJ, Maldjian JA, Whitlow CT, Powers AK, et al. Head impact exposure in youth football: high school ages 14 to 18 years and cumulative impact analysis. Ann Biomed Eng. 2013;41(12):2474–87. https://doi.org/10.1007/s10439-013-0861-z.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Urban JE, Kelley ME, Espeland MA, Davenport EM, Whitlow CT, Powers AK, et al. In-season variations in head impact exposure among youth football players. J Neurotrauma. 2018. https://doi.org/10.1089/neu.2018.5699.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bazarian JJ, Zhu T, Zhong J, Janigro D, Rozen E, Roberts A, et al. Persistent, long-term cerebral white matter changes after sports-related repetitive head impacts. PLoS ONE. 2014;9(4): e94734. https://doi.org/10.1371/journal.pone.0094734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McAllister TW, Flashman LA, Maerlender A, Greenwald RM, Beckwith JG, Tosteson TD, et al. Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes. Neurology. 2012;78(22):1777–84. https://doi.org/10.1212/WNL.0b013e3182582fe7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McAllister TW, Ford JC, Flashman LA, Maerlender A, Greenwald RM, Beckwith JG, et al. Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes. Neurology. 2014;82(1):63–9. https://doi.org/10.1212/01.wnl.0000438220.16190.42.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Buckley TA, Oldham JR, Watson DJ, Murray NG, Munkasy BA, Evans KM. Repetitive head impacts in football do not impair dynamic postural control. Med Sci Sports Exerc. 2019;51(1):132–40. https://doi.org/10.1249/MSS.0000000000001761.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Broglio SP, Williams R, Rettmann A, Moore B, Eckner JT, Meehan S. No seasonal changes in cognitive functioning among high school football athletes: implementation of a novel electrophysiological measure and standard clinical measures. Clin J Sport Med. 2017;28(2):130–8. https://doi.org/10.1097/jsm.0000000000000420.

    Article  Google Scholar 

  126. Caccese JB, Best C, Lamond LC, DiFabio M, Kaminski TW, Watson D, et al. Effects of repetitive head impacts on a concussion assessment battery. Med Sci Sports Exerc. 2019. https://doi.org/10.1249/mss.0000000000001905.

    Article  PubMed  Google Scholar 

  127. Siegmund GP, Guskiewicz KM, Marshall SW, DeMarco AL, Bonin SJ. Laboratory validation of two wearable sensor systems for measuring head impact severity in football players. Ann Biomed Eng. 2016;44(4):1257–74. https://doi.org/10.1007/s10439-015-1420-6.

    Article  PubMed  Google Scholar 

  128. Cummiskey B, Schiffmiller D, Talavage TM, Leverenz L, Meyer JJ, Adams D, et al. Reliability and accuracy of helmet-mounted and head-mounted devices used to measure head accelerations. Proc Inst Mech Eng Part P J Sports Eng Technol. 2017;231(2):144–53. https://doi.org/10.1177/1754337116658395.

    Article  Google Scholar 

  129. Jadischke R, Viano DC, Dau N, King AI, McCarthy J. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets. J Biomech. 2013;46(13):2310–5. https://doi.org/10.1016/j.jbiomech.2013.05.030.

    Article  PubMed  Google Scholar 

  130. Rowson S, Beckwith JG, Chu JJ, Leonard DS, Greenwald RM, Duma SM. A six degree of freedom head acceleration measurement device for use in football. J Appl Biomech. 2011;27(1):8–14.

    Article  PubMed  Google Scholar 

  131. Beckwith JG, Greenwald RM, Chu JJ. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform. Ann Biomed Eng. 2012;40(1):237–48. https://doi.org/10.1007/s10439-011-0422-2.

    Article  PubMed  Google Scholar 

  132. Brainard LL, Beckwith JG, Chu JJ, Crisco JJ, McAllister TW, Duhaime AC, et al. Gender differences in head impacts sustained by collegiate ice hockey players. Med Sci Sports Exerc. 2012;44(2):297–304. https://doi.org/10.1249/MSS.0b013e31822b0ab4.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gwin JT, Chu JJ, McAllister TA, Greenwald RM. In situ measures of head impact acceleration in NCAA division I men’s ice hockey: Implications for ASTM F1045 and other ice hockey helmet standards. JAI. 2009;6(6):1–10. https://doi.org/10.1520/JAI101848.

    Article  Google Scholar 

  134. Mihalik JP, Blackburn JT, Greenwald RM, Cantu RC, Marshall SW, Guskiewicz KM. Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics. 2010;125(6):e1394–401.

    Article  PubMed  Google Scholar 

  135. Mihalik JP, Greenwald RM, Blackburn JT, Cantu RC, Marshall SW, Guskiewicz KM. Effect of infraction type on head impact severity in youth ice hockey. Med Sci Sports Exerc. 2010;42(8):1431–8.

    Article  PubMed  Google Scholar 

  136. Mihalik JP, Guskiewicz KM, Marshall SW, Greenwald RM, Blackburn JT, Cantu RC. Does cervical muscle strength in youth ice hockey players affect head impact biomechanics? Clin J Sport Med. 2011;21(5):416–21.

    Article  PubMed  Google Scholar 

  137. Mihalik JP, Guskiewicz KM, Marshall SW, Blackburn JT, Cantu RC, Greenwald RM. Head impact biomechanics in youth hockey: comparisons across playing position, event types, and impact locations. Ann Biomed Eng. 2012;40(1):141–9. https://doi.org/10.1007/s10439-011-0405-3.

    Article  PubMed  Google Scholar 

  138. Mihalik JP, Wasserman EB, Teel EF, Marshall SW. Head impact biomechanics differ between girls and boys youth ice hockey players. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02343-9.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Reed N, Taha T, Keightley M, Duggan C, McAuliffe J, Cubos J, et al. Measurement of head impacts in youth ice hockey players. Int J Sports Med. 2010;31(11):826–33. https://doi.org/10.1055/s-0030-1263103.

    Article  CAS  PubMed  Google Scholar 

  140. Reed N, Taha T, Greenwald R, Keightley M. Player and game characteristics and head impacts in female youth ice hockey players. J Athl Train. 2017;52(8):771–5. https://doi.org/10.4085/1062-6050-52.5.04.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Schmidt JD, Pierce AF, Guskiewicz KM, Register-Mihalik JK, Pamukoff DN, Mihalik JP. Safe-play knowledge, aggression, and head-impact biomechanics in adolescent ice hockey players. J Athl Train. 2016;51(5):366–72. https://doi.org/10.4085/1062-6050-51.5.04.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wilcox BJ, Machan JT, Beckwith JG, Greenwald RM, Burmeister E, Crisco JJ. Head-impact mechanisms in men’s and women’s collegiate ice hockey. J Athl Train. 2014;49(4):514–20. https://doi.org/10.4085/1062-6050-49.3.19.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wilcox BJ, Beckwith JG, Greenwald RM, Chu JJ, McAllister TW, Flashman LA, et al. Head impact exposure in male and female collegiate ice hockey players. J Biomech. 2014;47(1):109–14. https://doi.org/10.1016/j.jbiomech.2013.10.004.

    Article  PubMed  Google Scholar 

  144. Wilcox BJ, Beckwith JG, Greenwald RM, Raukar NP, Chu JJ, McAllister TW, et al. Biomechanics of head impacts associated with diagnosed concussion in female collegiate ice hockey players. J Biomech. 2015;48(10):2201–4. https://doi.org/10.1016/j.jbiomech.2015.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Allison MA, Yun Seok K, Bolte Iv JB, Maltese MR, Arbogast KB. Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Med Sci Sports Exerc. 2014;46(1):115–23.

    Article  PubMed  Google Scholar 

  146. Allison MA, Kang YS, Maltese MR, Bolte JHT, Arbogast KB. Measurement of Hybrid III head impact kinematics using an accelerometer and gyroscope system in ice hockey helmets. Ann Biomed Eng. 2015;43(8):1896–906. https://doi.org/10.1007/s10439-014-1197-z.

    Article  PubMed  Google Scholar 

  147. Jorgensen JK, Thoreson AR, Stuart MB, Loyd A, Smith AM, Twardowski C, et al. Interpreting oblique impact data from an accelerometer-instrumented ice hockey helmet. Proc Inst Mech Eng Part P J Sports Eng Technol. 2017;231(4):307–16. https://doi.org/10.1177/1754337117700549.

    Article  Google Scholar 

  148. Dickson TJ, Waddington G, Trathen S, Baltis D, Adams R. Technology applications to enhance understanding of realtime snowsport head accelerations. Proc Eng. 2013;60:220–5. https://doi.org/10.1016/j.proeng.2013.07.079.

    Article  Google Scholar 

  149. Dickson TJ, Trathen S, Waddington G, Terwiel FA, Baltis D. A human factors approach to snowsport safety: Novel research on pediatric participants’ behaviors and head injury risk. Appl Ergon. 2016;53(Pt A):79–86. https://doi.org/10.1016/j.apergo.2015.08.006.

    Article  PubMed  Google Scholar 

  150. Hanlon E, Bir C. Validation of a wireless head acceleration measurement system for use in soccer play. J Appl Biomech. 2010;26(4):424–31.

    Article  PubMed  Google Scholar 

  151. Daniel RW, Rowson S, Duma SM. Head impact exposure in youth football. Ann Biomed Eng. 2012;40(4):976–81. https://doi.org/10.1007/s10439-012-0530-7.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Rowson S, Brolinson G, Goforth M, Dietter D, Duma S. Linear and angular head acceleration measurements in collegiate football. J Biomech Eng. 2009;131(6): 061016. https://doi.org/10.1115/1.3130454.

    Article  PubMed  Google Scholar 

  153. Beckwith JG, Chu JJ, Greenwald RM. Validation of a noninvasive system for measuring head acceleration for use during boxing competition. J Appl Biomech. 2007;23(3):238–44.

    Article  PubMed  Google Scholar 

  154. Reynolds BB, Patrie J, Henry EJ, Goodkin HP, Broshek DK, Wintermark M, et al. Comparative analysis of head impact in contact and collision sports. J Neurotrauma. 2017;34(1):38–49. https://doi.org/10.1089/neu.2015.4308.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bari S, Svaldi DO, Jang I, Shenk TE, Poole VN, Lee T, et al. Dependence on subconcussive impacts of brain metabolism in collision sport athletes: an MR spectroscopic study. Brain Imaging Behav. 2018. https://doi.org/10.1007/s11682-018-9861-9.

    Article  Google Scholar 

  156. Chrisman SP, Mac Donald CL, Friedman S, Andre J, Rowhani-Rahbar A, Drescher S, et al. Head impact exposure during a weekend youth soccer tournament. J Child Neurol. 2016;31(8):971–8. https://doi.org/10.1177/0883073816634857.

    Article  PubMed  Google Scholar 

  157. Chrisman SPD, Ebel BE, Stein E, Lowry SJ, Rivara FP. Head impact exposure in youth soccer and variation by age and sex. Clin J Sport Med. 2019;29(1):3–10. https://doi.org/10.1097/jsm.0000000000000497.

    Article  PubMed  Google Scholar 

  158. Lynall RC, Clark MD, Grand EE, Stucker JC, Littleton AC, Aguilar AJ, et al. Head impact biomechanics in women’s college soccer. Med Sci Sports Exerc. 2016;48(9):1772–8. https://doi.org/10.1249/mss.0000000000000951.

    Article  PubMed  Google Scholar 

  159. Myer GD, Barber Foss K, Thomas S, Galloway R, Dicesare CA, Dudley J, et al. Altered brain microstructure in association with repetitive subconcussive head impacts and the potential protective effect of jugular vein compression: a longitudinal study of female soccer athletes. Br J Sports Med. 2018. https://doi.org/10.1136/bjsports-2018-099571.

    Article  PubMed  Google Scholar 

  160. Nevins D, Hildenbrand K, Kensrud J, Vasavada A, Smith L. Field evaluation of a small form-factor head impact sensor for use in soccer. Proc Engg. 2016;147:186–90. https://doi.org/10.1016/j.proeng.2016.06.211.

    Article  Google Scholar 

  161. Ralston JD, Woodard J, Cieslak M, Asturias A, Meiring W, Grafton S, editors. A candidate neuromechanical biomarker and dosimeter for monitoring cumulative head impact trauma. In: 2017 IEEE EMBS international conference on biomedical & health informatics (BHI), vol. 2017; 16–19 Feb 2017. p. 397–400.

  162. Reynolds BB, Patrie J, Henry EJ, Goodkin HP, Broshek DK, Wintermark M, et al. Effects of sex and event type on head impact in collegiate soccer. Orthop J Sport Med. 2017;5(4):2325967117701708. https://doi.org/10.1177/2325967117701708.

    Article  Google Scholar 

  163. Svaldi DO, Joshi C, McCuen EC, Music JP, Hannemann R, Leverenz LJ, et al. Accumulation of high magnitude acceleration events predicts cerebrovascular reactivity changes in female high school soccer athletes. Brain Imaging Behav. 2018. https://doi.org/10.1007/s11682-018-9983-0.

    Article  Google Scholar 

  164. Siegmund GP, Bonin SJ, Luck JF, Bass CRD. Validation of a skin-mounted sensor for measuring in-vivo head impacts. In: International IRCOBI conference on the biomechanics of injury; Lyon, vol. 2015; 2015. p. 182–3.

  165. King DA, Hume PA, Gissane C, Clark TN. Similar head impact acceleration measured using instrumented ear patches in a junior rugby union team during matches in comparison with other sports. J Neurosurg Pediatr. 2016;18(1):65–72. https://doi.org/10.3171/2015.12.peds15605.

    Article  PubMed  Google Scholar 

  166. King D, Hume P, Gissane C, Clark T. Head impacts in a junior rugby league team measured with a wireless head impact sensor: an exploratory analysis. J Neurosurg Pediatr. 2017;19(1):13–23. https://doi.org/10.3171/2016.7.PEDS1684.

    Article  PubMed  Google Scholar 

  167. Hecimovich M, King D, Dempsey A, Murphy M. Head impact exposure in junior and adult Australian Football players. J Sports Med. 2018. https://doi.org/10.1155/2018/8376030.

    Article  Google Scholar 

  168. Hecimovich M, King D, Dempsey A, Gittins M, Murphy M. Youth Australian footballers experience similar impact forces to the head as junior- and senior-league players: a prospective study of kinematic measurements. J Sports Sci Med. 2018;17(4):547–56.

    PubMed  PubMed Central  Google Scholar 

  169. King D, Hecimovich M, Clark T, Gissane C. Measurement of the head impacts in a sub-elite Australian rules football team with an instrumented patch: an exploratory analysis. Int J Sports Sci Coach. 2017;12(3):359–70.

    Article  Google Scholar 

  170. McIntosh AS, Willmott C, Patton DA, Mitra B, Brennan JH, Dimech-Betancourt B, et al. An assessment of the utility and functionality of wearable head impact sensors in Australian Football. J Sci Med Sport. 2019;22(7):784–9. https://doi.org/10.1016/j.jsams.2019.02.004.

    Article  PubMed  Google Scholar 

  171. Carey L, Stanwell P, Terry DP, McIntosh AS, Caswell SV, Iverson GL, et al. Verifying head impacts recorded by a wearable sensor using video footage in rugby league: a preliminary study. Sports Med Open. 2019;5(1):1–11. https://doi.org/10.1186/s40798-019-0182-3.

    Article  Google Scholar 

  172. King D, Hume P, Gissane C, Cummins CJC. Measurement of head impacts in a senior amateur rugby league team with an instrumented patch: exploratory analysis. ARC J Res Sports Med. 2017;2(1):9–20.

    Google Scholar 

  173. King DA, Hume PA, Gissane C, Kieser DC, Clark TN. Head impact exposure from match participation in women’s rugby league over one season of domestic competition. J Sci Med Sport. 2017;21(2):139–46. https://doi.org/10.1016/j.jsams.2017.10.026.

    Article  PubMed  Google Scholar 

  174. King D, Hume P, Cummins C, Clark T, Gissane C, Hecimovich M. Head impact exposure comparison between male and female amateur rugby league participants measured with an instrumented patch. J Sports Med Ther. 2019;29(1):3–10. https://doi.org/10.29328/journal.jsmt.1001039.

    Article  Google Scholar 

  175. Tiernan S, Byrne G, O’Sullivan DM. Evaluation of skin-mounted sensor for head impact measurement. Proc Inst Mech Eng Part H J Eng Med. 2019;233(7):735–44.

    Article  Google Scholar 

  176. O’Sullivan D, Roe M, Blake C. Analysis of head impacts during sub-elite hurling practice sessions. J Sport Sci. 2017;36(11):1256–61. https://doi.org/10.1080/02640414.2017.1373196.

    Article  Google Scholar 

  177. Caswell SV, Lincoln AE, Stone H, Kelshaw P, Putukian M, Hepburn L, et al. Characterizing verified head impacts in high school girls’ lacrosse. Am J Sports Med. 2017;45(14):3374–81. https://doi.org/10.1177/0363546517724754.

    Article  PubMed  Google Scholar 

  178. Le RK, Saunders TD, Breedlove KM, Bradney DA, Lucas JM, Bowman TG. Differences in the mechanism of head impacts measured between men’s and women’s intercollegiate lacrosse athletes. Orthop J Sport Med. 2018;6(11):1–7. https://doi.org/10.1177/2325967118807678.

    Article  Google Scholar 

  179. O’Day KM, Koehling EM, Vollavanh LR, Bradney D, May JM, Breedlove KM, et al. Comparison of head impact location during games and practices in Division III men’s lacrosse players. Clin Biomech. 2017;43:23–7. https://doi.org/10.1016/j.clinbiomech.2017.01.013.

    Article  Google Scholar 

  180. Reynolds BB, Patrie J, Henry EJ, Goodkin HP, Broshek DK, Wintermark M, et al. Quantifying head impacts in collegiate lacrosse. Am J Sports Med. 2016;44(11):2947–56. https://doi.org/10.1177/0363546516648442.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Vollavanh LR, O’Day KM, Koehling EM, May JM, Breedlove KM, Breedlove EL, et al. Effect of impact mechanism on head accelerations in men’s lacrosse athletes. J Appl Biomech. 2018;34(5):396–402. https://doi.org/10.1123/jab.2017-0231.

    Article  PubMed  Google Scholar 

  182. Schussler E, Stark D, Bolte JH, Kang YS, Onate JA. Comparison of a head mounted impact measurement device to the Hybrid III anthropomorphic testing device in a controlled laboratory setting. Int J Sports Phys Ther. 2017;12(4):592–600.

    PubMed  PubMed Central  Google Scholar 

  183. Yeargin SW, Kingsley P, Mensch JM, Mihalik JP, Monsma EV. Anthropometrics and maturity status: a preliminary study of youth football head impact biomechanics. Int J Psychophysiol. 2018;132:87–92. https://doi.org/10.1016/j.ijpsycho.2017.09.022.

    Article  PubMed  Google Scholar 

  184. Reynolds BB, Patrie J, Henry EJ, Goodkin HP, Broshek DK, Wintermark M, et al. Practice type effects on head impact in collegiate football. J Neurosurg. 2016;124(2):501–10. https://doi.org/10.3171/2015.5.jns15573.

    Article  PubMed  Google Scholar 

  185. Swartz EE, Broglio SP, Cook SB, Cantu RC, Ferrara MS, Guskiewicz KM, et al. Early results of a helmetless-tackling intervention to decrease head impacts in football players. J Athl Train. 2015;50(12):1219–22.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Tyson AM, Duma SM, Rowson S. Laboratory evaluation of low-cost wearable sensors for measuring head impacts in sports. J Appl Biomech. 2018;34(4):320–6. https://doi.org/10.1123/jab.2017-0256.

    Article  PubMed  Google Scholar 

  187. King D, Hecimovich M, Garrett T. Accelerometric analysis of head impacts in amateur wrestling: an exploratory analysis. Int J Wrestling Sci. 2017;6(2):117–26.

    Google Scholar 

  188. Leeds DD, D’Lauro C, Johnson BR. Predictive power of head impact intensity measures for recognition memory performance. Mil Med. 2019;184(Suppl. 1):206–17. https://doi.org/10.1093/milmed/usy415.

    Article  PubMed  Google Scholar 

  189. O’Sullivan DM, Fife GP. Biomechanical head impact characteristics during sparring practice sessions in high school taekwondo athletes. J Neurosurg Pediatr. 2017;19(6):662–7. https://doi.org/10.3171/2017.1.peds16432.

    Article  PubMed  Google Scholar 

  190. Hurst HT, Rylands L, Atkins S, Enright K, Roberts SJ. Profiling of translational and rotational head accelerations in youth BMX with and without neck brace. J Sci Med Sport. 2017;21(3):263–7. https://doi.org/10.1016/j.jsams.2017.05.018.

    Article  PubMed  Google Scholar 

  191. Hurst HT, Atkins S, Dickinson BD. The magnitude of translational and rotational head accelerations experienced by riders during downhill mountain biking. J Sci Med Sport. 2018;21(12):1256–61. https://doi.org/10.1016/j.jsams.2018.03.007.

    Article  PubMed  Google Scholar 

  192. Eckner JT, O’Connor KL, Broglio SP, Ashton-Miller JA. Comparison of head impact exposure between male and female high school ice hockey athletes. Am J Sports Med. 2018;46(9):2253–62. https://doi.org/10.1177/0363546518777244.

    Article  PubMed  Google Scholar 

  193. Caswell SV, Kelshaw P, Lincoln AE, Hepburn L, Dunn R, Cortes N. Game-related impacts in high school boys’ lacrosse. Orthop J Sport Med. 2019. https://doi.org/10.1177/2325967119835587.

    Article  Google Scholar 

  194. Diakogeorgiou E, Miyashita TL. Effect of head impact exposures on changes in cognitive testing. Orthop J Sport Med. 2018;6(3):2325967118761031. https://doi.org/10.1177/2325967118761031.

    Article  Google Scholar 

  195. Kelshaw P, Cortes N, Caswell A, Caswell SV. Isometric cervical muscle strength does not affect head impact kinematics in high school boys’ lacrosse. Int J Athletic Ther Train. 2018;23(6):234–8. https://doi.org/10.1123/ijatt.2017-0102.

    Article  Google Scholar 

  196. Kindschi K, Higgins M, Hillman A, Penczek G, Lincoln A. Video analysis of high-magnitude head impacts in men’s collegiate lacrosse. BMJ Open Sport Exerc Med. 2017;3(1):e000165.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Miyashita TL, Diakogeorgiou E, Marrie K. Correlation of head impacts to change in Balance Error Scoring System scores in Division I men’s lacrosse players. Sports Health. 2017;9(4):318–23. https://doi.org/10.1177/1941738116685306.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Miyashita TL, Diakogeorgiou E, Marrie K. The role of subconcussive impacts on sway velocities in Division I men’s lacrosse players. Sports Biomechanics. 2018. https://doi.org/10.1080/14763141.2018.1458892.

    Article  PubMed  Google Scholar 

  199. Miyashita TL, Ullucci PA. Correlation of head impact exposures to vestibular ocular assessments. J Sport Rehabil. 2019. https://doi.org/10.1123/jsr.2017-0282.

    Article  Google Scholar 

  200. Buice JM, Esquivel AO, Andrecovich CJ. Laboratory validation of a wearable sensor for the measurement of head acceleration in men’s and women’s lacrosse. J Biomech Eng. 2018. https://doi.org/10.1115/1.4040311.

    Article  PubMed  Google Scholar 

  201. Champagne AA, Coverdale NS, Nashed JY, Fernandez-Ruiz J, Cook DJ. Resting CMRO 2 fluctuations show persistent network hyper-connectivity following exposure to sub-concussive collisions. Neuroimage Clin. 2019. https://doi.org/10.1016/j.nicl.2019.101753.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Champagne AA, Coverdale NS, Germuska M, Bhogal AA, Cook DJ. Changes in volumetric and metabolic parameters relate to differences in exposure to sub-concussive head impacts. J Cereb Blood Flow Metab. 2019. https://doi.org/10.1177/0271678x19862861.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Muise DP, MacKenzie SJ, Sutherland TM. Frequency and magnitude of head accelerations in a Canadian interuniversity sport football teams training camp and season. Int J Athlet Ther Train. 2016;21(5):36–41.

    Article  Google Scholar 

  204. Champagne AA, DiStefano V, Boulanger MM, Magee B, Coverdale NS, Gallucci D, et al. Data-informed intervention improves football technique and reduces head impacts. Med Sci Sports Exerc. 2019. https://doi.org/10.1249/mss.0000000000002046.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Myer GD, Yuan W, Barber Foss KD, Thomas S, Smith D, Leach J, et al. Analysis of head impact exposure and brain microstructure response in a season-long application of a jugular vein compression collar: a prospective, neuroimaging investigation in American football. Br J Sports Med. 2016;50(20):1276–85. https://doi.org/10.1136/bjsports-2016-096134.

    Article  PubMed  Google Scholar 

  206. Campbell KR, Warnica MJ, Levine IC, Brooks JS, Laing AC, Burkhart TA, et al. Laboratory evaluation of the gForce TrackerTM, a head impact kinematic measuring device for use in football helmets. Ann Biomed Eng. 2016;44(4):1246–56. https://doi.org/10.1007/s10439-015-1391-7.

    Article  PubMed  Google Scholar 

  207. Harriss A, Johnson AM, Walton DM, Dickey JP. Head impact magnitudes that occur from purposeful soccer heading depend on the game scenario and head impact location. Musculoskelet Sci Pract. 2019;40:53–7. https://doi.org/10.1016/j.msksp.2019.01.009.

    Article  PubMed  Google Scholar 

  208. Caccese JB, Lamond LC, Buckley TA, Kaminski TW. Reducing purposeful headers from goal kicks and punts may reduce cumulative exposure to head acceleration. Res Sports Med. 2016;24(4):407–15. https://doi.org/10.1080/15438627.2016.1230549.

    Article  PubMed  Google Scholar 

  209. Lamond LC, Caccese JB, Buckley TA, Glutting J, Kaminski TW. Linear acceleration in direct head contact across impact type, player position, and playing scenario in collegiate women’s soccer players. J Athl Train. 2018;53(2):115–21. https://doi.org/10.4085/1062-6050-90-17.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Marchesseault ER, Nguyen D, Spahr L, Beals C, Razak B, Rosene JM. Head impacts and cognitive performance in men’s lacrosse. Phys Sportsmed. 2018. https://doi.org/10.1080/00913847.2018.1470888.

    Article  PubMed  Google Scholar 

  211. Rosene JM, Merritt C, Wirth NR, Nguyen D. Incidence and force application of head impacts in men’s lacrosse: a pilot study. Int J Athlet Ther and Train. 2019;24(5):213–6. https://doi.org/10.1123/ijatt.2018-0052.

    Article  Google Scholar 

  212. Lynall RC, Lempke LB, Johnson RS, Anderson MN, Schmidt JD. A comparison of youth flag and tackle football head impact biomechanics. J Neurotrauma. 2019. https://doi.org/10.1089/neu.2018.6236.

    Article  PubMed  Google Scholar 

  213. Swartz EE, Myers JL, Cook SB, Guskiewicz KM, Ferrara MS, Cantu RC, et al. A helmetless-tackling intervention in American football for decreasing head impact exposure: a randomized controlled trial. J Sci Med Sport. 2019;22(10):1102–7. https://doi.org/10.1016/j.jsams.2019.05.018.

    Article  PubMed  Google Scholar 

  214. Cecchi NJ, Monroe DC, Fote GM, Small SL, Hicks JW. Head impacts sustained by male collegiate water polo athletes. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0216369.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Fukuda T, Koike S, Miyakawa S, Fujiya H, Yamamoto Y. Impact on the head during collisions between university American football players-focusing on the number of head impacts and linear head acceleration. J Phys Fitness Sports Med. 2017;6(4):241–9.

    Article  Google Scholar 

  216. Huibregtse ME, Zonner SW, Ejima K, Bevilacqua ZW, Newman SD, Macy JT, et al. Association between muscle damage and head impacts in high school American football. Int J Sports Med. 2019. https://doi.org/10.1055/a-1021-1735.

    Article  PubMed  Google Scholar 

  217. Kawata K, Rubin LH, Lee JH, Sim T, Takahagi M, Szwanki V, et al. Association of football subconcussive head impacts with ocular near point of convergence. JAMA Ophthalmol. 2016;134(7):763–9. https://doi.org/10.1001/jamaophthalmol.2016.1085.

    Article  PubMed  Google Scholar 

  218. Kawata K, Rubin LH, Takahagi M, Lee JH, Sim T, Szwanki V, et al. Subconcussive impact-dependent increase in Plasma S100β levels in collegiate football players. J Neurotrauma. 2017;34(14):2254–60. https://doi.org/10.1089/neu.2016.4786.

    Article  PubMed  Google Scholar 

  219. Kawata K, Rubin LH, Wesley L, Lee J, Sim T, Takahagi M, et al. Acute changes in plasma total Tau levels are independent of subconcussive head impacts in college football players. J Neurotrauma. 2017;35(2):260–6. https://doi.org/10.1089/neu.2017.5376.

    Article  PubMed  Google Scholar 

  220. Rubin LH, Tierney R, Kawata K, Wesley L, Lee JH, Blennow K, et al. NFL blood levels are moderated by subconcussive impacts in a cohort of college football players. Brain Inj. 2019;33(4):456–62. https://doi.org/10.1080/02699052.2019.1565895.

    Article  PubMed  Google Scholar 

  221. Zonner SW, Ejima K, Bevilacqua ZW, Huibregtse ME, Charleston C, Fulgar C, et al. Association of increased serum S100B levels with high school football subconcussive head impacts. Front Neurol. 2019;10:327. https://doi.org/10.3389/fneur.2019.00327.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Kuo C, Wu L, Loza J, Senif D, Anderson SC, Camarillo DB. Comparison of video-based and sensor-based head impact exposure. PLoS ONE. 2018;13(6):e0199238.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Wu LC, Kuo C, Loza J, Kurt M, Laksari K, Yanez LZ, et al. Detection of American football head impacts using biomechanical features and support vector machine classification. Sci Rep. 2017;8(1):855.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Hernandez F, Wu LC, Yip MC, Laksari K, Hoffman AR, Lopez JR, et al. Six degree-of-freedom measurements of human mild traumatic brain injury. Ann Biomed Eng. 2015;43(8):1918–34. https://doi.org/10.1007/s10439-014-1212-4.

    Article  PubMed  Google Scholar 

  225. O’Keeffe E, Kelly E, Liu Y, Giordano C, Wallace E, Hynes M, et al. Dynamic blood brain barrier regulation in mild head trauma. J Neurotrauma. 2019. https://doi.org/10.1089/neu.2019.6483.

    Article  PubMed  Google Scholar 

  226. Miller LE, Pinkerton EK, Fabian KC, Wu LC, Espeland MA, Lamond LC, et al. Characterizing head impact exposure in youth female soccer with a custom-instrumented mouthpiece. Res Sports Med. 2019. https://doi.org/10.1080/15438627.2019.1590833.

    Article  PubMed  Google Scholar 

  227. Bartsch AJ, Hedin DS, Gibson PL, Miele VJ, Benzel EC, Alberts JL, et al., editors. Laboratory and on-field data collected by a head impact monitoring mouthguard. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2019; 2019. p. 2068–72.

  228. Bartsch A, Miele VJ, Alberts JL, Benzel E, Shah AS, Humm J, et al. Estimates of high-risk single and cumulative head impact doses in American football. Biomed Sci Instrum. 2019;55(2):224–9.

    Google Scholar 

  229. Hedin DS, Gibson PL, Bartsch AJ, Samorezov S, editors. Development of a head impact monitoring “Intelligent Mouthguard”. In: Conference proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, vol. 2016; 2016. p. 2007–9.

  230. King D, Hume PA, Brughelli M, Gissane C. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches. Am J Sports Med. 2015;43(3):614–24. https://doi.org/10.1177/0363546514560876.

    Article  PubMed  Google Scholar 

  231. Camarillo DB, Shull PB, Mattson J, Shultz R, Garza D. An instrumented mouthguard for measuring linear and angular head impact kinematics in American football. Ann Biomed Eng. 2013;41(9):1939–49. https://doi.org/10.1007/s10439-013-0801-y.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Miller LE, Kuo C, Wu LC, Urban JE, Camarillo DB, Stitzel JD. Validation of a custom instrumented retainer form factor for measuring linear and angular head impact kinematics. J Biomech Eng. 2018. https://doi.org/10.1115/1.4039165.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Slobounov SM, Walter A, Breiter HC, Zhu DC, Bai X, Bream T, et al. The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: a multi-modal neuroimaging study. Neuroimage Clin. 2017;14:708–18. https://doi.org/10.1016/j.nicl.2017.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Harper B, Aron A, Siyufy A, Mickle A. Feasibility assessment of the Reebok CHECKLIGHT(TM) and King-Devick tests as screening tools in youth football. J Sports Med Allied Health Sci. 2018;4(2):1–7.

    Google Scholar 

  235. Wong RH, Wong AK, Bailes JE. Frequency, magnitude, and distribution of head impacts in Pop Warner football: the cumulative burden. Clin Neurol Neurosurg. 2014;118:1–4. https://doi.org/10.1016/j.clineuro.2013.11.036.

    Article  PubMed  Google Scholar 

  236. Rooks TF, Dargie AS, Chancey VC, editors. Machine learning classification of head impact sensor data. In: ASME international mechanical engineering congress and exposition, proceedings (IMECE), vol. 59407; 2019. p. V003T04A065.

  237. Kieffer EE, Begonia MT, Tyson AM, Rowson S. A two-phased approach to quantifying head impact sensor accuracy: In-laboratory and on-field assessments. Ann Biomed Eng. 2020;48(11):2613–25. https://doi.org/10.1007/s10439-020-02647-1.

    Article  PubMed  Google Scholar 

  238. Liu Y, Domel AG, Yousefsani SA, Kondic J, Grant G, Zeineh M, et al. Validation and comparison of instrumented mouthguards for measuring head kinematics and assessing brain deformation in football impacts. Ann Biomed Eng. 2020;48(11):2580–98. https://doi.org/10.1007/s10439-020-02629-3.

    Article  PubMed  Google Scholar 

  239. Wu LC, Nangia V, Bui K, Hammoor B, Kurt M, Hernandez F, et al. In vivo evaluation of wearable head impact sensors. Ann Biomed Eng. 2016;44(4):1234–45. https://doi.org/10.1007/s10439-015-1423-3.

    Article  PubMed  Google Scholar 

  240. Patton DA, Huber CM, Jain D, Myers RK, McDonald CC, Margulies SS, et al. Head impact sensor studies in sports: a systematic review of exposure confirmation methods. Ann Biomed Eng. 2020. https://doi.org/10.1007/s10439-020-02642-6.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Wu LC, Zarnescu L, Nangia V, Cam B, Camarillo DB. A head impact detection system using SVM classification and proximity sensing in an instrumented mouthguard. IEEE Trans Biomed Eng. 2014;61(11):2659–68. https://doi.org/10.1109/tbme.2014.2320153.

    Article  PubMed  Google Scholar 

  242. NINDS Common Data Elements. Head kinematics estimates. https://commondataelements.ninds.nih.gov/. Accessed Aug 2019.

  243. NINDS Common Data Elements. Video device confirmation. https://commondataelements.ninds.nih.gov/. Accessed Aug 2019.

  244. Prien A, Grafe A, Rössler R, Junge A, Verhagen E. Epidemiology of head injuries focusing on concussions in team contact sports: a systematic review. Sports Med. 2018;48(4):953–69. https://doi.org/10.1007/s40279-017-0854-4.

    Article  PubMed  Google Scholar 

  245. FIFA. Big count: 265 million playing football. In: FIFA Magazine. FIFA. 2007. Available from: https://www.fifa.com/mm/document/fifafacts/bcoffsurv/emaga_9384_10704.pdf. Accessed Aug 2018.

  246. World Rugby. World Rugby's mission is "growing the global rugby family". 2016. http://www.worldrugby.org/development/player-numbers?lang=en. Accessed Aug 2018.

  247. Dompier TP, Kerr ZY, Marshall SW, et al. Incidence of concussion during practice and games in youth, high school, and collegiate american football players. JAMA Pediatr. 2015;169(7):659–65. https://doi.org/10.1001/jamapediatrics.2015.0210.

    Article  CAS  PubMed  Google Scholar 

  248. Resch JE, Rach A, Walton S, Broshek DK. Sport concussion and the female athlete. Clin Sports Med. 2017;36(4):717–39. https://doi.org/10.1016/j.csm.2017.05.002.

    Article  PubMed  Google Scholar 

  249. Gallagher V, Kramer N, Abbott K, Alexander J, Breiter H, Herrold A, et al. The effects of sex differences and hormonal contraception on outcomes after collegiate sports-related concussion. J Neurotrauma. 2018;35(11):1242–7. https://doi.org/10.1089/neu.2017.5453.

    Article  PubMed  Google Scholar 

  250. Meehan WP III, Taylor AM, Proctor M. The pediatric athlete: younger athletes with sport-related concussion. Clin Sports Med. 2011;30(1):133–44. https://doi.org/10.1016/j.csm.2010.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Guskiewicz KM, Valovich McLeod TC. Pediatric sports-related concussion. PM&R. 2011;3(4):353–64. https://doi.org/10.1016/j.pmrj.2010.12.006.

    Article  Google Scholar 

  252. Bauer R, Fritz H. Pathophysiology of traumatic injury in the developing brain: an introduction and short update. Exp Toxicol Pathol. 2004;56(1):65–73. https://doi.org/10.1016/j.etp.2004.04.002.

    Article  PubMed  Google Scholar 

  253. Eckner JT, Oh YK, Joshi MS, Richardson JK, Ashton-Miller JA. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads. Am J Sports Med. 2014;42(3):566–76. https://doi.org/10.1177/0363546513517869.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Guskiewicz KM, Mihalik JP. Biomechanics of sport concussion: quest for the elusive injury threshold. Exerc Sport Sci Rev. 2011;39(1):4–11. https://doi.org/10.1097/JES.0b013e318201f53e.

    Article  PubMed  Google Scholar 

  255. Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury. J Biomech Eng. 2004;126(2):226–36.

    Article  PubMed  Google Scholar 

  256. Ji S, Zhao W, Li Z, McAllister TW. Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation. Biomech Model Mechanobiol. 2014;13(5):1121–36. https://doi.org/10.1007/s10237-014-0562-z.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Kleiven S. Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int J Crashworthiness. 2006;11(1):65–79. https://doi.org/10.1533/ijcr.2005.0384.

    Article  Google Scholar 

  258. Quarrie KL, Murphy IR. Towards an operational definition of sports concussion: identifying a limitation in the 2012 Zurich consensus statement and suggesting solutions. Br J Sports Med. 2014;48(22):1589–91.

  259. Broglio SP, Macciocchi SN, Ferrara MS. Sensitivity of the concussion assessment battery. Neurosurgery. 2007;60(6):1050–8. https://doi.org/10.1227/01.NEU.0000255479.90999.C0.

    Article  PubMed  Google Scholar 

  260. Llewellyn T, Burdette GT, Joyner AB, Buckley TA. Concussion reporting rates at the conclusion of an intercollegiate athletic career. Clin J Sport Med. 2014;24(1):76–9. https://doi.org/10.1097/01.jsm.0000432853.77520.3d.

    Article  PubMed  Google Scholar 

  261. Abrahams S, Fie SM, Patricios J, Posthumus M, September AV. Risk factors for sports concussion: an evidence-based systematic review. Br J Sports Med. 2014;48(2):91–7. https://doi.org/10.1136/bjsports-2013-092734.

    Article  PubMed  Google Scholar 

  262. Emery CA, Black AM, Kolstad A, Martinez G, Nettel-Aguirre A, Engebretsen L, et al. What strategies can be used to effectively reduce the risk of concussion in sport? Br J Sports Med. 2017. https://doi.org/10.1136/bjsports-2016-097452.

    Article  PubMed  Google Scholar 

  263. Miller LE, Urban JE, Kelley ME, Powers AK, Whitlow CT, Maldjian JA, et al. Evaluation of brain response during head impact in youth athletes using an anatomically accurate finite element model. J Neurotrauma. 2018. https://doi.org/10.1089/neu.2018.6037.

    Article  Google Scholar 

  264. Cournoyer J, Hoshizaki TB. Head dynamic response and brain tissue deformation for boxing punches with and without loss of consciousness. Clin Biomech. 2019;67:96–101. https://doi.org/10.1016/j.clinbiomech.2019.05.003.

    Article  Google Scholar 

  265. Mainwaring L, Ferdinand Pennock KM, Mylabathula S, Alavie BZ. Subconcussive head impacts in sport: a systematic review of the evidence. Int J Psychophysiol. 2018. https://doi.org/10.1016/j.ijpsycho.2018.01.007.

    Article  PubMed  Google Scholar 

  266. Hunter LE, Branch CA, Lipton ML. The neurobiological effects of repetitive head impacts in collision sports. Neurobiol Dis. 2018;123:122–6. https://doi.org/10.1016/j.nbd.2018.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Schneider DK, Galloway R, Bazarian J, Diekfuss JA, Dudley J, Leach J, et al. Diffusion tensor imaging in athletes sustaining repetitive head impacts: a systematic review of prospective studies. J Neurotrauma. 2019;36(20):2831–49. https://doi.org/10.1089/neu.2019.6398.

    Article  PubMed  Google Scholar 

  268. Montenigro PH, Alosco ML, Martin BM, Daneshvar DH, Mez J, Chaisson CE, et al. Cumulative head impact exposure predicts later-life depression, apathy, executive dysfunction, and cognitive impairment in former high school and college football players. J Neurotrauma. 2017;34(2):328–40. https://doi.org/10.1089/neu.2016.4413.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Alosco ML, Tripodis Y, Fritts NG, Heslegrave A, Baugh CM, Conneely S, et al. Cerebrospinal fluid tau, Abeta, and sTREM2 in former National Football League players: modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration. Alzheimers Dement. 2018;14(9):1159–70. https://doi.org/10.1016/j.jalz.2018.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Alosco ML, Tripodis Y, Jarnagin J, Baugh CM, Martin B, Chaisson CE, et al. Repetitive head impact exposure and later-life plasma total tau in former National Football League players. Alzheimers Dement. 2017;7:33–40.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Nigel Harris for his overall assistance with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enora Le Flao.

Ethics declarations

Funding

No funding was received for this review.

Conflicts of interest/Competing interests

Authors ELF and RB declare that they have no conflicts of interest relevant to the content of this review. Author GPS is a director, shareholder and employee of MEA Forensic Engineers & Scientists, a forensic engineering consulting company that provides technical investigation services and expert testimony for legal, insurance and government agencies. He also holds a patent for a system/method of performing computer-aided balance measurements to assess concussion severity.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data compiled and analysed during this study are available in this published article and Electronic Supplementary Material, along with the full reference of all included articles. Data are published as a spreadsheet with filtering options to allow readers to easily select and visualise studies of interest.

Code availability

Not applicable.

Authors’ contributions

Applying the International Committee of Medical Journal Editors (ICMJE) criteria, the authors listed above qualify for authorship based on making one or more substantial contributions to the intellectual content of the manuscript. Conception or design of the work (ELF); acquisition (ELF), analysis and interpretation of data for the work (all); AND drafting the work or revising it critically for important intellectual content (original draft: ELF; revisions: all); AND final approval of the version to be published (all); AND agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved (all).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 95 kb)

Supplementary file2 (DOCX 544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Flao, E., Siegmund, G.P. & Borotkanics, R. Head Impact Research Using Inertial Sensors in Sport: A Systematic Review of Methods, Demographics, and Factors Contributing to Exposure. Sports Med 52, 481–504 (2022). https://doi.org/10.1007/s40279-021-01574-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01574-y

Navigation