Abstract
Pediatric antiphospholipid syndrome (APS) is a rare acquired multisystem autoimmune thromboinflammatory condition characterized by thrombotic and non-thrombotic clinical manifestations. APS in children and adolescents typically presents with large-vessel thrombosis, thrombotic microangiopathy, and, rarely, obstetric morbidity. Non-thrombotic clinical manifestations are frequently seen in pediatric APS and may be present even before the vascular thrombotic events occur. We review insights into the pathogenesis of APS and discuss potential targets for therapy. The identification of multiple immunologic abnormalities in patients with APS reveals molecular targets for current or future treatment. Management strategies, especially for APS in adolescents, require screening for additional prothrombotic risk factors and consideration of counseling regarding contraceptive strategies, lifestyle recommendations, treatment adherence, and mental health issues associated with this autoimmune thrombophilia. The main goal of therapy in pediatric APS is the prevention of thrombosis. The management of acute thrombosis events in children and adolescents is the same as for primary APS, which involves isolated occurrences, and secondary APS, which is seen in association with another autoimmune disease, e.g., systemic lupus erythematosus. A pediatric hematologist should be consulted so other differential thrombophilic conditions can be eliminated. Therapy includes unfractionated heparin or low-molecular-weight heparin followed by vitamin K antagonists. Treatment of catastrophic APS involves triple therapy (anticoagulation, intravenous corticosteroid pulse therapy, and plasma exchange) and may include intravenous immunoglobulin for children and adolescents with this condition. New drugs such as eculizumab and sirolimus seem to be promising drugs for APS.

Similar content being viewed by others
References
Groot N, De Graeff N, Avcin T, Bader-Meunier B, Dolezalova P, Feldman B, et al. European evidence-based recommendations for diagnosis and treatment of paediatric antiphospholipid syndrome: the SHARE initiative. Ann Rheum Dis. 2017;76:1637–41.
Soybilgic A, Avcin T. Pediatric APS: state of the art. Curr Rheumatol Rep. 2020. https://doi.org/10.1007/s11926-020-0887-9.
Madison JA, Zuo Y, Knight JS. Pediatric antiphospholipid syndrome. Eur J Rheumatol. 2020;7(Suppl 1):S3-12.
Tarango C, Palumbo JS. Antiphospholipid syndrome in pediatric patients. Curr Opin Hematol. 2019;26:366–71.
Wincup C, Ioannou Y. The differences between childhood and adult onset antiphospholipid syndrome. Front Pediatr. 2018;6:1–10.
Rumsey DG, Myones B, Massicotte P. Diagnosis and treatment of antiphospholipid syndrome in childhood: a review. Blood Cells Mol Dis. 2017;67:34–40.
Meroni PL, Argolini LM, Pontikaki I. What is known about pediatric antiphospholipid syndrome? Expert Rev Hematol. 2016;9:977–85.
Islabão AG, Mota LMH, Ribeiro MCM, Arabi TM, Cividatti GN, Queiroz LB, et al. Childhood-onset systemic lupus erythematosus-related antiphospholipid syndrome: a multicenter study with 1519 patients. Autoimmun Rev. 2020. https://doi.org/10.1016/j.autrev.2020.102693.
Lourenço B, Kozu KT, Leal GN, Silva MF, Fernandes EGC, França CMP, et al. Contraception for adolescents with chronic rheumatic diseases. Rev Bras Reumatol. 2017;57:73–81.
Sarecka-Hujar B, Kopyta I. Antiphospholipid syndrome and its role in pediatric cerebrovascular diseases: a literature review. World J Clin Cases. 2020;8:1806–17.
Ishiguro A, Ezinne CC, Michihata N, Nakadate H, Manabe A, Taki M, et al. Pediatric thromboembolism: a national survey in Japan. Int J Hematol. 2017;105:52–8.
Avčin T, Cimaz R, Silverman ED, Cervera R, Gattorno M, Garay S, et al. Pediatric antiphospholipid syndrome: clinical and immunologic features of 121 patients in an international registry. Pediatrics. 2008;122:e1100–7.
Zamora-Ustaran A, Escarcega-Alarcón RO, Garcia-Carrasco M, Faugier E, Mendieta-Zeron S, Mendoza-Pinto C, et al. Antiphospholipid syndrome in Mexican children. Israel Med Assoc J. 2012;14:286–9.
Ma J, Song H, Wei M, He Y. Clinical characteristics and thrombosis outcomes of paediatric antiphospholipid syndrome: analysis of 58 patients. Clin Rheumatol. 2018;37:1295–303.
Rao AAN, Elwood K, Kaur D, Warad DM, Rodriguez V. A retrospective review of pediatric antiphospholipid syndrome and thrombosis outcomes. Blood Coag Fibrinol. 2017;28:205–10.
Merashli M, Arcaro A, Graf M, Gentile F, Ames PRJ. Autoimmune haemolytic anaemia and antiphospholipid antibodies in paediatrics: a systematic review and meta-analysis. Clin Rheumatol. 2020;40:1967–73.
Lube GE, Ferriani MPL, Campos LMA, Terreri MT, Bonfá E, Magalhães CS, et al. Evans syndrome at childhood-onset systemic lupus erythematosus diagnosis: a large multicenter study. Pediatr Blood Cancer. 2016;63:1238–43. https://doi.org/10.1002/pbc.25976.
Berman H, Rodríguez-Pintó I, Cervera R, Gregory S, de Meis E, Rodrigues CEM, et al. Pediatric catastrophic antiphospholipid syndrome: descriptive analysis of 45 patients from the “CAPS registry.” Autoimmun Rev. 2014;13:157–62.
Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.
Herwald H, Theopold U. Hemostasis in invertebrates and vertebrates: an evolutionary excursion. J Innate Immun. 2011;3:1–2.
Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133:906–18.
Rosina S, Chighizola CB, Ravelli A, Cimaz R. Pediatric antiphospholipid syndrome: from pathogenesis to clinical management. Curr Rheumatol Rep. 2021. https://doi.org/10.1007/s11926-020-00976-7.
McDonnell T, Wincup C, Buchholz I, Pericleous C, Giles I, Ripoll V, et al. The role of beta-2-glycoprotein I in health and disease associating structure with function: more than just APS. Blood Rev. 2020;39:100610.
Ruben E, Planer W, Chinnaraj M, Chen Z, Zuo X, Pengo V, et al. The J-elongated conformation of b2-glycoprotein I predominates in solution: implications for our understanding of antiphospholipid syndrome. J Biol Chem. 2020;295:10794–806.
Aǧar Ç, Van Os GMA, Mörgelin M, Sprenger RR, Marquart JA, Urbanus RT, et al. β2-Glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood. 2010;116:1336–43.
Mahler M, Albesa R, Zohoury N, Bertolaccini ML, Ateka-Barrutia O, Rodriguez-Garcia JL, et al. Autoantibodies to domain 1 of beta 2 glycoprotein I determined using a novel chemiluminescence immunoassay demonstrate association with thrombosis in patients with antiphospholipid syndrome. Lupus. 2016;25:911–6.
Szabó G, Pénzes K, Torner B, Fagyas M, Tarr T, Soltész P, et al. Distinct and overlapping effects of β2-glycoprotein I conformational variants in ligand interactions and functional assays. J Immunol Methods. 2020. https://doi.org/10.1016/j.jim.2020.112877.
Ho Y, Ahuja K, Körner H, Adams M. β2GP1, anti-β2GP1 antibodies and platelets: key players in the antiphospholipid syndrome. Antibodies. 2016;5:12.
El-Assaad F, Krilis SA, Giannakopoulos B. Posttranslational forms of beta 2-glycoprotein I in the pathogenesis of the antiphospholipid syndrome. Thromb J. 2016;14(Suppl):1.
Weaver JC, Krilis SA, Giannakopoulos B. Oxidative post-translational modification of βeta 2-glycoprotein I in the pathophysiology of the anti-phospholipid syndrome. Free Radic Biol Med. 2018;125:98–103.
Hanly JG, Smith SA. Anti-β2-glycoprotein I (GPI) autoantibodies, annexin V binding and the anti-phospholipid syndrome. Clin Exp Immunol. 2000;120:537–43.
Pozzi N, Acquasaliente L, Frasson R, Cristiani A, Moro S, Banzato A, et al. β2-Glycoprotein I binds to thrombin and selectively inhibits the enzyme procoagulant functions. J Thromb Haemost. 2013;11:1093–102.
Aǧar Ç, De Groot PG, Mörgelin M, Monk SDDC, Van Os G, Levels JHM, et al. β2-glycoprotein I: a novel component of innate immunity. Blood. 2011;117:6939–47.
Müller-Calleja N, Lackner KJ. Mechanisms of cellular activation in the antiphospholipid syndrome. Semin Thromb Hemost. 2018;44:483–92.
Vreede AP, Bockenstedt PL, Knight JS. Antiphospholipid syndrome: an update for clinicians and scientists. Curr Opin Rheumatol. 2017;29:458–66.
Sacharidou A, Chambliss KL, Ulrich V, Salmon JE, Shen Y-M, Herz J, et al. Thrombosis and hemostasis: antiphospholipid antibodies induce thrombosis by PP2A activation via apoER2-Dab2-SHC1 complex formation in endothelium. Blood. 2018;131:2097. https://doi.org/10.1182/BLOOD-2017-11-814681.
Sacharidou A, Shaul PW, Mineo C. New insights in the pathophysiology of antiphospholipid syndrome. Semin Thromb Hemost. 2018;44:475. https://doi.org/10.1055/S-0036-1597286.
Ames PRJ, Batuca JR, Ciampa A, Iannaccone L, Alves JD. Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome. J Rheumatol. 2010;37:2523–30. https://doi.org/10.3899/JRHEUM.100494.
Ramesh S, Morrell CN, Tarango C, Thomas GD, Yuhanna IS, Girardi G, et al. Antiphospholipid antibodies promote leukocyte–endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J Clin Investig. 2011;121:120. https://doi.org/10.1172/JCI39828.
Cifù A, Domenis R, Pistis C, Curcio F, Fabris M. Anti-β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies exert similar pro-thrombotic effects in peripheral blood monocytes and endothelial cells. Auto-immun Highlights. 2019. https://doi.org/10.1186/S13317-019-0113-9.
Velásquez M, Rojas M, Abrahams VM, Escudero C, Cadavid ÁP. Mechanisms of endothelial dysfunction in antiphospholipid syndrome: association with clinical manifestations. Front Physiol. 2018;9:1840.
Corban MT, Duarte-Garcia A, McBane RD, Matteson EL, Lerman LO, Lerman A. Antiphospholipid syndrome: role of vascular endothelial cells and implications for risk stratification and targeted therapeutics. J Am Coll Cardiol. 2017;69:2317–30.
Canaud G, Legendre C, Terzi F. AKT/mTORC pathway in antiphospholipid-related vasculopathy: a new player in the game. Lupus. 2015;24:227–30.
Canaud G, Bienaimé F, Tabarin F, Bataillon G, Seilhean D, Noël L-H, et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 2014;371:303–12.
Nicolo D, Aaradhachary A, Monestier M. Atherosclerosis, antiphospholipid syndrome, and antiphospholipid antibodies. Front Biosci. 2007;12:2171–82. https://doi.org/10.2741/2220.
López-Pedrera C, Buendía P, José Cuadrado M, Siendones E, Angeles Aguirre M, Barbarroja N, et al. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-κB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum. 2006;54:301–11.
van den Hoogen LL, van Roon JAG, Radstake TRDJ, Fritsch-Stork RDE, Derksen RHWM. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev. 2016;15:50–60.
Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, et al. Anti-β2GPI/β2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology. 2018;138:140–50.
Rauch J, Salem D, Subang R, Kuwana M, Levine JS. β2-Glycoprotein I-reactive T cells in autoimmune disease. Front Immunol. 2018;9:2836.
Chaturvedi S, Brodsky RA, McCrae KR. Complement in the pathophysiology of the antiphospholipid syndrome. Front Immunol. 2019;10:449.
Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, Chen H, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135:239–51.
Salmon J, Girardi G. The role of complement in the antiphospholipid syndrome. Curr Dir Autoimmun. 2004;7:133–48. https://doi.org/10.1159/000075690.
Tinti MG, Carnevale V, Inglese M, Molinaro F, Bernal M, Migliore A, et al. Eculizumab in refractory catastrophic antiphospholipid syndrome: a case report and systematic review of the literature. Clin Exp Med. 2019;19:281–8.
Rönnblom L, Eloranta ML. The interferon signature in autoimmune diseases. Curr Opin Rheumatol. 2013;25:248–53.
Xourgia E, Tektonidou MG. Type I interferon gene expression in antiphospholipid syndrome: pathogenetic, clinical and therapeutic implications. J Autoimmun. 2019. https://doi.org/10.1016/j.jaut.2019.102311.
Van Den Hoogen LL, Rossato M, Lopes AP, Pandit A, Bekker CPJ, Fritsch-Stork RDE, et al. MicroRNA downregulation in plasmacytoid dendritic cells in interferon-positive systemic lupus erythematosus and antiphospholipid syndrome. Rheumatology (UK). 2018;57:1669–74.
Ugolini-Lopes MR, Torrezan GT, Gândara APR, Olivieri EHR, Nascimento IS, Okazaki E, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18:393–8.
Palli E, Kravvariti E, Tektonidou MG. Type I interferon signature in primary antiphospholipid syndrome: clinical and laboratory associations. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00487.
Abdel-Wahab N, Lopez-Olivo MA, Pinto-Patarroyo GP, Suarez-Almazor ME. Systematic review of case reports of antiphospholipid syndrome following infection. Lupus. 2016;25:1520–31.
Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME. Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus. 2018;27:572–83.
Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46:1089–98.
Tung ML, Tan B, Cherian R, Chandra B. Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol Adv Pract. 2021;5.
Avčin T, Ambrožič A, Kuhar M, Kveder T, Rozman B. Anticardiolipin and anti-β2 glycoprotein I antibodies in sera of 61 apparently healthy children at regular preventive visits. Rheumatology. 2001;40:565–73.
Aguiar CL, Soybilgic A, Avcin T, Myones BL. Pediatric antiphospholipid syndrome. Curr Rheumatol Rep. 2015. https://doi.org/10.1007/s11926-015-0504-5.
Male C, Foulon D, Hoogendoorn H, Vegh P, Silverman E, David M, et al. Predictive value of persistent versus transient antiphospholipid antibody subtypes for the risk of thrombotic events in pediatric patients with systemic lupus erythematosus. Blood. 2005;106:4152–8.
Chayoua W, Kelchtermans H, Moore GW, Musiał J, Wahl D, de Laat B, et al. Identification of high thrombotic risk triple-positive antiphospholipid syndrome patients is dependent on anti-cardiolipin and anti-β2glycoprotein I antibody detection assays. J Thromb Haemost. 2018;16:2016–23.
Tonello M, Mattia E, Favaro M, Del Ross T, Calligaro A, Salvan E, et al. IgG phosphatidylserine/prothrombin antibodies as a risk factor of thrombosis in antiphospholipid antibody carriers. Thromb Res. 2019;177:157–60.
Barbhaiya M, Zuily S, Ahmadzadeh Y, Amigo M, Avcin T, Bertolaccini ML, et al. Development of new international antiphospholipid syndrome classification criteria phase I/II report: generation and reduction of candidate criteria. Arthritis Care Res. 2020;73:1490–501.
Erkan D, Lockshin M. APS ACTION—antiphospholipid syndrome alliance for clinical trials and InternatiOnal Networking. Lupus. 2012;21:695–8. https://doi.org/10.1177/0961203312437810.
Go EJL, O’Neil KM. The catastrophic antiphospholipid syndrome in children. Curr Opin Rheumatol. 2017;29:516–22.
Cervera R, Font J, Gómez-Puerta JA, Espinosa G, Cucho M, Bucciarelli S, et al. Validation of the preliminary criteria for the classification of catastrophic antiphospholipid syndrome Asherson for the Catastrophic Antiphospholipid Syndrome Registry Project Group. Ann Rheum Dis. 2005;64:1205–9.
Sciascia S, Amigo M, Roccatello D, Khamashta M. Diagnosing antiphospholipid syndrome: “extra-criteria” manifestations and technical advances. Nat Rev Rheumatol. 2017;13:548–60. https://doi.org/10.1038/NRRHEUM.2017.124.
Driest KD, Sturm MS, O’Brien SH, Spencer CH, Stanek JR, Ardoin SP. Factors associated with thrombosis in pediatric patients with systemic lupus erythematosus. Lupus. 2016;25:749–53.
Zuily S, Domingues V, Suty-Selton C, Eschwège V, Bertoletti L, Chaouat A, et al. Antiphospholipid antibodies can identify lupus patients at risk of pulmonary hypertension: a systematic review and meta-analysis. Autoimmun Rev. 2017;16:576–86.
Anuardo P, Verdier M, Gormezano NWS, Ferreira GRV, Leal GN, Lianza A, et al. Subclinical pulmonary hypertension in childhood systemic lupus erythematosus associated with minor disease manifestations. Pediatr Cardiol. 2017;38:234–9.
Clauss SB, Manco-Johnson MJ, Quivers E, Takemoto C, Spevak PJ. Primary antiphospholipid antibody syndrome and cardiac involvement in a child. Pediatr Cardiol. 2003;24:292–4.
Miyamae T, Kawabe T. Non-criteria manifestations of Juvenile antiphospholipid syndrome. J Clin Med. 2021;10:1240.
Zuily S, Huttin O, Mohamed S, Marie PY, Selton-Suty C, Wahl D. Valvular heart disease in antiphospholipid syndrome. Curr Rheumatol Rep. 2013. https://doi.org/10.1007/s11926-013-0320-8.
Leal GN, Silva KF, França CMP, Lianza AC, Andrade JL, Campos LMA, et al. Subclinical right ventricle systolic dysfunction in childhood-onset systemic lupus erythematosus: insights from two-dimensional speckle-tracking echocardiography. Lupus. 2015;24:613–20.
Vecchi AP, Borba EF, Bonfá E, Cocuzza M, Pieri P, Kim CA, et al. Penile anthropometry in systemic lupus erythematosus patients. Lupus. 2011;20:512–8.
Rabelo-Júnior CN, Bonfá E, Carvalho JF, Cocuzza M, Saito O, Abdo CH, et al. Penile alterations with severe sperm abnormalities in antiphospholipid syndrome associated with systemic lupus erythematosus. Clin Rheumatol. 2013;32:109–13.
Rabelo-Júnior CN, Freire De Carvalho J, Lopes Gallinaro A, Bonfá E, Cocuzza M, Saito O, et al. Primary antiphospholipid syndrome: Morphofunctional penile abnormalities with normal sperm analysis. Lupus. 2012;21:251–6.
Mulliez S, de Keyser F, Verbist C, Vantilborgh A, Wijns W, Beukinga I, et al. Lupus anticoagulant-hypoprothrombinemia syndrome: report of two cases and review of the literature. Lupus. 2015;24:736–45. https://doi.org/10.1177/0961203314558859.
Pilania R, Suri D, Jindal A, Kumar N, Sharma A, Sharma P, et al. Lupus anticoagulant hypoprothrombinemia syndrome associated with systemic lupus erythematosus in children: report of two cases and systematic review of the literature. Rheumatol Int. 2018;38:1933–40. https://doi.org/10.1007/S00296-018-4127-9.
Gedik KC, Siddique S, Aguiar CL. Rituximab use in pediatric lupus anticoagulant hypoprothrombinemia syndrome—report of three cases and review of the literature. Lupus. 2018;27:1190–7. https://doi.org/10.1177/0961203317751853.
Silva CA. Poor adherence to drug treatment in children and adolescents with autoimmune rheumatic diseases. Revista Paulista de Pediatria. 2019;37:138–9.
van Weelden M, Queiroz LB, Lourenço DMR, Kozua K, Lourenço B, Silva CA. Alcohol, smoking and illicit drug use in pediatric systemic lupus erythematosus patients. Rev Bras Reumatol. 2016;56:228–34.
Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. 2019;78:1296–304.
Silva CA, Aikawa NE, Bonfa E. Vaccinations in juvenile chronic inflammatory diseases: an update. Nat Rev Rheumatol. 2013;9:532–43.
De Medeiros DM, Silva CA, Bueno C, Ribeiro ACM, Viana VDST, Carvalho JF, et al. Pandemic influenza immunization in primary antiphospholipid syndrome (PAPS): a trigger to thrombosis and autoantibody production? Lupus. 2014;23:1412–6.
Talotta R, Robertson ES. Antiphospholipid antibodies and risk of post-COVID-19 vaccination thrombophilia: The straw that breaks the camel’s back? Cytokine Growth Factor Rev. 2021;60:52–60.
Weathermon R, Crabb DW. Alcohol and medication interactions. Alcohol Res Health. 1999;23:40–54.
De Carolis S, Tabacco S, Rizzo F, Giannini A, Botta A, Salvi S, et al. Antiphospholipid syndrome: An update on risk factors for pregnancy outcome. Autoimmun Rev. 2018;17:956–66.
Liu L, Sun D. Pregnancy outcomes in patients with primary antiphospholipid syndrome: a systematic review and meta-analysis. Medicine. 2019;98:e15733.
Sammaritano LR, Bermas BL, Chakravarty EE, Chambers C, Clowse MEB, Lockshin MD, et al. 2020 American College of Rheumatology guideline for the management of reproductive health in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2020;72:529–56.
Gualano B, Lúcia De Sá Pinto A, Perondi MB, Roschel H, Maluf A, Sallum E, et al. Therapeutic effects of exercise training in patients with pediatric rheumatic diseases. Rev Bras Reumatol. 2011;51:490–6.
Gualano B, Bonfa E, Pereira RMR, Silva CA. Physical activity for paediatric rheumatic diseases: standing up against old paradigms. Nat Rev Rheumatol. 2017;13:368–79.
Prado DM, Gualano B, Pinto ALS, Sallum AM, Perondi MB, Roschel H, et al. Exercise in a child with systemic lupus erythematosus and antiphospholipid syndrome. Med Sci Sports Exerc. 2011;43:2221–3.
Signorelli SS, Scuto S, Marino E, Giusti M, Xourafa A, Gaudio A. Anticoagulants and osteoporosis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215275.
Gajic-Veljanoski O, Phua CW, Shah PS, Cheung AM. Effects of long-term low-molecular-weight heparin on fractures and bone density in non-pregnant adults: a systematic review with meta-analysis. J Gen Intern Med. 2016;31:947–57.
Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Göttl U, et al. Antithrombotic therapy in neonates and children, 9th ed: antithrombotic therapy and prevention of thrombosis. Chest. 2012;141(2 SUPPL):e737S-e801S.
Young G. Anticoagulation therapies in children. Pediatr Clin North Am. 2017;64:1257–69.
Moffett BS, Lee-Kim YN, Galati M, Mahoney D, Shah MD, Teruya J, et al. Population pharmacokinetics of enoxaparin in pediatric patients. Ann Pharmacother. 2018;52:140–6.
Monagle P, Michelson AD, Bovill E, Andrew M. Antithrombotic therapy in children. In: Chest. American College of Chest Physicians; 2001. p. 344S-370S.
Dinh CN, Moffett BS, Galati M, Lee-Kim Y, Yee DL, Mahoney D. A critical evaluation of enoxaparin dose adjustment guidelines in children. J Pediatr Pharmacol Ther. 2019;24:128–33.
Cohen H, Cuadrado MJ, Erkan D, Duarte-Garcia A, Isenberg DA, Knight JS, et al. 16th International Congress on antiphospholipid antibodies task force report on antiphospholipid syndrome treatment trends. Lupus. 2020;29:1571–93. https://doi.org/10.1177/0961203320950461.
Ruiz-Irastorza G, Cuadrado MJ, Ruiz-Arruza I, Brey R, Crowther M, Derksen R, et al. Evidence-based recommendations for the prevention and long-term management of thrombosis in antiphospholipid antibody-positive patients: report of a task force at the 13th International Congress on antiphospholipid antibodies. In: Lupus. Lupus; 2011. p. 206–18.
Pons-Estel BA, Bonfa E, Soriano ER, Cardiel MH, Izcovich A, Popoff F, et al. First Latin American clinical practice guidelines for the treatment of systemic lupus erythematosus: Latin American Group for the Study of Lupus (GLADEL, Grupo Latino Americano de Estudio del Lupus)-Pan-American League of Associations of Rheumatology (PAN). Ann Rheum Dis. 2018;77:1549–57.
Khachatryan T, Hauschild C, Hoff J, Contractor T, Khachatryan A, Tran H, et al. Review of direct oral anticoagulants and guide for effective drug utilization. Am J Cardiovasc Drugs. 2019;19:525–39.
Mikler J, Samoš M, Bolek T, Škorňová I, Stančiaková L, Staško J, et al. Direct oral anticoagulants: novel approach for the treatment of thrombosis in pediatric patients? Pediatr Cardiol. 2019;40:1431–8.
Male C, Thom K, O’Brien SH. Direct oral anticoagulants: what will be their role in children? Thromb Res. 2019;173:178–85.
Guimarães G, Balbi M, De Souza Pacheco M, Monticielo OA, Funke A, Danowski A, et al. Antiphospholipid Syndrome Committee of the Brazilian Society of Rheumatology position statement on the use of direct oral anticoagulants (DOACs) in antiphospholipid syndrome (APS). Adv Rheumatol. 2020. https://doi.org/10.1186/s42358-020-00125-9.
Vranckx P, Valgimigli M, Heidbuchel H. The significance of drug–drug and drug–food interactions of oral anticoagulation. Arrhythmia Electrophysiol Rev. 2018;7:55–61.
Barr D, Epps QJ. Direct oral anticoagulants: a review of common medication errors. J Thromb Thrombolysis. 2019;47:146–54.
Halton JML, Picard AC, Harper R, Huang F, Brueckmann M, Gropper S, et al. Pharmacokinetics, pharmacodynamics, safety and tolerability of dabigatran etexilate oral liquid formulation in infants with venous thromboembolism. Thromb Haemost. 2017;117:2168–75.
Halton JML, Albisetti M, Biss B, Bomgaars L, Brueckmann M, Gropper S, et al. Phase IIa study of dabigatran etexilate in children with venous thrombosis: pharmacokinetics, safety, and tolerability. J Thromb Haemost. 2017;15:2147–57.
Halton JML, Lehr T, Cronin L, Lobmeyer MT, Haertter S, Belletrutti M, et al. Safety, tolerability and clinical pharmacology of dabigatran etexilate in adolescents: an open-label phase IIa study. Thromb Haemost. 2016;116:461–71.
Halton J, Brandão LR, Luciani M, Bomgaars L, Chalmers E, Mitchell LG, et al. Dabigatran etexilate for the treatment of acute venous thromboembolism in children (DIVERSITY): a randomised, controlled, open-label, phase 2b/3, non-inferiority trial. Lancet Haematol. 2021;8:e22-33.
Brandão LR, Albisetti M, Halton J, Bomgaars L, Chalmers E, Mitchell LG, et al. Safety of dabigatran etexilate for the secondary prevention of venous thromboembolism in children. Blood. 2020;135:491–504.
Male C, Lensing AWA, Palumbo JS, Kumar R, Nurmeev I, Hege K, et al. Rivaroxaban compared with standard anticoagulants for the treatment of acute venous thromboembolism in children: a randomised, controlled, phase 3 trial. Lancet Haematol. 2020;7:e18-27.
Connor P, van Kammen MS, Lensing AWA, Chalmers E, Kállay K, Hege K, et al. Safety and efficacy of rivaroxaban in pediatric cerebral venous thrombosis (Einstein-Jr CVT). Blood Adv. 2020;4:6250–8.
Payne RM, Burns KM, Glatz AC, Li D, Li X, Monagle P, et al. A multi-national trial of a direct oral anticoagulant in children with cardiac disease: design and rationale of the Safety of ApiXaban On Pediatric Heart disease On the preventioN of Embolism (SAXOPHONE) study. Am Heart J. 2019;217:52–63.
Xu R, Tang H, Chen L, Ge W, Yang J. Developing a physiologically based pharmacokinetic model of apixaban to predict scenarios of drug–drug interactions, renal impairment and paediatric populations. Br J Clin Pharmacol. 2021;87:3244–54.
Ommen CH, Albisetti M, Chan AK, Estepp J, Jaffray J, Kenet G, et al. The Edoxaban Hokusai VTE PEDIATRICS Study: an open-label, multicenter, randomized study of edoxaban for pediatric venous thromboembolic disease. Res Pract Thromb Haemost. 2020;4:886–92.
Albisetti M. Use of direct oral anticoagulants in children and adolescents. Hamostaseologie. 2020;40:64–73.
Ordi-Ros J, Sáez-Comet L, Pérez-Conesa M, Vidal X, Riera-Mestre A, Castro-Salomó A, et al. Rivaroxaban versus Vitamin K antagonist in antiphospholipid syndrome a randomized noninferiority trial. Ann Intern Med. 2019;171:685–94. https://doi.org/10.7326/M19-0291.
Cohen H, Hunt BJ, Efthymiou M, Arachchillage DRJ, Mackie IJ, Clawson S, et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): a randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016;3:e426–36.
Malec K, Broniatowska E, Undas A. Direct oral anticoagulants in patients with antiphospholipid syndrome: a cohort study. Lupus. 2020;29:37–44.
Dufrost V, Risse J, Reshetnyak T, Satybaldyeva M, Du Y, Yan XX, et al. Increased risk of thrombosis in antiphospholipid syndrome patients treated with direct oral anticoagulants. Results from an international patient-level data meta-analysis. Autoimmun Rev. 2018;17:1011–21.
Pengo V, Denas G, Zoppellaro G, Jose SP, Hoxha A, Ruffatti A, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018;132:1365–71.
Sayar Z, Moll R, Isenberg D, Cohen H. Thrombotic antiphospholipid syndrome: a practical guide to diagnosis and management. Thromb Res. 2021;198:213–21.
Rodríguez-Pintó I, Moitinho M, Santacreu I, Shoenfeld Y, Erkan D, Espinosa G, et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of 500 patients from the International CAPS Registry. Autoimmun Rev. 2016;15:1120–4.
Espinosa G, Cervera R, Asherson RA. Catastrophic antiphospholipid syndrome and sepsis. A common link? J Rheumatol. 2007;34:923–6.
Cervera R, Bucciarelli S, Plasín MA, Gómez-Puerta JA, Plaza J, Pons-Estel G, et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of a series of 280 patients from the “CAPS Registry.” J Autoimmun. 2009;32:240–5.
Groot N, De Graeff N, Avcin T, Bader-Meunier B, Brogan P, Dolezalova P, et al. European evidence-based recommendations for diagnosis and treatment of childhood-onset systemic lupus erythematosus: the SHARE initiative. Ann Rheum Dis. 2017;76:1788–96.
An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu Rev Med. 2017;68:317–30.
Ponticelli C, Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf. 2017;16:411–9.
Rand JH, Wu XX, Quinn AS, Chen PP, Hathcock JJ, Taatjes DJ. Hydroxychloroquine directly reduces the bindin of antiphospholipid antibody-β2-glycoprotein I complexes to phospholipid bilayers. Blood. 2008;112:1687–95.
Rand JH, Wu XX, Quinn AS, Ashton AW, Chen PP, Hathcock JJ, et al. Hydroxychloroquine protects the annexinA5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010;115:2292–9.
Kravvariti E, Koutsogianni A, Samoli E, Sfikakis PP, Tektonidou MG. The effect of hydroxychloroquine on thrombosis prevention and antiphospholipid antibody levels in primary antiphospholipid syndrome: a pilot open label randomized prospective study. Autoimmun Rev. 2020;19:102491.
Anderson E, Furie R. Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations. Immunotherapy. 2020;12:275–86. https://doi.org/10.2217/IMT-2020-0017.
Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2019;382:211–21. https://doi.org/10.1056/NEJMOA1912196.
Berman H, Rodríguez-Pintó I, Cervera R, Morel N, Costedoat-Chalumeau N, Erkan D, et al. Rituximab use in the catastrophic antiphospholipid syndrome: descriptive analysis of the CAPS registry patients receiving rituximab. Autoimmun Rev. 2013;12:1085–90.
Sciascia S, Radin M, Cecchi I, Rubini E, Bazzan M, Roccatello D. Long-term effect of B-cells depletion alone as rescue therapy for severe thrombocytopenia in primary antiphospholipid syndrome. Semin Arthritis Rheum. 2019;48:741–4.
Mormile I, Granata F, Punziano A, de Paulis A, Rossi FW. Immunosuppressive treatment in antiphospholipid syndrome: is it worth it? Biomedicines. 2021;9:1–21.
Erkan D, Vega J, Ramón G, Kozora E, Lockshin MD. A pilot open-label phase II trial of rituximab for non-criteria manifestations of antiphospholipid syndrome. Arthritis Rheum. 2013;65:464–71.
Erkan D, Harrison MJ, Levy R, Peterson M, Petri M, Sammaritano L, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 2007;56:2382–91.
Arnaud L, Mathian A, Devilliers H, Ruffatti A, Tektonidou M, Forastiero R, et al. Patient-level analysis of five international cohorts further confirms the efficacy of aspirin for the primary prevention of thrombosis in patients with antiphospholipid antibodies. Autoimmun Rev. 2015;14:192–200.
Bala MM, Paszek E, Lesniak W, Wloch-Kopec D, Jasinska K, Undas A. Antiplatelet and anticoagulant agents for primary prevention of thrombosis in individuals with antiphospholipid antibodies. Cochrane Database System Rev. 2018. https://doi.org/10.1002/14651858.cd012534.pub2.
Zuo Y, Barbhaiya M, Erkan D. Primary thrombosis prophylaxis in persistently antiphospholipid antibody-positive individuals: where do we stand in 2018? Curr Rheumatol Rep. 2018;20:1–12.
Zheng SL, Roddick AJ. Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis. JAMA J Am Med Assoc. 2019;321:277–87.
Burgos PI, Alarcón GS. Thrombosis in systemic lupus erythematosus: risk and protection. Expert Rev Cardiovasc Ther. 2009;7:1541–9.
Chang JC, Mandell DS, Knight AM. High health care utilization preceding diagnosis of systemic lupus erythematosus in youth. Arthritis Care Res. 2018;70:1303–11.
Cervera R, Serrano R, Pons-Estel GJ, Ceberio-Hualde L, Shoenfeld Y, De Ramón E, et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis. 2015;74:1011–8.
Amigo MC, Goycochea-Robles MV, Espinosa-Cuervo G, Medina G, Barragán-Garfias JA, Vargas A, et al. Development and initial validation of a damage index (DIAPS) in patients with thrombotic antiphospholipid syndrome (APS). Lupus. 2015;24:927–34.
Akca UK, Ayaz NA. Comorbidities of antiphospholipid syndrome and systemic lupus erythematosus in children. Curr Rheumatol Rep. 2020. https://doi.org/10.1007/s11926-020-00899-3.
Torricelli AK, Ugolini-Lopes MR, Bonfá E, Andrade D. Antiphospholipid syndrome damage index (DIAPS): distinct long-term kinetic in primary antiphospholipid syndrome and antiphospholipid syndrome related to systemic lupus erythematosus. Lupus. 2020;29:256–62.
Sciascia S, Sanna G, Murru V, Roccatello D, Khamashta MA, Bertolaccini ML. GAPSS: the global anti-phospholipid syndrome score. Rheumatology (UK). 2013;52:1397–403.
Radin M, Sciascia S, Erkan D, Pengo V, Tektonidou MG, Ugarte A, et al. The adjusted global antiphospholipid syndrome score (aGAPSS) and the risk of recurrent thrombosis: results from the APS ACTION cohort. Semin Arthritis Rheum. 2019;49:464–8.
Nascimento IS, Radin M, Gândara APR, Sciascia S, de Andrade DCO. Global antiphospholipid syndrome score and anti-ß2-glycoprotein I domain I for thrombotic risk stratification in antiphospholipid syndrome: a four-year prospective study. Lupus. 2020;29:676–85.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
Our study was supported by grants to CASE from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 304984/2020-5), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/03756-4), and Núcleo de Apoio à Pesquisa “Saúde da Criança e do Adolescente” da USP (NAP-CriAd).
Conflict of interest
Aline Garcia Islabão, Vitor Cavalcanti Trindade, Licia Maria Henrique da Mota, Danieli Castro Oliveira Andrade, and Clovis Artur Silva have no conflicts of interest that are directly relevant to the content of this article.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Availability of data and materials
Not applicable.
Code availability
Not applicable.
Author contributions
All authors performed the literature search, had full access to all of the data, take responsibility for the integrity of the data and the accuracy and interpretation of the data analysis, and prepared the manuscript.
Rights and permissions
About this article
Cite this article
Islabão, A.G., Trindade, V.C., da Mota, L.M.H. et al. Managing Antiphospholipid Syndrome in Children and Adolescents: Current and Future Prospects. Pediatr Drugs 24, 13–27 (2022). https://doi.org/10.1007/s40272-021-00484-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40272-021-00484-w