Skip to main content

Advertisement

Log in

Managing Antiphospholipid Syndrome in Children and Adolescents: Current and Future Prospects

  • Leading Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Pediatric antiphospholipid syndrome (APS) is a rare acquired multisystem autoimmune thromboinflammatory condition characterized by thrombotic and non-thrombotic clinical manifestations. APS in children and adolescents typically presents with large-vessel thrombosis, thrombotic microangiopathy, and, rarely, obstetric morbidity. Non-thrombotic clinical manifestations are frequently seen in pediatric APS and may be present even before the vascular thrombotic events occur. We review insights into the pathogenesis of APS and discuss potential targets for therapy. The identification of multiple immunologic abnormalities in patients with APS reveals molecular targets for current or future treatment. Management strategies, especially for APS in adolescents, require screening for additional prothrombotic risk factors and consideration of counseling regarding contraceptive strategies, lifestyle recommendations, treatment adherence, and mental health issues associated with this autoimmune thrombophilia. The main goal of therapy in pediatric APS is the prevention of thrombosis. The management of acute thrombosis events in children and adolescents is the same as for primary APS, which involves isolated occurrences, and secondary APS, which is seen in association with another autoimmune disease, e.g., systemic lupus erythematosus. A pediatric hematologist should be consulted so other differential thrombophilic conditions can be eliminated. Therapy includes unfractionated heparin or low-molecular-weight heparin followed by vitamin K antagonists. Treatment of catastrophic APS involves triple therapy (anticoagulation, intravenous corticosteroid pulse therapy, and plasma exchange) and may include intravenous immunoglobulin for children and adolescents with this condition. New drugs such as eculizumab and sirolimus seem to be promising drugs for APS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Groot N, De Graeff N, Avcin T, Bader-Meunier B, Dolezalova P, Feldman B, et al. European evidence-based recommendations for diagnosis and treatment of paediatric antiphospholipid syndrome: the SHARE initiative. Ann Rheum Dis. 2017;76:1637–41.

    CAS  PubMed  Google Scholar 

  2. Soybilgic A, Avcin T. Pediatric APS: state of the art. Curr Rheumatol Rep. 2020. https://doi.org/10.1007/s11926-020-0887-9.

    Article  PubMed  Google Scholar 

  3. Madison JA, Zuo Y, Knight JS. Pediatric antiphospholipid syndrome. Eur J Rheumatol. 2020;7(Suppl 1):S3-12.

    Google Scholar 

  4. Tarango C, Palumbo JS. Antiphospholipid syndrome in pediatric patients. Curr Opin Hematol. 2019;26:366–71.

    CAS  PubMed  Google Scholar 

  5. Wincup C, Ioannou Y. The differences between childhood and adult onset antiphospholipid syndrome. Front Pediatr. 2018;6:1–10.

    Google Scholar 

  6. Rumsey DG, Myones B, Massicotte P. Diagnosis and treatment of antiphospholipid syndrome in childhood: a review. Blood Cells Mol Dis. 2017;67:34–40.

    CAS  PubMed  Google Scholar 

  7. Meroni PL, Argolini LM, Pontikaki I. What is known about pediatric antiphospholipid syndrome? Expert Rev Hematol. 2016;9:977–85.

    CAS  PubMed  Google Scholar 

  8. Islabão AG, Mota LMH, Ribeiro MCM, Arabi TM, Cividatti GN, Queiroz LB, et al. Childhood-onset systemic lupus erythematosus-related antiphospholipid syndrome: a multicenter study with 1519 patients. Autoimmun Rev. 2020. https://doi.org/10.1016/j.autrev.2020.102693.

  9. Lourenço B, Kozu KT, Leal GN, Silva MF, Fernandes EGC, França CMP, et al. Contraception for adolescents with chronic rheumatic diseases. Rev Bras Reumatol. 2017;57:73–81.

    Google Scholar 

  10. Sarecka-Hujar B, Kopyta I. Antiphospholipid syndrome and its role in pediatric cerebrovascular diseases: a literature review. World J Clin Cases. 2020;8:1806–17.

    PubMed  PubMed Central  Google Scholar 

  11. Ishiguro A, Ezinne CC, Michihata N, Nakadate H, Manabe A, Taki M, et al. Pediatric thromboembolism: a national survey in Japan. Int J Hematol. 2017;105:52–8.

    PubMed  Google Scholar 

  12. Avčin T, Cimaz R, Silverman ED, Cervera R, Gattorno M, Garay S, et al. Pediatric antiphospholipid syndrome: clinical and immunologic features of 121 patients in an international registry. Pediatrics. 2008;122:e1100–7.

    PubMed  Google Scholar 

  13. Zamora-Ustaran A, Escarcega-Alarcón RO, Garcia-Carrasco M, Faugier E, Mendieta-Zeron S, Mendoza-Pinto C, et al. Antiphospholipid syndrome in Mexican children. Israel Med Assoc J. 2012;14:286–9.

    Google Scholar 

  14. Ma J, Song H, Wei M, He Y. Clinical characteristics and thrombosis outcomes of paediatric antiphospholipid syndrome: analysis of 58 patients. Clin Rheumatol. 2018;37:1295–303.

    PubMed  Google Scholar 

  15. Rao AAN, Elwood K, Kaur D, Warad DM, Rodriguez V. A retrospective review of pediatric antiphospholipid syndrome and thrombosis outcomes. Blood Coag Fibrinol. 2017;28:205–10.

    Google Scholar 

  16. Merashli M, Arcaro A, Graf M, Gentile F, Ames PRJ. Autoimmune haemolytic anaemia and antiphospholipid antibodies in paediatrics: a systematic review and meta-analysis. Clin Rheumatol. 2020;40:1967–73.

    PubMed  Google Scholar 

  17. Lube GE, Ferriani MPL, Campos LMA, Terreri MT, Bonfá E, Magalhães CS, et al. Evans syndrome at childhood-onset systemic lupus erythematosus diagnosis: a large multicenter study. Pediatr Blood Cancer. 2016;63:1238–43. https://doi.org/10.1002/pbc.25976.

    Article  CAS  PubMed  Google Scholar 

  18. Berman H, Rodríguez-Pintó I, Cervera R, Gregory S, de Meis E, Rodrigues CEM, et al. Pediatric catastrophic antiphospholipid syndrome: descriptive analysis of 45 patients from the “CAPS registry.” Autoimmun Rev. 2014;13:157–62.

    PubMed  Google Scholar 

  19. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    CAS  PubMed  Google Scholar 

  20. Herwald H, Theopold U. Hemostasis in invertebrates and vertebrates: an evolutionary excursion. J Innate Immun. 2011;3:1–2.

    PubMed  Google Scholar 

  21. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133:906–18.

    CAS  PubMed  Google Scholar 

  22. Rosina S, Chighizola CB, Ravelli A, Cimaz R. Pediatric antiphospholipid syndrome: from pathogenesis to clinical management. Curr Rheumatol Rep. 2021. https://doi.org/10.1007/s11926-020-00976-7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McDonnell T, Wincup C, Buchholz I, Pericleous C, Giles I, Ripoll V, et al. The role of beta-2-glycoprotein I in health and disease associating structure with function: more than just APS. Blood Rev. 2020;39:100610.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruben E, Planer W, Chinnaraj M, Chen Z, Zuo X, Pengo V, et al. The J-elongated conformation of b2-glycoprotein I predominates in solution: implications for our understanding of antiphospholipid syndrome. J Biol Chem. 2020;295:10794–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aǧar Ç, Van Os GMA, Mörgelin M, Sprenger RR, Marquart JA, Urbanus RT, et al. β2-Glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood. 2010;116:1336–43.

    PubMed  Google Scholar 

  26. Mahler M, Albesa R, Zohoury N, Bertolaccini ML, Ateka-Barrutia O, Rodriguez-Garcia JL, et al. Autoantibodies to domain 1 of beta 2 glycoprotein I determined using a novel chemiluminescence immunoassay demonstrate association with thrombosis in patients with antiphospholipid syndrome. Lupus. 2016;25:911–6.

    CAS  PubMed  Google Scholar 

  27. Szabó G, Pénzes K, Torner B, Fagyas M, Tarr T, Soltész P, et al. Distinct and overlapping effects of β2-glycoprotein I conformational variants in ligand interactions and functional assays. J Immunol Methods. 2020. https://doi.org/10.1016/j.jim.2020.112877.

  28. Ho Y, Ahuja K, Körner H, Adams M. β2GP1, anti-β2GP1 antibodies and platelets: key players in the antiphospholipid syndrome. Antibodies. 2016;5:12.

    PubMed Central  Google Scholar 

  29. El-Assaad F, Krilis SA, Giannakopoulos B. Posttranslational forms of beta 2-glycoprotein I in the pathogenesis of the antiphospholipid syndrome. Thromb J. 2016;14(Suppl):1.

    Google Scholar 

  30. Weaver JC, Krilis SA, Giannakopoulos B. Oxidative post-translational modification of βeta 2-glycoprotein I in the pathophysiology of the anti-phospholipid syndrome. Free Radic Biol Med. 2018;125:98–103.

    CAS  PubMed  Google Scholar 

  31. Hanly JG, Smith SA. Anti-β2-glycoprotein I (GPI) autoantibodies, annexin V binding and the anti-phospholipid syndrome. Clin Exp Immunol. 2000;120:537–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pozzi N, Acquasaliente L, Frasson R, Cristiani A, Moro S, Banzato A, et al. β2-Glycoprotein I binds to thrombin and selectively inhibits the enzyme procoagulant functions. J Thromb Haemost. 2013;11:1093–102.

    CAS  PubMed  Google Scholar 

  33. Aǧar Ç, De Groot PG, Mörgelin M, Monk SDDC, Van Os G, Levels JHM, et al. β2-glycoprotein I: a novel component of innate immunity. Blood. 2011;117:6939–47.

    PubMed  Google Scholar 

  34. Müller-Calleja N, Lackner KJ. Mechanisms of cellular activation in the antiphospholipid syndrome. Semin Thromb Hemost. 2018;44:483–92.

    PubMed  Google Scholar 

  35. Vreede AP, Bockenstedt PL, Knight JS. Antiphospholipid syndrome: an update for clinicians and scientists. Curr Opin Rheumatol. 2017;29:458–66.

    PubMed  PubMed Central  Google Scholar 

  36. Sacharidou A, Chambliss KL, Ulrich V, Salmon JE, Shen Y-M, Herz J, et al. Thrombosis and hemostasis: antiphospholipid antibodies induce thrombosis by PP2A activation via apoER2-Dab2-SHC1 complex formation in endothelium. Blood. 2018;131:2097. https://doi.org/10.1182/BLOOD-2017-11-814681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sacharidou A, Shaul PW, Mineo C. New insights in the pathophysiology of antiphospholipid syndrome. Semin Thromb Hemost. 2018;44:475. https://doi.org/10.1055/S-0036-1597286.

    Article  CAS  PubMed  Google Scholar 

  38. Ames PRJ, Batuca JR, Ciampa A, Iannaccone L, Alves JD. Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome. J Rheumatol. 2010;37:2523–30. https://doi.org/10.3899/JRHEUM.100494.

    Article  CAS  PubMed  Google Scholar 

  39. Ramesh S, Morrell CN, Tarango C, Thomas GD, Yuhanna IS, Girardi G, et al. Antiphospholipid antibodies promote leukocyte–endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J Clin Investig. 2011;121:120. https://doi.org/10.1172/JCI39828.

    Article  CAS  PubMed  Google Scholar 

  40. Cifù A, Domenis R, Pistis C, Curcio F, Fabris M. Anti-β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies exert similar pro-thrombotic effects in peripheral blood monocytes and endothelial cells. Auto-immun Highlights. 2019. https://doi.org/10.1186/S13317-019-0113-9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Velásquez M, Rojas M, Abrahams VM, Escudero C, Cadavid ÁP. Mechanisms of endothelial dysfunction in antiphospholipid syndrome: association with clinical manifestations. Front Physiol. 2018;9:1840.

    PubMed  PubMed Central  Google Scholar 

  42. Corban MT, Duarte-Garcia A, McBane RD, Matteson EL, Lerman LO, Lerman A. Antiphospholipid syndrome: role of vascular endothelial cells and implications for risk stratification and targeted therapeutics. J Am Coll Cardiol. 2017;69:2317–30.

    PubMed  Google Scholar 

  43. Canaud G, Legendre C, Terzi F. AKT/mTORC pathway in antiphospholipid-related vasculopathy: a new player in the game. Lupus. 2015;24:227–30.

    CAS  PubMed  Google Scholar 

  44. Canaud G, Bienaimé F, Tabarin F, Bataillon G, Seilhean D, Noël L-H, et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N Engl J Med. 2014;371:303–12.

    PubMed  Google Scholar 

  45. Nicolo D, Aaradhachary A, Monestier M. Atherosclerosis, antiphospholipid syndrome, and antiphospholipid antibodies. Front Biosci. 2007;12:2171–82. https://doi.org/10.2741/2220.

    Article  CAS  PubMed  Google Scholar 

  46. López-Pedrera C, Buendía P, José Cuadrado M, Siendones E, Angeles Aguirre M, Barbarroja N, et al. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-κB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum. 2006;54:301–11.

    PubMed  Google Scholar 

  47. van den Hoogen LL, van Roon JAG, Radstake TRDJ, Fritsch-Stork RDE, Derksen RHWM. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev. 2016;15:50–60.

    PubMed  Google Scholar 

  48. Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, et al. Anti-β2GPI/β2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology. 2018;138:140–50.

    CAS  PubMed  Google Scholar 

  49. Rauch J, Salem D, Subang R, Kuwana M, Levine JS. β2-Glycoprotein I-reactive T cells in autoimmune disease. Front Immunol. 2018;9:2836.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chaturvedi S, Brodsky RA, McCrae KR. Complement in the pathophysiology of the antiphospholipid syndrome. Front Immunol. 2019;10:449.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaturvedi S, Braunstein EM, Yuan X, Yu J, Alexander A, Chen H, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135:239–51.

    PubMed  PubMed Central  Google Scholar 

  52. Salmon J, Girardi G. The role of complement in the antiphospholipid syndrome. Curr Dir Autoimmun. 2004;7:133–48. https://doi.org/10.1159/000075690.

    Article  CAS  PubMed  Google Scholar 

  53. Tinti MG, Carnevale V, Inglese M, Molinaro F, Bernal M, Migliore A, et al. Eculizumab in refractory catastrophic antiphospholipid syndrome: a case report and systematic review of the literature. Clin Exp Med. 2019;19:281–8.

    PubMed  Google Scholar 

  54. Rönnblom L, Eloranta ML. The interferon signature in autoimmune diseases. Curr Opin Rheumatol. 2013;25:248–53.

    PubMed  Google Scholar 

  55. Xourgia E, Tektonidou MG. Type I interferon gene expression in antiphospholipid syndrome: pathogenetic, clinical and therapeutic implications. J Autoimmun. 2019. https://doi.org/10.1016/j.jaut.2019.102311.

    Article  PubMed  Google Scholar 

  56. Van Den Hoogen LL, Rossato M, Lopes AP, Pandit A, Bekker CPJ, Fritsch-Stork RDE, et al. MicroRNA downregulation in plasmacytoid dendritic cells in interferon-positive systemic lupus erythematosus and antiphospholipid syndrome. Rheumatology (UK). 2018;57:1669–74.

    Google Scholar 

  57. Ugolini-Lopes MR, Torrezan GT, Gândara APR, Olivieri EHR, Nascimento IS, Okazaki E, et al. Enhanced type I interferon gene signature in primary antiphospholipid syndrome: association with earlier disease onset and preeclampsia. Autoimmun Rev. 2019;18:393–8.

    CAS  PubMed  Google Scholar 

  58. Palli E, Kravvariti E, Tektonidou MG. Type I interferon signature in primary antiphospholipid syndrome: clinical and laboratory associations. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.00487.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abdel-Wahab N, Lopez-Olivo MA, Pinto-Patarroyo GP, Suarez-Almazor ME. Systematic review of case reports of antiphospholipid syndrome following infection. Lupus. 2016;25:1520–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME. Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus. 2018;27:572–83.

    CAS  PubMed  Google Scholar 

  61. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46:1089–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tung ML, Tan B, Cherian R, Chandra B. Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol Adv Pract. 2021;5.

  63. Avčin T, Ambrožič A, Kuhar M, Kveder T, Rozman B. Anticardiolipin and anti-β2 glycoprotein I antibodies in sera of 61 apparently healthy children at regular preventive visits. Rheumatology. 2001;40:565–73.

    PubMed  Google Scholar 

  64. Aguiar CL, Soybilgic A, Avcin T, Myones BL. Pediatric antiphospholipid syndrome. Curr Rheumatol Rep. 2015. https://doi.org/10.1007/s11926-015-0504-5.

    Article  PubMed  Google Scholar 

  65. Male C, Foulon D, Hoogendoorn H, Vegh P, Silverman E, David M, et al. Predictive value of persistent versus transient antiphospholipid antibody subtypes for the risk of thrombotic events in pediatric patients with systemic lupus erythematosus. Blood. 2005;106:4152–8.

    CAS  PubMed  Google Scholar 

  66. Chayoua W, Kelchtermans H, Moore GW, Musiał J, Wahl D, de Laat B, et al. Identification of high thrombotic risk triple-positive antiphospholipid syndrome patients is dependent on anti-cardiolipin and anti-β2glycoprotein I antibody detection assays. J Thromb Haemost. 2018;16:2016–23.

    CAS  PubMed  Google Scholar 

  67. Tonello M, Mattia E, Favaro M, Del Ross T, Calligaro A, Salvan E, et al. IgG phosphatidylserine/prothrombin antibodies as a risk factor of thrombosis in antiphospholipid antibody carriers. Thromb Res. 2019;177:157–60.

    CAS  PubMed  Google Scholar 

  68. Barbhaiya M, Zuily S, Ahmadzadeh Y, Amigo M, Avcin T, Bertolaccini ML, et al. Development of new international antiphospholipid syndrome classification criteria phase I/II report: generation and reduction of candidate criteria. Arthritis Care Res. 2020;73:1490–501.

  69. Erkan D, Lockshin M. APS ACTION—antiphospholipid syndrome alliance for clinical trials and InternatiOnal Networking. Lupus. 2012;21:695–8. https://doi.org/10.1177/0961203312437810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Go EJL, O’Neil KM. The catastrophic antiphospholipid syndrome in children. Curr Opin Rheumatol. 2017;29:516–22.

    CAS  PubMed  Google Scholar 

  71. Cervera R, Font J, Gómez-Puerta JA, Espinosa G, Cucho M, Bucciarelli S, et al. Validation of the preliminary criteria for the classification of catastrophic antiphospholipid syndrome Asherson for the Catastrophic Antiphospholipid Syndrome Registry Project Group. Ann Rheum Dis. 2005;64:1205–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sciascia S, Amigo M, Roccatello D, Khamashta M. Diagnosing antiphospholipid syndrome: “extra-criteria” manifestations and technical advances. Nat Rev Rheumatol. 2017;13:548–60. https://doi.org/10.1038/NRRHEUM.2017.124.

    Article  CAS  PubMed  Google Scholar 

  73. Driest KD, Sturm MS, O’Brien SH, Spencer CH, Stanek JR, Ardoin SP. Factors associated with thrombosis in pediatric patients with systemic lupus erythematosus. Lupus. 2016;25:749–53.

    CAS  PubMed  Google Scholar 

  74. Zuily S, Domingues V, Suty-Selton C, Eschwège V, Bertoletti L, Chaouat A, et al. Antiphospholipid antibodies can identify lupus patients at risk of pulmonary hypertension: a systematic review and meta-analysis. Autoimmun Rev. 2017;16:576–86.

    CAS  PubMed  Google Scholar 

  75. Anuardo P, Verdier M, Gormezano NWS, Ferreira GRV, Leal GN, Lianza A, et al. Subclinical pulmonary hypertension in childhood systemic lupus erythematosus associated with minor disease manifestations. Pediatr Cardiol. 2017;38:234–9.

    PubMed  Google Scholar 

  76. Clauss SB, Manco-Johnson MJ, Quivers E, Takemoto C, Spevak PJ. Primary antiphospholipid antibody syndrome and cardiac involvement in a child. Pediatr Cardiol. 2003;24:292–4.

    CAS  PubMed  Google Scholar 

  77. Miyamae T, Kawabe T. Non-criteria manifestations of Juvenile antiphospholipid syndrome. J Clin Med. 2021;10:1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zuily S, Huttin O, Mohamed S, Marie PY, Selton-Suty C, Wahl D. Valvular heart disease in antiphospholipid syndrome. Curr Rheumatol Rep. 2013. https://doi.org/10.1007/s11926-013-0320-8.

    Article  PubMed  Google Scholar 

  79. Leal GN, Silva KF, França CMP, Lianza AC, Andrade JL, Campos LMA, et al. Subclinical right ventricle systolic dysfunction in childhood-onset systemic lupus erythematosus: insights from two-dimensional speckle-tracking echocardiography. Lupus. 2015;24:613–20.

    CAS  PubMed  Google Scholar 

  80. Vecchi AP, Borba EF, Bonfá E, Cocuzza M, Pieri P, Kim CA, et al. Penile anthropometry in systemic lupus erythematosus patients. Lupus. 2011;20:512–8.

    CAS  PubMed  Google Scholar 

  81. Rabelo-Júnior CN, Bonfá E, Carvalho JF, Cocuzza M, Saito O, Abdo CH, et al. Penile alterations with severe sperm abnormalities in antiphospholipid syndrome associated with systemic lupus erythematosus. Clin Rheumatol. 2013;32:109–13.

    PubMed  Google Scholar 

  82. Rabelo-Júnior CN, Freire De Carvalho J, Lopes Gallinaro A, Bonfá E, Cocuzza M, Saito O, et al. Primary antiphospholipid syndrome: Morphofunctional penile abnormalities with normal sperm analysis. Lupus. 2012;21:251–6.

    PubMed  Google Scholar 

  83. Mulliez S, de Keyser F, Verbist C, Vantilborgh A, Wijns W, Beukinga I, et al. Lupus anticoagulant-hypoprothrombinemia syndrome: report of two cases and review of the literature. Lupus. 2015;24:736–45. https://doi.org/10.1177/0961203314558859.

    Article  CAS  PubMed  Google Scholar 

  84. Pilania R, Suri D, Jindal A, Kumar N, Sharma A, Sharma P, et al. Lupus anticoagulant hypoprothrombinemia syndrome associated with systemic lupus erythematosus in children: report of two cases and systematic review of the literature. Rheumatol Int. 2018;38:1933–40. https://doi.org/10.1007/S00296-018-4127-9.

    Article  PubMed  Google Scholar 

  85. Gedik KC, Siddique S, Aguiar CL. Rituximab use in pediatric lupus anticoagulant hypoprothrombinemia syndrome—report of three cases and review of the literature. Lupus. 2018;27:1190–7. https://doi.org/10.1177/0961203317751853.

    Article  CAS  Google Scholar 

  86. Silva CA. Poor adherence to drug treatment in children and adolescents with autoimmune rheumatic diseases. Revista Paulista de Pediatria. 2019;37:138–9.

    PubMed  PubMed Central  Google Scholar 

  87. van Weelden M, Queiroz LB, Lourenço DMR, Kozua K, Lourenço B, Silva CA. Alcohol, smoking and illicit drug use in pediatric systemic lupus erythematosus patients. Rev Bras Reumatol. 2016;56:228–34.

    Google Scholar 

  88. Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. 2019;78:1296–304.

    CAS  PubMed  Google Scholar 

  89. Silva CA, Aikawa NE, Bonfa E. Vaccinations in juvenile chronic inflammatory diseases: an update. Nat Rev Rheumatol. 2013;9:532–43.

    CAS  PubMed  Google Scholar 

  90. De Medeiros DM, Silva CA, Bueno C, Ribeiro ACM, Viana VDST, Carvalho JF, et al. Pandemic influenza immunization in primary antiphospholipid syndrome (PAPS): a trigger to thrombosis and autoantibody production? Lupus. 2014;23:1412–6.

    PubMed  Google Scholar 

  91. Talotta R, Robertson ES. Antiphospholipid antibodies and risk of post-COVID-19 vaccination thrombophilia: The straw that breaks the camel’s back? Cytokine Growth Factor Rev. 2021;60:52–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Weathermon R, Crabb DW. Alcohol and medication interactions. Alcohol Res Health. 1999;23:40–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. De Carolis S, Tabacco S, Rizzo F, Giannini A, Botta A, Salvi S, et al. Antiphospholipid syndrome: An update on risk factors for pregnancy outcome. Autoimmun Rev. 2018;17:956–66.

    PubMed  Google Scholar 

  94. Liu L, Sun D. Pregnancy outcomes in patients with primary antiphospholipid syndrome: a systematic review and meta-analysis. Medicine. 2019;98:e15733.

    PubMed  PubMed Central  Google Scholar 

  95. Sammaritano LR, Bermas BL, Chakravarty EE, Chambers C, Clowse MEB, Lockshin MD, et al. 2020 American College of Rheumatology guideline for the management of reproductive health in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2020;72:529–56.

    PubMed  Google Scholar 

  96. Gualano B, Lúcia De Sá Pinto A, Perondi MB, Roschel H, Maluf A, Sallum E, et al. Therapeutic effects of exercise training in patients with pediatric rheumatic diseases. Rev Bras Reumatol. 2011;51:490–6.

  97. Gualano B, Bonfa E, Pereira RMR, Silva CA. Physical activity for paediatric rheumatic diseases: standing up against old paradigms. Nat Rev Rheumatol. 2017;13:368–79.

    PubMed  Google Scholar 

  98. Prado DM, Gualano B, Pinto ALS, Sallum AM, Perondi MB, Roschel H, et al. Exercise in a child with systemic lupus erythematosus and antiphospholipid syndrome. Med Sci Sports Exerc. 2011;43:2221–3.

    PubMed  Google Scholar 

  99. Signorelli SS, Scuto S, Marino E, Giusti M, Xourafa A, Gaudio A. Anticoagulants and osteoporosis. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215275.

  100. Gajic-Veljanoski O, Phua CW, Shah PS, Cheung AM. Effects of long-term low-molecular-weight heparin on fractures and bone density in non-pregnant adults: a systematic review with meta-analysis. J Gen Intern Med. 2016;31:947–57.

    PubMed  PubMed Central  Google Scholar 

  101. Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Göttl U, et al. Antithrombotic therapy in neonates and children, 9th ed: antithrombotic therapy and prevention of thrombosis. Chest. 2012;141(2 SUPPL):e737S-e801S.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Young G. Anticoagulation therapies in children. Pediatr Clin North Am. 2017;64:1257–69.

    PubMed  Google Scholar 

  103. Moffett BS, Lee-Kim YN, Galati M, Mahoney D, Shah MD, Teruya J, et al. Population pharmacokinetics of enoxaparin in pediatric patients. Ann Pharmacother. 2018;52:140–6.

    CAS  PubMed  Google Scholar 

  104. Monagle P, Michelson AD, Bovill E, Andrew M. Antithrombotic therapy in children. In: Chest. American College of Chest Physicians; 2001. p. 344S-370S.

    Google Scholar 

  105. Dinh CN, Moffett BS, Galati M, Lee-Kim Y, Yee DL, Mahoney D. A critical evaluation of enoxaparin dose adjustment guidelines in children. J Pediatr Pharmacol Ther. 2019;24:128–33.

    PubMed  PubMed Central  Google Scholar 

  106. Cohen H, Cuadrado MJ, Erkan D, Duarte-Garcia A, Isenberg DA, Knight JS, et al. 16th International Congress on antiphospholipid antibodies task force report on antiphospholipid syndrome treatment trends. Lupus. 2020;29:1571–93. https://doi.org/10.1177/0961203320950461.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ruiz-Irastorza G, Cuadrado MJ, Ruiz-Arruza I, Brey R, Crowther M, Derksen R, et al. Evidence-based recommendations for the prevention and long-term management of thrombosis in antiphospholipid antibody-positive patients: report of a task force at the 13th International Congress on antiphospholipid antibodies. In: Lupus. Lupus; 2011. p. 206–18.

  108. Pons-Estel BA, Bonfa E, Soriano ER, Cardiel MH, Izcovich A, Popoff F, et al. First Latin American clinical practice guidelines for the treatment of systemic lupus erythematosus: Latin American Group for the Study of Lupus (GLADEL, Grupo Latino Americano de Estudio del Lupus)-Pan-American League of Associations of Rheumatology (PAN). Ann Rheum Dis. 2018;77:1549–57.

    CAS  PubMed  Google Scholar 

  109. Khachatryan T, Hauschild C, Hoff J, Contractor T, Khachatryan A, Tran H, et al. Review of direct oral anticoagulants and guide for effective drug utilization. Am J Cardiovasc Drugs. 2019;19:525–39.

    CAS  PubMed  Google Scholar 

  110. Mikler J, Samoš M, Bolek T, Škorňová I, Stančiaková L, Staško J, et al. Direct oral anticoagulants: novel approach for the treatment of thrombosis in pediatric patients? Pediatr Cardiol. 2019;40:1431–8.

    PubMed  Google Scholar 

  111. Male C, Thom K, O’Brien SH. Direct oral anticoagulants: what will be their role in children? Thromb Res. 2019;173:178–85.

    CAS  PubMed  Google Scholar 

  112. Guimarães G, Balbi M, De Souza Pacheco M, Monticielo OA, Funke A, Danowski A, et al. Antiphospholipid Syndrome Committee of the Brazilian Society of Rheumatology position statement on the use of direct oral anticoagulants (DOACs) in antiphospholipid syndrome (APS). Adv Rheumatol. 2020. https://doi.org/10.1186/s42358-020-00125-9.

    Article  PubMed  Google Scholar 

  113. Vranckx P, Valgimigli M, Heidbuchel H. The significance of drug–drug and drug–food interactions of oral anticoagulation. Arrhythmia Electrophysiol Rev. 2018;7:55–61.

    Google Scholar 

  114. Barr D, Epps QJ. Direct oral anticoagulants: a review of common medication errors. J Thromb Thrombolysis. 2019;47:146–54.

    PubMed  Google Scholar 

  115. Halton JML, Picard AC, Harper R, Huang F, Brueckmann M, Gropper S, et al. Pharmacokinetics, pharmacodynamics, safety and tolerability of dabigatran etexilate oral liquid formulation in infants with venous thromboembolism. Thromb Haemost. 2017;117:2168–75.

    PubMed  Google Scholar 

  116. Halton JML, Albisetti M, Biss B, Bomgaars L, Brueckmann M, Gropper S, et al. Phase IIa study of dabigatran etexilate in children with venous thrombosis: pharmacokinetics, safety, and tolerability. J Thromb Haemost. 2017;15:2147–57.

    CAS  PubMed  Google Scholar 

  117. Halton JML, Lehr T, Cronin L, Lobmeyer MT, Haertter S, Belletrutti M, et al. Safety, tolerability and clinical pharmacology of dabigatran etexilate in adolescents: an open-label phase IIa study. Thromb Haemost. 2016;116:461–71.

    PubMed  Google Scholar 

  118. Halton J, Brandão LR, Luciani M, Bomgaars L, Chalmers E, Mitchell LG, et al. Dabigatran etexilate for the treatment of acute venous thromboembolism in children (DIVERSITY): a randomised, controlled, open-label, phase 2b/3, non-inferiority trial. Lancet Haematol. 2021;8:e22-33.

    PubMed  Google Scholar 

  119. Brandão LR, Albisetti M, Halton J, Bomgaars L, Chalmers E, Mitchell LG, et al. Safety of dabigatran etexilate for the secondary prevention of venous thromboembolism in children. Blood. 2020;135:491–504.

    PubMed  PubMed Central  Google Scholar 

  120. Male C, Lensing AWA, Palumbo JS, Kumar R, Nurmeev I, Hege K, et al. Rivaroxaban compared with standard anticoagulants for the treatment of acute venous thromboembolism in children: a randomised, controlled, phase 3 trial. Lancet Haematol. 2020;7:e18-27.

    PubMed  Google Scholar 

  121. Connor P, van Kammen MS, Lensing AWA, Chalmers E, Kállay K, Hege K, et al. Safety and efficacy of rivaroxaban in pediatric cerebral venous thrombosis (Einstein-Jr CVT). Blood Adv. 2020;4:6250–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Payne RM, Burns KM, Glatz AC, Li D, Li X, Monagle P, et al. A multi-national trial of a direct oral anticoagulant in children with cardiac disease: design and rationale of the Safety of ApiXaban On Pediatric Heart disease On the preventioN of Embolism (SAXOPHONE) study. Am Heart J. 2019;217:52–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu R, Tang H, Chen L, Ge W, Yang J. Developing a physiologically based pharmacokinetic model of apixaban to predict scenarios of drug–drug interactions, renal impairment and paediatric populations. Br J Clin Pharmacol. 2021;87:3244–54.

    CAS  PubMed  Google Scholar 

  124. Ommen CH, Albisetti M, Chan AK, Estepp J, Jaffray J, Kenet G, et al. The Edoxaban Hokusai VTE PEDIATRICS Study: an open-label, multicenter, randomized study of edoxaban for pediatric venous thromboembolic disease. Res Pract Thromb Haemost. 2020;4:886–92.

    PubMed  PubMed Central  Google Scholar 

  125. Albisetti M. Use of direct oral anticoagulants in children and adolescents. Hamostaseologie. 2020;40:64–73.

    PubMed  Google Scholar 

  126. Ordi-Ros J, Sáez-Comet L, Pérez-Conesa M, Vidal X, Riera-Mestre A, Castro-Salomó A, et al. Rivaroxaban versus Vitamin K antagonist in antiphospholipid syndrome a randomized noninferiority trial. Ann Intern Med. 2019;171:685–94. https://doi.org/10.7326/M19-0291.

    Article  PubMed  Google Scholar 

  127. Cohen H, Hunt BJ, Efthymiou M, Arachchillage DRJ, Mackie IJ, Clawson S, et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): a randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016;3:e426–36.

    PubMed  PubMed Central  Google Scholar 

  128. Malec K, Broniatowska E, Undas A. Direct oral anticoagulants in patients with antiphospholipid syndrome: a cohort study. Lupus. 2020;29:37–44.

    CAS  PubMed  Google Scholar 

  129. Dufrost V, Risse J, Reshetnyak T, Satybaldyeva M, Du Y, Yan XX, et al. Increased risk of thrombosis in antiphospholipid syndrome patients treated with direct oral anticoagulants. Results from an international patient-level data meta-analysis. Autoimmun Rev. 2018;17:1011–21.

    CAS  PubMed  Google Scholar 

  130. Pengo V, Denas G, Zoppellaro G, Jose SP, Hoxha A, Ruffatti A, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018;132:1365–71.

    CAS  PubMed  Google Scholar 

  131. Sayar Z, Moll R, Isenberg D, Cohen H. Thrombotic antiphospholipid syndrome: a practical guide to diagnosis and management. Thromb Res. 2021;198:213–21.

    CAS  PubMed  Google Scholar 

  132. Rodríguez-Pintó I, Moitinho M, Santacreu I, Shoenfeld Y, Erkan D, Espinosa G, et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of 500 patients from the International CAPS Registry. Autoimmun Rev. 2016;15:1120–4.

    PubMed  Google Scholar 

  133. Espinosa G, Cervera R, Asherson RA. Catastrophic antiphospholipid syndrome and sepsis. A common link? J Rheumatol. 2007;34:923–6.

  134. Cervera R, Bucciarelli S, Plasín MA, Gómez-Puerta JA, Plaza J, Pons-Estel G, et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of a series of 280 patients from the “CAPS Registry.” J Autoimmun. 2009;32:240–5.

    CAS  PubMed  Google Scholar 

  135. Groot N, De Graeff N, Avcin T, Bader-Meunier B, Brogan P, Dolezalova P, et al. European evidence-based recommendations for diagnosis and treatment of childhood-onset systemic lupus erythematosus: the SHARE initiative. Ann Rheum Dis. 2017;76:1788–96.

    CAS  PubMed  Google Scholar 

  136. An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annu Rev Med. 2017;68:317–30.

    CAS  PubMed  Google Scholar 

  137. Ponticelli C, Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf. 2017;16:411–9.

    CAS  PubMed  Google Scholar 

  138. Rand JH, Wu XX, Quinn AS, Chen PP, Hathcock JJ, Taatjes DJ. Hydroxychloroquine directly reduces the bindin of antiphospholipid antibody-β2-glycoprotein I complexes to phospholipid bilayers. Blood. 2008;112:1687–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Rand JH, Wu XX, Quinn AS, Ashton AW, Chen PP, Hathcock JJ, et al. Hydroxychloroquine protects the annexinA5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010;115:2292–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kravvariti E, Koutsogianni A, Samoli E, Sfikakis PP, Tektonidou MG. The effect of hydroxychloroquine on thrombosis prevention and antiphospholipid antibody levels in primary antiphospholipid syndrome: a pilot open label randomized prospective study. Autoimmun Rev. 2020;19:102491.

    CAS  PubMed  Google Scholar 

  141. Anderson E, Furie R. Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations. Immunotherapy. 2020;12:275–86. https://doi.org/10.2217/IMT-2020-0017.

    Article  CAS  PubMed  Google Scholar 

  142. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2019;382:211–21. https://doi.org/10.1056/NEJMOA1912196.

    Article  PubMed  Google Scholar 

  143. Berman H, Rodríguez-Pintó I, Cervera R, Morel N, Costedoat-Chalumeau N, Erkan D, et al. Rituximab use in the catastrophic antiphospholipid syndrome: descriptive analysis of the CAPS registry patients receiving rituximab. Autoimmun Rev. 2013;12:1085–90.

    CAS  PubMed  Google Scholar 

  144. Sciascia S, Radin M, Cecchi I, Rubini E, Bazzan M, Roccatello D. Long-term effect of B-cells depletion alone as rescue therapy for severe thrombocytopenia in primary antiphospholipid syndrome. Semin Arthritis Rheum. 2019;48:741–4.

    PubMed  Google Scholar 

  145. Mormile I, Granata F, Punziano A, de Paulis A, Rossi FW. Immunosuppressive treatment in antiphospholipid syndrome: is it worth it? Biomedicines. 2021;9:1–21.

    Google Scholar 

  146. Erkan D, Vega J, Ramón G, Kozora E, Lockshin MD. A pilot open-label phase II trial of rituximab for non-criteria manifestations of antiphospholipid syndrome. Arthritis Rheum. 2013;65:464–71.

    CAS  PubMed  Google Scholar 

  147. Erkan D, Harrison MJ, Levy R, Peterson M, Petri M, Sammaritano L, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 2007;56:2382–91.

    CAS  PubMed  Google Scholar 

  148. Arnaud L, Mathian A, Devilliers H, Ruffatti A, Tektonidou M, Forastiero R, et al. Patient-level analysis of five international cohorts further confirms the efficacy of aspirin for the primary prevention of thrombosis in patients with antiphospholipid antibodies. Autoimmun Rev. 2015;14:192–200.

    CAS  PubMed  Google Scholar 

  149. Bala MM, Paszek E, Lesniak W, Wloch-Kopec D, Jasinska K, Undas A. Antiplatelet and anticoagulant agents for primary prevention of thrombosis in individuals with antiphospholipid antibodies. Cochrane Database System Rev. 2018. https://doi.org/10.1002/14651858.cd012534.pub2.

    Article  Google Scholar 

  150. Zuo Y, Barbhaiya M, Erkan D. Primary thrombosis prophylaxis in persistently antiphospholipid antibody-positive individuals: where do we stand in 2018? Curr Rheumatol Rep. 2018;20:1–12.

    Google Scholar 

  151. Zheng SL, Roddick AJ. Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis. JAMA J Am Med Assoc. 2019;321:277–87.

    CAS  Google Scholar 

  152. Burgos PI, Alarcón GS. Thrombosis in systemic lupus erythematosus: risk and protection. Expert Rev Cardiovasc Ther. 2009;7:1541–9.

    PubMed  Google Scholar 

  153. Chang JC, Mandell DS, Knight AM. High health care utilization preceding diagnosis of systemic lupus erythematosus in youth. Arthritis Care Res. 2018;70:1303–11.

    Google Scholar 

  154. Cervera R, Serrano R, Pons-Estel GJ, Ceberio-Hualde L, Shoenfeld Y, De Ramón E, et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis. 2015;74:1011–8.

    CAS  PubMed  Google Scholar 

  155. Amigo MC, Goycochea-Robles MV, Espinosa-Cuervo G, Medina G, Barragán-Garfias JA, Vargas A, et al. Development and initial validation of a damage index (DIAPS) in patients with thrombotic antiphospholipid syndrome (APS). Lupus. 2015;24:927–34.

    PubMed  Google Scholar 

  156. Akca UK, Ayaz NA. Comorbidities of antiphospholipid syndrome and systemic lupus erythematosus in children. Curr Rheumatol Rep. 2020. https://doi.org/10.1007/s11926-020-00899-3.

    Article  PubMed  Google Scholar 

  157. Torricelli AK, Ugolini-Lopes MR, Bonfá E, Andrade D. Antiphospholipid syndrome damage index (DIAPS): distinct long-term kinetic in primary antiphospholipid syndrome and antiphospholipid syndrome related to systemic lupus erythematosus. Lupus. 2020;29:256–62.

    CAS  PubMed  Google Scholar 

  158. Sciascia S, Sanna G, Murru V, Roccatello D, Khamashta MA, Bertolaccini ML. GAPSS: the global anti-phospholipid syndrome score. Rheumatology (UK). 2013;52:1397–403.

    PubMed  Google Scholar 

  159. Radin M, Sciascia S, Erkan D, Pengo V, Tektonidou MG, Ugarte A, et al. The adjusted global antiphospholipid syndrome score (aGAPSS) and the risk of recurrent thrombosis: results from the APS ACTION cohort. Semin Arthritis Rheum. 2019;49:464–8.

    PubMed  PubMed Central  Google Scholar 

  160. Nascimento IS, Radin M, Gândara APR, Sciascia S, de Andrade DCO. Global antiphospholipid syndrome score and anti-ß2-glycoprotein I domain I for thrombotic risk stratification in antiphospholipid syndrome: a four-year prospective study. Lupus. 2020;29:676–85.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Artur Silva.

Ethics declarations

Funding

Our study was supported by grants to CASE from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 304984/2020-5), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/03756-4), and Núcleo de Apoio à Pesquisa “Saúde da Criança e do Adolescente” da USP (NAP-CriAd).

Conflict of interest

Aline Garcia Islabão, Vitor Cavalcanti Trindade, Licia Maria Henrique da Mota, Danieli Castro Oliveira Andrade, and Clovis Artur Silva have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

All authors performed the literature search, had full access to all of the data, take responsibility for the integrity of the data and the accuracy and interpretation of the data analysis, and prepared the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islabão, A.G., Trindade, V.C., da Mota, L.M.H. et al. Managing Antiphospholipid Syndrome in Children and Adolescents: Current and Future Prospects. Pediatr Drugs 24, 13–27 (2022). https://doi.org/10.1007/s40272-021-00484-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-021-00484-w