Skip to main content
Log in

Expression of VO2peak in Children and Youth, with Special Reference to Allometric Scaling

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The aim of this review was to highlight research that has focused on examining expressions of peak oxygen uptake (VO2peak) in children and youth, with special reference to allometric scaling. VO2peak is considered the highest VO2 during an increasing workload treadmill or bicycle ergometer test until volitional termination. We have reviewed scholarly works identified from PubMed, One Search, EBSCOhost and Google Scholar that examined VO2peak in absolute units (L·min−1), relative units [body mass, fat-free mass (FFM)], and allometric expressions [mass, height, lean body mass (LBM) or LBM of the legs raised to a power function] through July 2015. Often, the objective of measuring VO2peak is to evaluate cardiorespiratory function and fitness level. Since body size (body mass and height) frequently vary greatly in children and youth, expressing VO2peak in dimensionless units is often inappropriate for comparative or explanatory purposes. Consequently, expressing VO2peak in allometric units has gained increased research attention over the past 2 decades. In our review, scaling mass was the most frequent variable employed, with coefficients ranging from approximately 0.30 to over 1.0. The wide variance is probably due to several factors, including mass, height, LBM, sex, age, physical training, and small sample size. In summary, we recommend that since skeletal muscle is paramount for human locomotion, an allometric expression of VO2peak relative to LBM is the best expression of VO2peak in children and youth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rowland TW. Evolution of maximal oxygen uptake in children. In: Tomkinson GR, Olds TS, editors. Pediatric fitness, secular trends and geographic variability, vol. 50. Basel: Med Sport Sci; 2007. p. 200–9.

    Google Scholar 

  2. McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition, and human performance (7th edition). Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins; 2010. p. 169.

    Google Scholar 

  3. Armstrong N, Welsman J, Winsley R. Is peak VO2 a maximal index of children’s aerobic fitness? Int J Sports Med. 1996;17(5):356–9.

    Article  CAS  PubMed  Google Scholar 

  4. Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: a review and commentary. Med Sci Sports Exerc. 1995;27(9):1292–301.

    Article  CAS  PubMed  Google Scholar 

  5. Fairclough S, Stratton G. Physical activity, fitness, and affective responses of normal-weight and overweight adolescents during physical education. Pediatr Exerc Sci. 2006;17:53–63.

    Article  Google Scholar 

  6. LaMonte MJ, Barlow CE, Jurca R, et al. Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation. 2005;112(4):505–12.

    Article  PubMed  Google Scholar 

  7. Aspenes ST, Nilsen TIL, Skaug EA, et al. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med Sci Sports Exerc. 2011;43(8):1465–73.

    Article  PubMed  Google Scholar 

  8. Artero EG, Jackson AS, Sui X, et al. Longitudinal algorithms to estimate cardiorespiratory fitness. J Am Coll Cardiol. 2014;63(21):2289–96.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Andersen LB, Haraldsdottir J. Tracking of cardiovascular disease risk factors including maximal oxygen uptake and physical activity from late teenage to adulthood. An 8-year follow-up study. J Intern Med. 1993;234(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  10. Ekelund U, Anderson SA, Froberg K, et al. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European Youth Heart Study. Diabaetologia. 2007;50(9):1832–40.

    Article  CAS  Google Scholar 

  11. Ortega FB, Ruiz JR, Castillo MJ, et al. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes Relat Metab Disord. 2008;32(1):1–11.

    Article  CAS  Google Scholar 

  12. Nes BM, Osthus IBO, Welde B, et al. Peak oxygen uptake and physical activity in 13- to 18-year- olds: the Young-HUNT study. Med Sci Sports Exerc. 2013;45(2):304–13.

    Article  PubMed  Google Scholar 

  13. Rowland TW. Developmental exercise physiology. Human Kinetics: Champaign; 1996. p. 79.

    Google Scholar 

  14. Blair SN, Clark DG, Cureton KJ, et al. Exercise in fitness and childhood: implications for a lifetime of health. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine: youth, exercise and sport. Indianapolis (IN): Benchmark Press; 1989. p. 401–30.

    Google Scholar 

  15. Cureton KJ, Warren GL. Criterion-referenced standards for youth health-related fitness tests: a tutorial. Res Q Exerc Sport. 1990;61(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  16. Ruiz JR, Ortega FB, Rizzo NS, et al. High cardiovascular fitness is associated with low metabolic risk score in children: The European Youth Heart Study. Pediatr Res. 2007;61(3):350–5.

    Article  PubMed  Google Scholar 

  17. Pivarnik JM, Bray MS, Hergenroeder AC, et al. Ethnicity affects aerobic fitness in U.S. adolescent girls. Med Sci Sports Exerc. 1995;27(12):1635–8.

    Article  CAS  PubMed  Google Scholar 

  18. Trowbridge CA, Gower BA, Nagy TR, et al. Maximal aerobic capacity in African-American and Caucasian prepubertal children. Am J Physiol. 1997;273(4 Pt 1):E809–14.

    CAS  PubMed  Google Scholar 

  19. Andreacci JL, Robertson RJ, Dube JJ, et al. Comparison of maximal oxygen consumption between black and white prepubertal and pubertal children. Pediatr Res. 2004;56(5):706–13.

    Article  CAS  PubMed  Google Scholar 

  20. Shaibi GQ, Ball GD, Goran MI. Aerobic fitness among Caucasian, African-American, and Latino Youth. Ethn Dis. 2006;16(1):120–5.

    PubMed  Google Scholar 

  21. Bandyopadhyay A, Chatterjee S, Chatterjee P, et al. VO2 max of boys according to obesity status. J Hum Move Stud. 2006;51:167–80.

    Google Scholar 

  22. Berndtsson G, Mattsson E, Marcus C, et al. Age and gender differences in VO2 max in Swedish obese children and adolescents. Acta Paediatr. 2007;96(4):567–71.

    Article  CAS  PubMed  Google Scholar 

  23. Milano GE, Rodacki A, Radominski RB, et al. Scale of VO2 peak in obese and non-obese adolescents by different methods. Arq Bras Cardiol. 2009;93(6):554–7.

    Article  PubMed  Google Scholar 

  24. Loftin M, Sothern M, Trosclair L, et al. Scaling VO2 peak and non-obese girls. Obes Res. 2001;9(5):290–6.

    Article  CAS  PubMed  Google Scholar 

  25. Goran M, Fields DA, Hunter GR, et al. Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord. 2000;24(7):841–8.

    Article  CAS  PubMed  Google Scholar 

  26. Eisenmann JC, Malina RM. Secular trend in peak oxygen consumption among United States youth in the 20th century. Am J Hum Biol. 2002;14(6):699–706.

    Article  PubMed  Google Scholar 

  27. Tomkinson GR, Leger LA, Olds TS, et al. Secular trends in the performance of children and adolescents (1980–2000). Sports Med. 2003;33(4):285–300.

    Article  PubMed  Google Scholar 

  28. Leger LA, Mercier D, Gadoury C, et al. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1997;6(2):93–101.

    Article  Google Scholar 

  29. Liu NY, Plowman SA, Looney MA. The reliability and validity of the 20-meter shuttle test in American students 12 to 15 years old. Res Q ExercSport. 1992;63(4):360–5.

    Article  CAS  Google Scholar 

  30. van Mechelen W, Hlobil H, Kemper HC. Validation of two running tests as estimates of maximal aerobic power in children. Eur J Appl Physiol Occup Physiol. 1986;55(5):206–10.

    Google Scholar 

  31. Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.

    Article  PubMed  Google Scholar 

  32. Tanner JM. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlations. J Appl Physiol. 1949;2(1):1–15.

    CAS  PubMed  Google Scholar 

  33. Katch VL. Use of the oxygen/body weight ratio in correlational analyses: spurious correlations and statistical considerations. Med Sci Sports. 1973;5(4):253–7.

    CAS  PubMed  Google Scholar 

  34. Katch VL, Katch FI. Use of weight-adjusted oxygen uptake scores that avoid spurious correlations. Res Q. 1974;45(4):447–51.

    CAS  PubMed  Google Scholar 

  35. Vanderburgh PA, Katch F. Ratio scaling of VO2 max penalizes women with larger percent body fat, not lean body mass. Med Sci Sports Exerc. 1996;28(9):1204–8.

    Article  CAS  PubMed  Google Scholar 

  36. Astrand PO, Rodahl K. Textbook of Work Physiology. 3rd ed. New York: McGraw-Hill; 1986. p. 391–412.

    Google Scholar 

  37. Loftin M, Sothern M, Tuuri G, et al. Gender comparison of physiologic and perceptual responses in recreational marathoner runners. Int J Sports Physiol Perform. 2009;4(3):307–16.

    Article  PubMed  Google Scholar 

  38. Rowland T, Vanderburgh P, Cunningham L. Body size and the growth of maximal aerobic power in children: a longitudinal analysis. PediatrExerc Sci. 1997;9:262–74.

    Google Scholar 

  39. Kleiber M. Body size and metabolism. Hilgaridia. 1932;6:315–53.

    CAS  Google Scholar 

  40. Nevill AM, Markovic G, Vucetic V, et al. Can greater muscularity in larger individuals resolve the ¾ power-law controversy when modelling maximum oxygen uptake? Ann Hum Biol. 2004;31:436–45.

    Article  CAS  PubMed  Google Scholar 

  41. Welsman JR, Armstrong N. Interpreting exercise performance data in relation to body size. In: Armstrong N, van Mechelen W, editors. Paediatric exercise science and medicine. New York: Oxford University Press; 2008. p. 13–21.

    Chapter  Google Scholar 

  42. Bailey DA, Ross WD, Mirwald RL, et al. Size dissociation of maximal aerobic power during growth in boys. Med Sport. 1978;11:140–51.

    Google Scholar 

  43. Heusner AA. What does the power function reveal about structure and function in animal of different size? Ann Rev Physiol. 1987;49:121–33.

    Article  CAS  Google Scholar 

  44. Nevill AM, Bate S, Holder RL. Modeling physiological and anthropometric variables known to vary with body size and other confounding variables. Am J Phys Anthropol. 2005;48:141–53.

    Article  Google Scholar 

  45. Rowland T, Goff D, Martel L, et al. Normalization of maximal cardiovascular variables for body size in premenarcheal girls. Pediatr Cardiol. 2000;21(5):429–32.

    Article  CAS  PubMed  Google Scholar 

  46. Turley KR, Stanford PR, Rankinen T, et al. Scaling submaximal exercise cardiac output and stroke volume: the HERITAGE Family Study. Int J Sports Med. 2006;27(12):993–9.

    Article  CAS  PubMed  Google Scholar 

  47. Welsman JR, Armstrong N, Winter EM, et al. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28(2):259–65.

    Article  CAS  PubMed  Google Scholar 

  48. Rogers DM, Olson BL, Wilmore JH. Scaling for the VO2-to-body size relationship among children and adults. J Appl Physiol. 1995;79(3):958–67.

    CAS  PubMed  Google Scholar 

  49. McMurray RG, Hosick PA, Bugge A. Importance of proper scaling of aerobic power when relating to cardiometabolic risk factors in children. Ann Hum Biol. 2011;38(5):647–54.

    Article  PubMed  Google Scholar 

  50. Beekley MD, Abe T, Kondo M, et al. Comparison of normalized maximum aerobic capacity and body composition of sumo wrestlers to athletes in combat and other sports. J Sports Sci Med. 2006;5(CSSI):13–20.

    PubMed  PubMed Central  Google Scholar 

  51. Abe T, Kearns CF, Fukunaga T. Sex differences in whole body skeletal muscle mass measured by magnetic resonance imaging and its distribution in young Japanese adults. Br J Sports Med. 2003;37(5):436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eisenmann JC, Pivarnik JM, Malina RM. Scaling peak VO2 to body mass in young males and female distance runners. J Appl Physiol. 2001;90(6):2172–80.

    CAS  PubMed  Google Scholar 

  53. Armstrong N, Welsman JR, Nevill AM, et al. Modeling growth and maturation changes in peak oxygen uptake in 11-13 yr olds. J Appl Physiol. 1999;87(6):2230–6.

    CAS  PubMed  Google Scholar 

  54. Nevill AM, Holder RL, Baxter-Jones A, et al. Modeling developmental changes in strength and aerobic power in children. J Appl Physiol. 1998;84(3):963–70.

    CAS  PubMed  Google Scholar 

  55. Janz KF, Dawson JD, Mahoney LT. Tracking physical fitness and physical activity from childhood to adolescence: the Muscatine study. Med Sci SportsExerc. 2000;32(7):1250–7.

    CAS  Google Scholar 

  56. Cureton KJ, Sloniger MA, Black DM, et al. Metabolic determinants of the age-related improvement in one-mile run/walk performance in youth. Med Sci Sports Exerc. 1997;29(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  57. Pettersen SA, Fredriksen PM, Ingjer F. The correlation between peak oxygen uptake (VO2 peak) and running performance in children and adolescents: aspects of different units. Scand J Med Sci Sports. 2001;11(4):223–8.

    Article  CAS  PubMed  Google Scholar 

  58. Nevill A, Rowland T, Goff D, et al. Scaling or normalizing maximum oxygen uptake to predict 1- mile run time in boys. Eur J Appl Physiol. 2004;92(3):285–8.

    Article  PubMed  Google Scholar 

  59. Nevill AM, Ramsbottom R, Williams C. Scaling physiological measurements for individuals of different body size. Eur J Applied Physiol Occup Physiol. 1992;65(2):110–7.

    Article  CAS  Google Scholar 

  60. Billat V, Lepretre P-M, Heugas A-M, et al. Training and bioenergetics characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35(2):297–304.

    Article  PubMed  Google Scholar 

  61. Billat V, Demarle A, Paiva M, et al. Effect of training on the physiological factors of performance in elite marathon runners (males and females). Int J Sports Med. 2002;23(5):336–41.

    Article  CAS  PubMed  Google Scholar 

  62. Graves LE, Batterham AM, Foweather L, et al. Scaling of peak oxygen uptake in children: a comparison of three body size models. Med Sci Sports Exerc. 2013;45(12):2341–5.

    Article  CAS  PubMed  Google Scholar 

  63. McCarthy HD, Cole TJ, Fry T, et al. Body fat reference curves for children. Int J Obes (Lond). 2006;30(4):598–602.

    Article  CAS  Google Scholar 

  64. Tolfrey K, Barker A, Thom JM, et al. Scaling of maximal oxygen uptake by lower leg muscle volume in boys and men. J Appl Physiol. 2006;100(6):1851–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Loftin.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Mark Loftin, Melinda Sothern, Takashi Abe, and Marc Bonis declare that they have no conflicts of interest relevant to the content of this review

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loftin, M., Sothern, M., Abe, T. et al. Expression of VO2peak in Children and Youth, with Special Reference to Allometric Scaling. Sports Med 46, 1451–1460 (2016). https://doi.org/10.1007/s40279-016-0536-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0536-7

Keywords

Navigation