Skip to main content
Log in

Left Ventricular Function and Cardiac Biomarker Release—The Influence of Exercise Intensity, Duration and Mode: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Objective

We performed a systematic review, meta-analysis and meta-regression of exercise studies that sought to determine the relationship between cardiac troponin (cTn) and left ventricular (LV) function. The second objective was to determine how study-level and exercise factors influenced the variation in the body of literature.

Data sources

A systematic search of Pubmed Central, Science Direct, SPORTDISCUS and MEDLINE databases.

Eligibility criteria

Original research articles published between 1997 and 2018 involving > 30 mins of continuous exercise, measuring cardiac troponin event rates and either LV ejection fraction (LVEF) or the ratio of the peak early (E) to peak late (A) filling velocity (E/A ratio).

Design

Random-effects meta-analyses and meta-regressions with four a priori determined covariates (age, exercise heart rate [HR], duration, mass).

Registration

The systematic search strategy was registered on the PROSPERO database (CRD42018102176).

Results

Pooled cTn event rates were evident in 45.6% of participants (95% confidence interval (CI) 33.6–58.2); however, the overall effect was non-significant (P > 0.05). There were significant (P < 0.05) reductions in E/A ratio of − 0.38 (SMD = − 1.2, 95% CI − 1.4 to − 1.0), and LVEF of − 2.02% (SMD = − 0.38, 95% CI − 0.7 to − 0.1) pre- to post-exercise. Increased exercise HR was a significant predictor of troponin release and E/A ratio. Participant age was negatively associated with cTn release. There was a significant negative association between E/A ratio with increased rates of cTn release (P < 0.05).

Conclusions

High levels of statistical heterogeneity and methodological variability exist in the majority of EICF studies. Our findings show that exercise intensity and age are the most powerful determinants of cTn release. Diastolic function is influenced by exercise HR and cTn release, which implies that exercise bouts at high intensities are enough to elicit cTn release and reduce LV diastolic function. Future EICF studies should (1) utilise specific echocardiographic techniques such as myocardial speckle tracking, (2) ensure participants are euhydrated during post-exercise measurements, and (3) repeat measures in the hours following exercise to assess symptom progression or recovery. It is also recommended to further explore the relationship between aging, training history, and exercise intensity on cTn release and functional changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stewart GM, Yamada A, Haseler LJ, Kavanagh JJ, Chan J, Koerbin G, et al. Influence of exercise intensity and duration on functional and biochemical perturbations in the human heart. J Physiol. 2016;594(11):3031–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dawson E, George K, Shave R, Whyte G, Ball D. Does the human heart fatigue subsequent to prolonged exercise? Sports Med. 2003;33(5):365–80.

    Article  PubMed  Google Scholar 

  3. McGavock JM, Warburton DER, Taylor D, Welsh RC, Quinney HA, Haykowsky MJ. The effects of prolonged strenuous exercise on left ventricular function: a brief review. Heart Lung. 2002;31(4):279–94.

    Article  PubMed  Google Scholar 

  4. Middleton N, Shave R, George K, Whyte G, Hart E, Atkinson G. Left ventricular function immediately following prolonged exercise: a meta-analysis. Med Sci Sports Exerc. 2006;38(4):681–7.

    Article  PubMed  Google Scholar 

  5. Rifai N, Douglas PS, O’Toole M, Rimm E, Ginsburg GS. Cardiac troponin T and I, echocardiographic [correction of electrocardiographic] wall motion analyses, and ejection fractions in athletes participating in the Hawaii Ironman Triathlon. Am J Cardiol. 1999;83(7):1085–9.

    Article  CAS  PubMed  Google Scholar 

  6. Whyte GP, George K, Sharma S, Lumley S, Gates P, Prasad K, et al. Cardiac fatigue following prolonged endurance exercise of differing distances. Med Sci Sports Exerc. 2000;32(6):1067–72.

    Article  CAS  PubMed  Google Scholar 

  7. Neumayr G, Pfister R, Mitterbauer G, Maurer A, Gaenzer H, Sturm W, et al. Effect of the “Race Across The Alps” in elite cyclists on plasma cardiac troponins I and T. Am J Cardiol. 2002;89(4):484–6.

    Article  CAS  PubMed  Google Scholar 

  8. Shave RE, Dawson E, Whyte G, George K, Ball D, Gaze DC, et al. Evidence of exercise-induced cardiac dysfunction and elevated cTnT in separate cohorts competing in an ultra-endurance mountain marathon race. Int J Sports Med. 2002;23(7):489–94.

    Article  CAS  PubMed  Google Scholar 

  9. Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  10. Middleton N, Shave R, George K, Whyte G, Simpson R, Florida-James G, et al. Impact of repeated prolonged exercise bouts on cardiac function and biomarkers. Med Sci Sports Exerc. 2007;39(1):83–90.

    Article  PubMed  Google Scholar 

  11. Dawson EA, Shave R, George K, Whyte G, Ball D, Gaze D, et al. Cardiac drift during prolonged exercise with echocardiographic evidence of reduced diastolic function of the heart. Eur J Appl Physiol. 2005;94(3):305–9.

    Article  CAS  PubMed  Google Scholar 

  12. George K, Whyte G, Stephenson C, Shave R, Dawson E, Edwards BEN, et al. postexercise left ventricular function and cTnT in recreational marathon runners. Med Sci Sports Exerc. 2004;36(10):1709–15.

    Article  PubMed  Google Scholar 

  13. Scharhag J, Shave R, George K, Whyte G, Kindermann W. Exercise-induced increases in cardiac troponins in endurance athletes: a matter of exercise duration and intensity? Clin Res Cardiol. 2008;97(1):62–3.

    Article  PubMed  Google Scholar 

  14. Stewart GM, Kavanagh JJ, Koerbin G, Simmonds MJ, Sabapathy S. Cardiac electrical conduction, autonomic activity and biomarker release during recovery from prolonged strenuous exercise in trained male cyclists. Eur J Appl Physiol. 2014;114(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  15. Stewart GM, Yamada A, Haseler LJ, Kavanagh JJ, Koerbin G, Chan J, et al. Altered ventricular mechanics after 60 min of high-intensity endurance exercise: insights from exercise speckle-tracking echocardiography. Am J Physiol Heart Circ Physiol. 2015;308(8):H875–83.

    Article  CAS  PubMed  Google Scholar 

  16. Wyatt F, Pawar G, Kilgore L. Exercise induced cardiac fatigue following prolonged exercise in road cyclists. ICHPER-SD JR. 2011;6(2):61–6.

    Google Scholar 

  17. Tian Y, Nie J, Huang C, George KP. The kinetics of highly sensitive cardiac troponin T release after prolonged treadmill exercise in adolescent and adult athletes. J Appl Physiol (1985). 2012;113(3):418–25.

  18. Shave R, Dawson E, Whyte G, George K, Gaze D, Collinson P. Altered cardiac function and minimal cardiac damage during prolonged exercise. Med Sci Sports Exerc. 2004;36(7):1098–103.

    Article  CAS  PubMed  Google Scholar 

  19. Chan-Dewar F, Gregson W, Whyte G, Gaze D, Waterhouse J, Wen J, et al. Do the effects of high intensity 40 km cycling upon left ventricular function and cardiac biomarker during recovery vary with time of day? J Sports Sci. 2013;31(4):414–23.

    Article  CAS  PubMed  Google Scholar 

  20. Chan-Dewar F, Gregson W, Whyte G, King J, Gaze D, Carranza-Garcia LE, et al. Cardiac electromechanical delay is increased during recovery from 40 km cycling but is not mediated by exercise intensity. Scand J Med Sci Sports. 2013;23(2):224–31.

    Article  CAS  PubMed  Google Scholar 

  21. Aagaard P, Sahlen A, Bergfeldt L, Braunschweig F. Heart rate and its variability in response to running-associations with troponin. Med Sci Sports Exerc. 2014;46(8):1624–30.

    Article  CAS  PubMed  Google Scholar 

  22. Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006;114(22):2325–33.

    Article  PubMed  Google Scholar 

  23. Leetmaa TH, Dam A, Glintborg D, Markenvard JD. Myocardial response to a triathlon in male athletes evaluated by Doppler tissue imaging and biochemical parameters. Scand J Med Sci Sports. 2008;18(6):698–705.

    Article  CAS  PubMed  Google Scholar 

  24. Lucia A, Serratosa L, Saborido A, Pardo J, Boraita A, Moran M, et al. Short-term effects of marathon running: no evidence of cardiac dysfunction. Med Sci Sports Exerc. 1999;31(10):1414–21.

    Article  CAS  PubMed  Google Scholar 

  25. Serrano Ostariz E, López Ramón M, Cremades Arroyos D, Izquierdo Álvarez S, Catalán Edo P, Baquer Sahún C, et al. Post-exercise left ventricular dysfunction measured after a long-duration cycling event. BMC Res Notes. 2013;6:211.

  26. Nie J, George KP, Tong TK, Tian Y, Shi Q. Effect of repeated endurance runs on cardiac biomarkers and function in adolescents. Med Sci Sports Exerc. 2011;43(11):2081–8.

    Article  CAS  PubMed  Google Scholar 

  27. La Gerche A, Connelly KA, Mooney DJ, MacIsaac AI, Prior DL. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart. 2008;94(7):860–6.

    Article  PubMed  Google Scholar 

  28. Wilson M, O’Hanlon R, Prasad S, Oxborough D, Godfrey R, Alpendurada F, et al. Biological markers of cardiac damage are not related to measures of cardiac systolic and diastolic function using cardiovascular magnetic resonance and echocardiography after an acute bout of prolonged endurance exercise. Br J Sports Med. 2011;45(10):780–4.

    Article  CAS  PubMed  Google Scholar 

  29. Serrano-Ostariz E, Legaz-Arrese A, Terreros-Blanco JL, Lopez-Ramon M, Cremades-Arroyos D, Carranza-Garcia LE, et al. Cardiac biomarkers and exercise duration and intensity during a cycle-touring event. Clin J Sport Med. 2009;19(4):293–9.

    Article  PubMed  Google Scholar 

  30. Middleton N, George K, Whyte G, Gaze D, Collinson P, Shave R. Cardiac troponin T release is stimulated by endurance exercise in healthy humans. J Am Coll Cardiol. 2008;52(22):1813–4.

    Article  CAS  PubMed  Google Scholar 

  31. Tulloh L, Robinson D, Patel A, Ware A, Prendergast C, Sullivan D, et al. Raised troponin T and echocardiographic abnormalities after prolonged strenuous exercise-the Australian Ironman Triathlon. Br J Sports Med. 2006;40(7):605–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Passaglia DG, Emed LG, Barberato SH, Guerios ST, Moser AI, Silva MM, et al. Acute effects of prolonged physical exercise: evaluation after a twenty-four-hour ultramarathon. Arq Bras Cardiol. 2013;100(1):21–8.

    Article  PubMed  Google Scholar 

  33. Shave R, George KP, Atkinson G, Hart E, Middleton N, Whyte G, et al. Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc. 2007;39(12):2099–106.

    Article  CAS  PubMed  Google Scholar 

  34. Shave R, Oxborough D. Exercise-induced cardiac injury: evidence from novel imaging techniques and highly sensitive cardiac troponin assays. Prog Cardiovasc Dis. 2012;54(5):407–15.

    Article  PubMed  Google Scholar 

  35. Shave R, Dawson E, Whyte G, George K, Nimmo M, Layden J, et al. The impact of prolonged exercise in a cold environment upon cardiac function. Med Sci Sports Exerc. 2004;36(9):1522–7.

    Article  PubMed  Google Scholar 

  36. Douglas PS, O’Toole ML, Miller WDB, Reichek N. Different effects of prolonged exercise on the right and left ventricles. J Am Coll Cardiol. 1990;15(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  37. Dougherty AH, Naccarelli GV, Gray EL, Hicks CH, Goldstein RA. Congestive heart failure with normal systolic function. Am J Cardiol. 1984;54(7):778–82.

    Article  CAS  PubMed  Google Scholar 

  38. Hessel MHM, Atsma DE, van der Valk EJM, Bax WH, Schalij MJ, van der Laarse A. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Archiv. 2008;455(6):979–86.

    Article  CAS  PubMed  Google Scholar 

  39. Feng J, Schaus BJ, Fallavollita JA, Lee TC, Canty JM Jr. Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001;103(16):2035–7.

    Article  CAS  PubMed  Google Scholar 

  40. Scherr J, Braun S, Schuster T, Hartmann C, Moehlenkamp S, Wolfarth B, et al. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med Sci Sports Exerc. 2011;43(10):1819–27.

    Article  CAS  PubMed  Google Scholar 

  41. Breuer HW, Skyschally A, Schulz R, Martin C, Wehr M, Heusch G. Heart rate variability and circulating catecholamine concentrations during steady state exercise in healthy volunteers. Br Heart J. 1993;70(2):144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eysmann SB, Gervino E, Vatner DE, Katz SE, Decker L, Douglas PS. Prolonged exercise alters beta-adrenergic responsiveness in healthy sedentary humans. J Appl Physiol (1985). 1996;80(2):616–22.

  43. Ashley EA, Kardos A, Jack ES, Habenbacher W, Wheeler M, Kim YM, et al. Angiotensin-converting enzyme genotype predicts cardiac and autonomic responses to prolonged exercise. J Am Coll Cardiol. 2006;48(3):523–31.

    Article  CAS  PubMed  Google Scholar 

  44. Douglas PS, O’Toole ML, Katz SE. Prolonged exercise alters cardiac chronotropic responsiveness in endurance athletes. J Sports Med Phys Fit. 1998;38(2):158–63.

    CAS  Google Scholar 

  45. Welsh RC, Warburton DER, Humen DP, Taylor DA, McGavock J, Haykowsky MJ. Prolonged strenuous exercise alters the cardiovascular response to dobutamine stimulation in male athletes. J Physiol. 2005;569(Pt 1):325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Millet GP, Vleck VE, Bentley DJ. Physiological differences between cycling and running: lessons from triathletes. Sports Med. 2009;39(3):179–206.

    Article  PubMed  Google Scholar 

  47. Schneider DA, Pollack J. Ventilatory threshold and maximal oxygen uptake during cycling and running in female triathletes. Int J Sports Med. 1991;12(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  48. Sou SM, Puelacher C, Twerenbold R, Wagener M, Honegger U, Reichlin T, et al. Direct comparison of cardiac troponin I and cardiac troponin T in the detection of exercise-induced myocardial ischemia. Clin Biochem. 2016;49(6):421–32.

    Article  CAS  PubMed  Google Scholar 

  49. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W. Athlete’s heart. J Am Coll Cardiol. 2002;40(10):1856–63.

    Article  PubMed  Google Scholar 

  50. Wilson M, O’Hanlon R, Prasad S, Deighan A, Macmillan P, Oxborough D, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol (1985). 2011;110(6):1622–6.

Download references

Author information

Authors and Affiliations

Authors

Contributions

JAD, JDW, DAC, MP, RS and JMO’D contributed to the conception and design of the study. JAD, JDW and JMO’D contributed to the development of the search strategy. JAD and JMO’D conducted the systematic review. JAD, JDW and JMO’D completed the acquisition of data. JAD, JDW and JMO’D performed the data analysis. All authors assisted with the interpretation. JAD, JDW and JMO’D were the principal writers of the manuscript. All authors contributed to the drafting and revision of the final article. All authors approved the final submitted version of the manuscript.

Corresponding author

Correspondence to J. M. O’Driscoll.

Ethics declarations

Conflict of interest

James Donaldson, Jonathan Wiles, Damian Coleman, Michael Papadakis, Rajan Sharma, and Jamie O’Driscoll declare that they have no competing interests.

Funding

No financial support was received for the conduct of this study or preparation of this manuscript.

Ethical approval

The need for ethical approval for this study was waived as it used previously published, publicly available data.

Consent for publication

Not applicable.

Availability of data and materials

All data supporting the results in this manuscript are available within the results sections or supplementary data files of the cited articles.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donaldson, J.A., Wiles, J.D., Coleman, D.A. et al. Left Ventricular Function and Cardiac Biomarker Release—The Influence of Exercise Intensity, Duration and Mode: A Systematic Review and Meta-Analysis. Sports Med 49, 1275–1289 (2019). https://doi.org/10.1007/s40279-019-01142-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-019-01142-5

Navigation