Skip to main content
Log in

Tolerability of Antihypertensive Medications in Older Adults

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Several guidelines for hypertension have recently undergone revisions to incorporate an approach providing choices of medications based on age, race, and specific situations where hypertension may co-exist with disorders such as diabetes, coronary artery disease, heart failure and chronic kidney disease. Initial recommendations include diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers; beta blockers are favored in some guidelines and are a choice in specific settings. Within the classes of drugs, several antihypertensive agents provide options. This review discusses antihypertensive drugs by class, including adverse effects and tolerability, with preferences in older adults and specific settings. Adverse drug events from antihypertensive medications are discussed by class and where applicable for specific agents. Data from select studies pertinent to tolerability and adverse effects are presented in tables for several classes of drugs. The rationale for nonadherence to medication is reviewed, including the roles played by tolerability and adverse drug effects. Antihypertensive therapy in typical settings in older adults is discussed; they include hypertension in association with impaired cognition, depression, diabetes, sexual dysfunction, and falls. The key to successful therapy and tolerability is to promote a healthy lifestyle in conjunction with medications as the approach, thereby also lowering the adverse drug effects. The eventual choice of the specific drug(s) is based on risks, benefits, and patient preferences, and is best tailored for each older adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Health Observatory (GHO). WHO/raised blood pressure. http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/. Accessed 13 Jan 2015.

  2. Kearney PM, Whelton M, Reynolds K, et al. Worldwide prevalence of hypertension: a systematic review. J Hypertens. 2004;22:11–9.

    Article  CAS  PubMed  Google Scholar 

  3. Gillespie CD, Hurvitz KA, Centers of Disease Control and Prevention. Prevalence of hypertension and controlled hypertension—United States, 2007–2010. MMWR Surveill Summ. 2013;62(Suppl 3):144–8.

    PubMed  Google Scholar 

  4. Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: national health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief. No 133. 2013.

  5. James PA, Oparil S, Carter BL, et al. 2014 Evidence-based guideline for the management of high blood pressure in adults. Report from the panel members appointed to the Eighth Joint National Committee (JNC8). JAMA. 2014;311(5):507–20.

    Article  CAS  PubMed  Google Scholar 

  6. Weber MA, Schiffrin EL, White WB, et al. Clinical Practice Guidelines for the Management of Hypertension in the Community. A Statement by the American Society of Hypertension and the International Society of Hypertension. J Clin Hypertension. 2013;. doi:10.1111/jch.12237.

    Google Scholar 

  7. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.

    Article  CAS  PubMed  Google Scholar 

  8. Sox HC. Assessing the trustworthiness of the guideline for management of high blood pressure in adults. JAMA. 2014;311(5):472–4.

    Article  CAS  PubMed  Google Scholar 

  9. Grossman E, Messerli FH. Long term safety of antihypertensive therapy. Prog Cardiovasc Dis. 2006;49(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  10. Ton NTH, Hartstra J, Persiani S, Beckert M. “Safety—Tolerability” (http://www.pharmpk.com/PK06/PK2006498.html). PharmPK Discussion. David W. A. Bourne. Accessed 23 June 2015.

  11. Nebeker JR, Barach P, Samore MH. Clarifying adverse drug events: a clinician’s guide to terminology, documentation and reporting. Ann Intern Med. 2004;140:795–801.

    Article  PubMed  Google Scholar 

  12. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis and management. Lancet. 2000;356:1255–9.

    Article  CAS  PubMed  Google Scholar 

  13. Vongpatanasin W. Resistant hypertension. A review of diagnosis and management. JAMA. 2012;311(2):2216–24.

    Google Scholar 

  14. Dharmarajan TS. The physiology of aging. In: Dharmarajan TS, Pitchumoni CS, editors. Geriatric gastroenterology. 1st ed. New York: Springer; 2012. p. 17–31.

    Chapter  Google Scholar 

  15. Haumschild RJ. Pharmacokinetics of aging. In: Dharmarajan TS, Pitchumoni CS, editors. Geriatric gastroenterology. 1st ed. New York: Springer; 2012. p. 83–7.

    Chapter  Google Scholar 

  16. Dharmarajan TS, Davuluri S. Medications, renal function and kidney injury: a complex interplay, wherein prevention is easier than cure. JAMDA. 2014;15:692–6.

    CAS  PubMed  Google Scholar 

  17. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33(4):278–85.

    Article  CAS  PubMed  Google Scholar 

  18. Puyol DR. The aging kidney. Kidney Int. 1998;54:2247–65.

    Article  Google Scholar 

  19. Epstein M. Aging and the kidney. J Am Soc Nephrol. 1996;7:1106–22.

    CAS  PubMed  Google Scholar 

  20. Zamboni M, Zoico E, Scartezzini T, et al. Body composition changes in stable-weight elderly subjects: the effect of sex. Aging Clin Exp Res. 2003;15(4):321–7.

    Article  PubMed  Google Scholar 

  21. Buffa R, Florsi GU, Putzu PF, Marini E. Body composition variations in ageing. Coll Antropol. 2011;35(1):259–65.

    PubMed  Google Scholar 

  22. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.

    Article  CAS  PubMed  Google Scholar 

  23. Gunturu SG, Dharmarajan TS. Drug-nutrient interactions. In: Dharmarajan TS, Pitchumoni CS, editors. Geriatric gastroenterology. 1st ed. New York: Springer; 2012. p. 89–98.

    Chapter  Google Scholar 

  24. Psaty BM, Lumley T, Furberg CD, et al. Health outcome associated with various antihypertensive therapies used as first-line agents: a network meta-analysis. JAMA. 2003;289(19):2534–44.

    Article  CAS  PubMed  Google Scholar 

  25. Tamargo J, Segura J, Ruilope LM. Diuretics in the treatment of hypertension. Part 1: thiazide and thiazide-like diuretics. Expert Opin Pharmacother. 2014;15(4):527–47.

    Article  CAS  PubMed  Google Scholar 

  26. Duarte JD, Cooper-DeHoff RM. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev Cardiovas Ther. 2010;8(6):793–802.

    Article  CAS  Google Scholar 

  27. Dusing R. Diuretics in the treatment of hypertension. Efficacy, safety and tolerability. Internist (Berl). 2011;52(12):1484–91. doi:10.1007/s00108-011-2915-3.

    Article  CAS  Google Scholar 

  28. Sica DA, Carter B, Cushman W, Hamm L. Thiazide and loop diuretics. J Clin Hypertens (Greenwich). 2011;13(9):639–43.

    Article  CAS  Google Scholar 

  29. Wehling M. Morbus diureticus in the elderly: epidemic overuse of a widely applied group of drugs. J Am Med Dir Assoc. 2013;14(6):437–42.

    Article  PubMed  Google Scholar 

  30. Palmar BF. Metabolic complications associated with use of diuretics. Semin Nephrol. 2011;31(6):542–52.

    Article  CAS  Google Scholar 

  31. Dhalla IA, Gomes T, Yao Z, et al. Chlorthalidone versus hydrochlorothiazide for the treatment of hypertension in older adults. Ann Intern Med. 2013;158:447–55.

    Article  PubMed  Google Scholar 

  32. Rodenburg EM, Visser LE, Hoorn EJ, et al. Thiazides and the risk of hypokalemia in the general population. J Hypertens. 2014;32(10):2092–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kotchen TS. Antihypertensive therapy-associated hypokalemia and hyperkalemia: clinical implications. Hypertension. 2012;59:906–7.

    Article  CAS  PubMed  Google Scholar 

  34. Meisinger C, Stockl D, Ruckert IM, et al. Serum potassium is associated with prediabetes and newly diagnosed diabetes in hypertensive adults from the general population: the KORA F$-study. Diabetologia. 2013;56(3):484–91.

    Article  CAS  PubMed  Google Scholar 

  35. Ben Salem C, Badreddine A, Fathallah N, et al. Drug-induced hyperkalemia. Drug Saf. 2014;37(9):677–92.

    Article  CAS  PubMed  Google Scholar 

  36. Chapagain A, Ashman N. Hyperkalemia in the age of aldosterone antagonism. Q J Med. 2012;105:1049–105.

    Article  CAS  Google Scholar 

  37. Muschart X, Boulouffe C, Jamart J, et al. A determination of the current causes of hyperkalemia and whether they have changed over the past 25 years. Acta Clin Belg. 2014;69(4):280–4.

    Article  CAS  PubMed  Google Scholar 

  38. Uijtendaal EV, Zwart-van Rijkom JE, van Solinge WW, Eqberts TC. Serum potassium influencing interacting drugs: risk-modifying strategies also needed at discontinuation. Ann Pharmacother. 2012;46(2):176–82.

    Article  PubMed  CAS  Google Scholar 

  39. Berkova M, Berka Z, Topinkova E. Arrhythmias and ECG changes in life threatening hyperkalemia in older patients treated by potassium sparing drugs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(1):84–91.

    CAS  PubMed  Google Scholar 

  40. Alderman MH, Piler LB, Ford CE, et al. Clinical significance of incident hypokalemia and hyperkalemia in treated hypertensive patients in ALLHAT. Hypertension. 2012;59(5):926–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Leung AA, Wright A, Pazo V, et al. Risk of thiazide-induced hyponatremia in patients with hypertension. Am J Med. 2011;124(11):1064–72.

    Article  CAS  PubMed  Google Scholar 

  42. Van Blijderveen JC, Straus SM, Rodenburg EM, et al. Risk of hyponatremia with diuretics: chlortalidone versus hydrochlorothiazide. Am J Med. 2014;127(8):763–71.

    Article  PubMed  CAS  Google Scholar 

  43. Barber J, McKeever TM, McDowell SE, et al. A systematic review and meta-analysis of thiazide-induced hyponatremia: time to reconsider electrolyte monitoring regimens after thiazide initiation? Br J Clin Pharmacol. 2014. doi:10.1111/bcp.12499 (Epub ahead of print).

  44. Khow KS, Lau SY, Li JY, Yong TY. Diuretic-associated electrolyte disorders in the elderly: risk factors, impact, management and prevention. Curr Drug Saf. 2014;9(1):2–15.

    Article  PubMed  CAS  Google Scholar 

  45. Al Qahtani M, Alshahrani A, Alskaini A et al. Prevalence of hyponatremia among patients who used indapamide and hydrochlorothiazide: single center retrospective study. Saudi J Kidney Dis Transpl. 2013;24(2):281–5.

  46. Chow KM, Szeto CC, Wong TY, et al. Risk factors for thiazide-induced hyponatremia. QJM. 2003;96(12):911–7.

    Article  CAS  PubMed  Google Scholar 

  47. Rodenburg EM, Hoorn EJ, Ruiter R, et al. Thiazide-induced hyponatremia: a population based study. Am J Kidney Dis. 2013;62(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  48. Rastogi D, Pelter MA, Deamer RL. Evaluations of hospitalizations associated with thiazide-associated hyponatremia. J Clin Hypertens (Greenwich). 2012;14(3):158–64.

    Article  CAS  Google Scholar 

  49. Yamada H, Asano T, Aoki A, et al. Combination therapy of angiotensin II receptor blocker and thiazide produces severe hyponatremia in elderly hypertensive subjects. Intern Med. 2014;53:749–52.

    Article  PubMed  Google Scholar 

  50. Hix JK, Silver S, Sterns RH. Diuretic induced hyponatremia. Semin Nephrol. 2011;31(6):553–66.

    Article  CAS  PubMed  Google Scholar 

  51. Sharbi Y, Illan R, Kamari Y, et al. Diuretic induced hyponatremia in elderly hypertensive women. J Hum Hypertens. 2002;16:631–5.

    Article  Google Scholar 

  52. Yong TY, Huang JE, Lau SY, Li JY. Severe hyponatremia and other electrolyte disturbances associated with indapamide. Curr Drug Saf. 2011;6(3):134–7.

    Article  CAS  PubMed  Google Scholar 

  53. Glover M, Clayton J. thiazide-induced hyponatremia: epidemiology and clues to pathogenesis. Cardiovasc Ther. 2012;30(5):e219–26.

    Article  CAS  PubMed  Google Scholar 

  54. Arampatzis S, Gaetcke LM, Funk GC, et al. Diuretic-induced hyponatremia and osteoporotic fractures in patients admitted to the emergency department. Maturitas. 2013;75(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  55. Agarwal R, Sinha AD. Thiazide diuretics in advanced chronic kidney disease. J Am Soc Hypertens. 2012;6(5):299–308.

    Article  CAS  PubMed  Google Scholar 

  56. Agarwal R, Sinha AD, Pappas MK, Ammous F. Chlorthalideone for poorly controlled hypertension in chronic kidney disease: an interventional pilot study. Am J Nephrol. 2014;39(2):171–82.

    Article  CAS  PubMed  Google Scholar 

  57. Reyes AJ. Cardiovascular drugs and serum uric acid. Cardiovasc Drugs Ther. 2003;17(5–6):397–414.

    Article  CAS  PubMed  Google Scholar 

  58. Gibson TJ. Hypertension, its treatment, hyperuricaemia and gout. Curr Clin Rheumatol. 2013;25(2):217–22.

    Article  CAS  Google Scholar 

  59. Gurwitz JH, Kalish SC, Bohn RL, et al. Thiazide diuretics and the initiation of anti-gout therapy. J Clin Epidemiol. 1887;50(8):953–9.

    Article  Google Scholar 

  60. Choi HK, Soriano LC, Zhang Y, Rodriguez LAG. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ. 2012;344:d8190. doi:10.1136/bmj.d8190.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Diaconu CC, Balaceanu A, Bartos D. Diuretics, first-line antihypertensive agents: are they always safe in the elderly? Rom J Intern Med. 2014;52(2):87–90.

    PubMed  Google Scholar 

  62. Udea S, Morimoto T, Ando S, et al. A randomized controlled trial for the evaluation of risk for type 3 diabetes in hypertensive patients receiving thiazide diuretics: diuretics in the management of essential hypertension (DIME) study. BMJ Open. 2014;4:e004576.

    Article  Google Scholar 

  63. Mukete BN, Rosendorff C. Effects of low-dose thiazide diuretics on fasting plasma glucose and serum potassium - a meta-analysis. J Am Soc Hypertens. 2013;7(6):454–66.

    Article  CAS  PubMed  Google Scholar 

  64. Bruderer S, Bodmer M, Jick SS, Meier CR. Use of diuretics and risk of incident gout: a population-based case-control study. Arthritis Rheumatol. 2014;66(1):185–96.

    Article  PubMed  Google Scholar 

  65. Arampatzis S, Funk GS, Leichtle AB, et al. Impact of diuretic therapy-associated electrolyte disorders present on admission to the emergency department : a cross-sectional analysis. BMC Med. 2013;11:83.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Regulski M, Regulska K, Stanisz BJ, et al. Chemistry and pharmacology of angiotensin-converting enzyme inhibitors. Curr Pharm Des. 2015;21(13):1764–75.

    Article  CAS  PubMed  Google Scholar 

  67. Heran BS, Wong MM, Heran IK, Wright JM. Blood pressure lowering efficacy of angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev. 2008;(4):CD003822. doi:10.1002/14651858.CD003822.pub2.

  68. Bonanni L, Vestra MD. Oral renin inhibitors in clinical practice: a perspective review. Ther Adv Chronic Dis. 2012;3(4):173–81. doi:10.1177/2040622312446244.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Duprez DA, Munger MA, Botha J, et al. Aliskiren for geriatric lowering of systolic hypertension: a randomized controlled trial. J Hum Hypertens. 2010;24(9):600–8.

    Article  CAS  PubMed  Google Scholar 

  70. Egan BM, Li J. Role of aldosterone blockade in resistant hypertension. Semin Nephrol. 2014;34(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  71. Powers BJ, Coeytaux RR, Dolor RJ, et al. updated report on comparative effectiveness of ACE inhibitors, ARBS and direct renin inhibitors for patients with essential hypertension: much more data, little new information. J Gen Intern Med. 2011;27(6):716–29.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Li EC, Heran BS, Wright JM. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev. 2014;8:CD009096. doi:10.1002/14651858.CD009096.pub2.

  73. Caldeira D, David C, Sampaio C. Tolerability of angiotensin-receptor blockers in patients with intolerance to angiotensin-converting enzyme inhibitors: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2012;12(4):263–77.

    Article  CAS  PubMed  Google Scholar 

  74. Grilo A, Saez-Rosas MP, Santos-Morano J, et al. Identification of genetic factors associated with susceptibility to angiotensin-converting enzyme inhibitors-induced cough. Pharmacogenet Genomics. 2011;21(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  75. Mahmoudpour SH, Leusink M, van der Putten L, et al. Pharmacogenetics of ACE inhibitor-induced angioedema and cough: a systematic review and meta-analysis. Pharmacogenomics. 2013;14(3):249–60.

    Article  CAS  PubMed  Google Scholar 

  76. Ng LP, Goh PS. Incidence of discontinuation of angiotensin-converting enzyme inhibitors due to cough, in a primary healthcare center in Singapore. Singapore Med J. 2014;55(3):146–9.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Campo P, Fernandez TD, Canto G, Mayorga C. Angioedema induced by angiotensin-converting enzyme inhibitors. Curr Opin Allergy Clin Immunol. 2013;13(4):337–44.

    Article  CAS  PubMed  Google Scholar 

  78. Bezalel S, Mahlab-Guri K, Asher I, et al. Angiotensin converting enzyme inhibitor induced angioedema. Am J Med. 2015;128:120–5.

    Article  CAS  PubMed  Google Scholar 

  79. Toh S, Reichman ME, Houstoun M, et al. Comparative risk for angioedema associated with the use of drugs that target the renin-angiotensin-aldosterone system. Arch Intern Med. 2012;172(20):1582–9.

    Article  CAS  PubMed  Google Scholar 

  80. Beavers CJ, Dunn SP, Macaulay TE. The role of angiotensin receptor blockers in patients with angiotensin-converting enzyme inhibitor-induced angioedema. Ann Pharmacother. 2011;45(4):520–4.

    Article  CAS  PubMed  Google Scholar 

  81. Abdi R, Dong VM, Lee CJ, Ntoso KA. Angiotensin II receptor blocker-associated angioedema: on the heels of ACE inhibitor angioedema. Pharmacotherapy. 2002;22(9):1173–5.

    Article  PubMed  Google Scholar 

  82. Amey G, Waidyasekara P, Kollengode R. Delayed presentation of ACE inhibitor-induced angioedema. BMJ Case Rep. 2013:2913. doi:10.1136/bcr-2013-010453.

  83. Sidorenkov G, Navis G. Safety of ACE inhibitor therapies in patients with chronic kidney disease. Expert Opin Drug Saf. 2014;13(10):1383–95.

    Article  CAS  PubMed  Google Scholar 

  84. Zeravica R, Stosic Z, Ilincic B, et al. The effect of angiotensin converting enzyme inhibition on effective renal plasma flow in patients with diffuse renal parenchymal diseases and hypertension. Med Pregl. 2014;67(3–4):78–82.

    Article  PubMed  Google Scholar 

  85. Jackevicius CA, Wong J, Aroustamian I, et al. Rates and predictors of ACE inhibitor discontinuation subsequent to elevated serum creatinine: a retrospective cohort study. BMJ Open. 2014;4:e005181. doi:10.1136/bmjopen-2014-005181.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Mateti UV, Nekkanti H, Viakkathala R, et al. Pattern of angiotensin-converting enzyme inhibitors induced adverse reactions in a South Indian Teaching hospital. N Am J med Sci. 2012;4(4):185–9.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Raebel MA. Hyperkalemia associated with use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Cardiovasc Ther. 2012;30(3):e156–66.

    Article  CAS  PubMed  Google Scholar 

  88. Espinel E, Jovan J, Gil I, et al. Risk of hyperkalemia inpatients with moderate chronic kidney disease initiating angiotensin converting enzyme inhibitors or angiotensin receptor blockers: a randomized study. 2013. BMC Res Notes. 2013;6:306. doi:10.1186/1756-0500-6-306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Ben Sallem C, Badreddine A, Fathallah N, et al. Drug-induced hyperkalemia. Drugs Saf. 2014;37(9):677–92.

    Article  CAS  Google Scholar 

  90. Surabenjawong U, Thunpiphat N, Chatsiricharoenkul S, Monsomboon A. Prevalence of hyperkalemia in adult patients taking spironolactone and angiotensin converting enzyme inhibitors or angiotensin receptor blockers. J Med Assoc Thai. 2013;96(8):905–10.

    PubMed  Google Scholar 

  91. Khosla N, Kalaitzidis R, Bakris GL. Predictors of hyperkalemia risk following hypertension control with aldosterone blockade. Am J Nephrol. 2009;30(5):418–24 (A28).

  92. Neil-Dwyer G, Marus A. ACE inhibitors in hypertension: assessment of taste and smell function in clinical trials. J Hum Hypertens. 1989;3(Suppl 1):169–76.

    PubMed  Google Scholar 

  93. Scialom S, Malamut G, Meresse B, et al. Gasrointesinal disorder associated with olmesartan mimics autoimmune disease. PLoS One. 2015;10(6):e0125024. doi:10.1371/journal.pone.0125024.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Unnikrishnan D, Murakonda P, Dharmarajan TS. If it is not cough, it must be dysguesia. Differing adverse effects of angiotensin-converting enzyme inhibitors in the same individual. J Am Med Dir Assoc. 2004;5:107–110.

  95. Powers B, Greene L, Balfe LM. Updates on the treatment of essential hypertension: a summary of AHRQ’s comparative effectiveness review of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and direct renin inhibitors. J Manag Care Pharm. 2011;17(8 Suppl):S1–14.

    PubMed  Google Scholar 

  96. Bangalore S, Kumar S, Messerli FH. Angiotensin-converting enzyme inhibitor associated cough: deceptive information from the Physicians’ Desk Reference. Am J Med. 2011;123(11):1016–30.

    Article  Google Scholar 

  97. Kaiser EA, Lotze U, Schafer HH. Increasing complexity: which drug class to choose for treatment of hypertension in the elderly? Clin Interv Aging. 2014;9:259–75.

    Google Scholar 

  98. Tobe SW. β-Adrenergic receptor blockers in hypertension. Can J Cardiol. 2014;30:S1–2.

    Article  PubMed  Google Scholar 

  99. Poirier L, Tobe SW. Contemporary use of β-blockers: clinical relevance of subclassification. Can J Cardiol. 2014;30:S9–15.

    Article  PubMed  Google Scholar 

  100. Larochelle P, Tobe SW, Lacourciere Y. β-blockers in hypertension: studies and meta-analysis over the years. Can J Cardiol. 2014;30:S16–22.

    Article  PubMed  Google Scholar 

  101. Howlett JG. Nebivolol: vasodilator properties and evidence for relevance in treatment of cardiovascular disease. Can J Cardiol. 2014;30:S29–37.

    Article  PubMed  Google Scholar 

  102. Giles TD, Weber MA, Basile J et al. Efficacy and safety of nebivolol and valsartan as fixed-dose combination in hypertension: a randomized, multicenter study. Lancet. 2014;383(9932):1889–98. doi:10.1016/S0140-6736(14)60614-0.

    Article  CAS  PubMed  Google Scholar 

  103. Mancia G, Parodi A, Merlino I, Corrao G. Heterogeneity in antihypertensive treatment discontinuation between drugs belonging to the same class. J Hypertens. 2011;29:1012–8.

    Article  CAS  PubMed  Google Scholar 

  104. Richards TR, Tobe SW. Combining other antihypertensive drugs with β-blockers in hypertension: A focus on safety and tolerability. Can J Cardiol. 2014;30:S42–6.

    Article  PubMed  Google Scholar 

  105. Elliott WJ, Ram CV. Calcium channel blockers. J Clin Hypertens. 2011;13(9):687–9.

    Article  CAS  Google Scholar 

  106. Thulin T. Calcium antagonists—assessment of side effects. Scand J Prim Health Care Suppl. 1990;1:81–4.

    CAS  PubMed  Google Scholar 

  107. Weir MR. Incidence of pedal edema formation with dihydropyridine calcium channel blockers: issue and practical significance. J Clin Hypertens (Greenwich). 2003;5(5):330–5.

    Article  CAS  Google Scholar 

  108. Dougall HT, McLay J. A comparative review of the adverse effects of calcium antagonists. Drug Saf. 1996;15(2):91–106.

    Article  CAS  PubMed  Google Scholar 

  109. Gandhi S, Fleet JL, Bailey DG, et al. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310(23):2544–53.

    Article  CAS  PubMed  Google Scholar 

  110. Cikrikcioglu MA, Karatoprak C, Cakirca M, et al. Association of calcium channel blocker use with lower hemoglobin levels in chronic kidney disease. Eur Rev Med Pharmacol Sci. 2013;17(16):2530–7.

    CAS  PubMed  Google Scholar 

  111. Denolle T, Sassano P, Allain H, et al. Effects of nicardipine and clonidine on cognitive functions and electroencephalography in hypertensive patients. Fundam Clin Pharmacol. 2002;26(6):527–35.

    Article  Google Scholar 

  112. Delaney J, Spevack D, Doddamani S, Ostfeld R. Clonidine-induced delirium. Int J Cardiol. 2006;113(2):276–8.

    Article  PubMed  Google Scholar 

  113. Campanella C, Salvini S, Casaldi S, et al. Clonidine hallucinations: description of a clinical case. Clin Ter. 2000;151(1):45–7.

    CAS  PubMed  Google Scholar 

  114. Abo-Zena RA, Bobek MB, Dweik RA. Hypertensive urgency induced by an interaction of mirtazipine and clonidine. Pharmacotherapy. 2000;20(4):476–8.

    Article  CAS  PubMed  Google Scholar 

  115. Rossitto G, Kamath G, Messerli FH. Should alpha blockers ever be used as antihypertensive drugs? Cleve Clin J Med. 2010;77(12):884–8.

    Article  PubMed  Google Scholar 

  116. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the Antihypertensive and Lipid-Lowering treatment to Prevent Heart Attack Trial (ALLHAT). ALLHAT Collaborative Research Group. JAMA. 2000;283:1967–75.

  117. Heran BS, Gaim BP, Wright JM. Blood pressure lowering efficacy of alpha blockers for primary hypertension. Cochrane Database Syst Rev. 2012;8:CD004643. doi:10.1002/14651858.CD004643.pub3.

  118. Yokoyama T, Hara R, Fukumoto K, et al. Effects of three types of alpha-1 adrenoceptor blocker on lower urinary tract symptoms and sexual function in males with benign prostatic hyperplasia. Int J Urol. 2011;18(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  119. Kandler MR, Mah GT, Tejani AM, et al. Hydralazine for essential hypertension. Cochrane Data base Syst Rev. 2011;(11): CD004934. doi:10.1002/14651858.CD004934.

  120. Chang C, Gershwin ME. Drug-induced lupus erythematosus: incidence, management and prevention. Drug Saf. 2011;34(5):357–74.

    Article  CAS  PubMed  Google Scholar 

  121. Yokogawa N, Vivino FB. Hydralazine-induced autoimmune disease: comparison to idiopathic lupus and ANCA-positive vasculitis. Mod Rheumatol. 2009;19(3):338–47.

    Article  PubMed  Google Scholar 

  122. Mahfouz A, Mahmoud AN, Ashfaq PA, Siyabi KH. A case report of hydralazine-induced skin reaction: Probable epidermal necrolysis (TEN). Am J Case Rep. 2012;15:135–8.

    Google Scholar 

  123. Harnett DT, Chandra-Sekhar HB, Hamilton SF. Drug-induced lupus erythematosus with cardiac tamponade: a case report and literature review. Can J Cardiol. 2014;30(2):247.e11–247.e12.

  124. Van der Ward V, Logan P, Conroy S, et al. Antihypertensive treatment in people with dementia. J Am Med Dir Assoc. 2014;15(9):620–9.

    Article  Google Scholar 

  125. Gao Y, O’Caoimh R, Healy L, et al. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open. 2013;3(7). doi:10.1136/bmjopen-2013-002881 (pii:e002881).

  126. Welsh TJ, Gladman JR, Gordon AL. The treatment of hypertension in people with dementia: a systematic review of observational studies. BMC Geriatr. 2014;14:19.

    Article  PubMed Central  PubMed  Google Scholar 

  127. Rouch L, Cestac P, Hanon O, et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015;29(2):113–30.

    Article  CAS  PubMed  Google Scholar 

  128. Simonson W, Han LF, Davidson HE. Hypertension treatment and outcomes in US nursing homes: results from the US National Nursing Home Survey. J Am Med Dir Assoc. 2011;12(1):44–9.

    Article  PubMed  Google Scholar 

  129. Meng L, Chen D, Yang Y, et al. Depression increases the risk of hypertension incidence: a meta-analysis of prospective studies. J Hypertens. 2012;30(5):842–51.

    Article  CAS  PubMed  Google Scholar 

  130. Gentil L, Vasiliadis HM, Preville M, et al. Association between depressive and anxiety disorders and adherence to antihypertensive medication in community-living elderly adults. J Am Geriatr Soc. 2012;60(12):2297–301.

    Article  PubMed  Google Scholar 

  131. Bautista LE, Vera-Cala LM, Colombo C, Smith P. Symptoms of depression and anxiety and adherence to antihypertensive medication. Am J Hypertens. 2012;25(4):505–11 (S36).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Sjosten N, Nabi H, Westerlund H, et al. Effect of depression onset on adherence to medication among hypertensive patients: a longitudinal modeling study. J Hypertens. 2013;31(7):1477–84.

    Article  PubMed  CAS  Google Scholar 

  133. Michal M, Wiltink J, Lackner K, et al. Association of hypertension with depression in the community: results from the Gutenberg health Study. 2013;31(5):893–9.

  134. Cene CW, Dennison CR, Powell HW, et al. Antihypertensive medication nonadherence in black men: direct and mediating effects of depressive symptoms, psychosocial stressors and substance use. J Clin Hypertens (Greenwich). 2013;15(3):201–9.

    Article  PubMed Central  Google Scholar 

  135. Nunes KP, Labazi H, Webb RC. New insights into hypertension-associated erectile dysfunction. Curr Opin Nephrol Hypertens. 2012;21(2):163–70.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Al Khaja KA, Sequeira RP, al Damanhori AH, Mathur VS. Antihypertensive drug-associated sexual dysfunction: a prescription analysis-based study. Pharmacoepidemiol Drug Saf. 2003;12(3):203–12.

    Article  PubMed  Google Scholar 

  137. Manolis A, Doumas M. Sexyal dysfunction: the ‘prima ballerina’ of hypertension-related quality-of-life complications. J Hypertens. 2008;26(11):2074–84.

    Article  CAS  PubMed  Google Scholar 

  138. Karavitakis M, Komninos C, Theodorakis PN, et al. Evaluation of sexual function in hypertensive men receiving treatment: a review of current guideline recommendation. J Sex Med. 2011;8(9):2405–14.

    Article  PubMed  Google Scholar 

  139. Dusing R. Sexual dysfunction in male patients with hypertension: influence of antihypertensive drugs. Drugs. 2005;65(6):773–86.

    Article  PubMed  Google Scholar 

  140. Nicolai MPJ, Liem SS, Both S, et al. A review of the positive and negative effects of cardiovascular drugs on sexual function: a proposed table for use in clinical practice. Neth Heart J. 2014;22:11–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Cordero A, Bertomeu-Martinez V, Mazon P, et al. Erectile dysfunction may improve by blood pressure control in patients with high-risk hypertension. Post Grad Med. 2010;122(6):51–6.

    Article  Google Scholar 

  142. La Torre A, Giupponi G, Duffy D, et al. Sexual dysfunction related to drugs: a critical review. Part IV: cardiovascular drugs. Pharmacopsychiatry. 2015;48(1):1–6.

    PubMed  Google Scholar 

  143. Spatz ES, Canavan ME, Desai MM, et al. Sexual activity and function among middle-aged and older men and women with hypertension. J Hypertens. 2013;31(6):1096–105.

    Article  CAS  PubMed  Google Scholar 

  144. Cordero A, Bertomeu-Martinez V, Mazon P, et al. Erective dysfunction in high-risk hypertensive patients treated with beta blockade agents. Cardiovasc Ther. 2010;28(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  145. Yang L, Yu J, Ma R, et al. The effect of combined antihypertensive treatment (felodipine with either irbesartan or metoprolol) on erectile function: a randomized controlled trial. Cardiology. 2013;125(4):235–41.

    Article  CAS  PubMed  Google Scholar 

  146. Ekman E, Hagg S, Sundstrom A, Werkstrom V. Antihypertensive drugs and erectile dysfunction as seen in spontaneous reports, with focus on angiotensin II type I receptor blockers. Drug Health Patient Saf. 2010;2:21–5.

    Article  Google Scholar 

  147. Fogari R, Zoppi A. Effect of antihypertensive agents of quality of life in the elderly. Drugs Aging. 2004;21(6):377–93.

    Article  CAS  PubMed  Google Scholar 

  148. Vertkin AL, Vilkovyskii FA, Skootnikov AS, et al. Medical and social implications of sexual dysfunction and safety of antihypertensive therapy in hypertensive patients. Kardiologiia. 2011;51(10):46–52.

    CAS  PubMed  Google Scholar 

  149. Spatz ES, Canavan ME, Desai MM, et al. Sexual activity and function among middle-aged and older men and women with hypertension. J Hypertens. 2013;31(6). doi:10.1097/HJH.0b013e32835fdefa.

  150. Fraga-Silva RA, Montecucco F, Mach F, et al. Pathophysiological role of the renin-angiotensin system on erective dysfunction. Eur J Clin Invest. 2013;43(9):978–86.

    Article  CAS  PubMed  Google Scholar 

  151. Fonseca V, Sharma PP, Shah M, Deedwania P. Risk of new onset diabetes mellitus associated with beta-blocker treatment for hypertension. Curr Med Res Opin. 2011;27(4):799–807.

    Article  PubMed  Google Scholar 

  152. Chen Y, Cui S, Lin H, et al. Losartan improves erectile dysfunction in diabetic patients: a clinical trial. Int J Impot Res. 2012;24(6):217–20.

    Article  CAS  PubMed  Google Scholar 

  153. Patel BM, Mehta AA. Choice of antihypertensive agents in diabetic subjects. Diabetes Vasc Dis Res. 2013;10(5):385–96.

    Article  CAS  Google Scholar 

  154. Cooper-DeHoff RM, Bird ST, Nichols GA, et al. Antihypertensive drug class interactions and risk for incident diabetes: a nested case-control study. J Am Heart Assoc. 2013;2:e000125. doi:10.10.1161/JAHA.113.000125).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Rizos CV, Elisaf MS. Antihypertensive drugs and glucose metabolism. World J Cardiol. 2014;6(7):517–30.

    Article  PubMed Central  PubMed  Google Scholar 

  156. Stears AJ, Woods SH, Watts MM, et al. A double blind, placebo-controlled, crossover trial comparing the effects of amiloride and hydrochlorothiazide on glucose tolerance in patients with essential hypertension. Hypertension. 2012;59:934–42.

    Article  CAS  PubMed  Google Scholar 

  157. Elliott WJ. Effects of potassium-sparing versus thiazide diuretics on glucose tolerance: new data on an old topic. Hypertension. 2012;59:911–2.

    Article  CAS  PubMed  Google Scholar 

  158. Zang G. Antihypertensive drugs and the risk of fall injuries: a systematic review and meta-analysis. J Int Med Res. 2013;41(5):1408–17.

    Article  CAS  PubMed  Google Scholar 

  159. Lipsitz LA, Habtemariam D, Gagnon M, et al. Reexamining the effect of antihypertensive medications on falls in old age. Hypertension. 2015;66(1):183–9.

    Article  CAS  PubMed  Google Scholar 

  160. Butt DA, Mamdani M, Austin PC, et al. The risk of falls on initiation of antihypertensive drugs in the elderly. Osteoporosis Int. 2013;24(10):2649–57.

    Article  CAS  Google Scholar 

  161. Butt DA, Mamdani M, Austin PC, et al. The risk of hip fracture after initiating antihypertensive drugs in the elderly. Arch Intern Med. 2012;172(22):1739–44.

    Article  PubMed  Google Scholar 

  162. Callisaya ML, Sharman JE, Close J, et al. Greater daily defined dose of antihypertensive medication increases the risk of falls in older people—a population-based study. J Am Geriatr Soc. 2014;62(8):1527–33.

    Article  PubMed  Google Scholar 

  163. Tinetti ME, Han L, Lee DS, et al. Antihypertensive medications and serious fall injuries in a nationally representative sample of older adults. JAMA Intern Med. 2014;174(4):585–95.

    Article  Google Scholar 

  164. Huang SY, Zhu SX, Zeng BW, et al. Frusemide plus doxasosin therapy for nocturia in patients with BPH/LUTS. Zhonghua Nan Ke Xue. 2010;16(9):807–10.

    CAS  PubMed  Google Scholar 

  165. Kojima T, Akishita M, Iijima K, et al. Nocturia in elderly people with hypertension—no influence of low-dose thiazide added to losartan. J Am Geriatr Soc. 2008;56(11):2155–6.

    Article  PubMed  Google Scholar 

  166. Alcantrara C, Edmondson D, Moise N, et al. Anxiety sensitivity and medication nonadherence in patients with uncontrolled hypertension. J Psychosom Res. 2014;77(4):283–6.

    Article  Google Scholar 

  167. Cene CW, Dennison CR, Powell HW, et al. Antihypertensive medication nonadherence in black men: direct and mediating effects of depressive symptoms, psychosocial stressors and substance use. J Clin Hypertens (Greeenwich). 2013;15(3):201–9.

    Article  Google Scholar 

  168. Gosmanova EO, Lu JL, Streja E, et al. Association of medical treatment nonadherence with all-cause mortality in newly treated hypertensive US veterans. Hypertension. 2014;64(5):951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu Q, Quan H, Chen G, et al. Antihypertensive medication adherence and mortality according to ethnicity. Can J Cardiol. 2014;30(8):925–31.

    Article  PubMed  Google Scholar 

  170. Panjabi S, Lacey M, Bancroft T, Cao F. Treatment adherence, clinical outcomes and economics of triple-drug therapy in hypertensive patients. J Am Soc Hypertens. 2013;7(1):46–60.

    Article  PubMed  Google Scholar 

  171. Selak V, Elley CR, Bullen C, et al. Effect of fixed dose combination treatment on adherence and risk factor control among patients at high risk of cardiovascular disease: randomized controlled trial in primary care. BMJ. 2014;27(348):g3318.

    Article  Google Scholar 

  172. Bramiage P, Zemmrich C, Ketelhut R, et al. Safety, tolerability and efficacy of a fixed dose combination of olmesartan 40 mg and hydrochlorothiazide 12.5/25 mg in daily practice. Vasc Health Risk Manage. 2013;9:475–83.

    Article  CAS  Google Scholar 

  173. Ferdinand KC, Nasser SA. A review of the efficacy and tolerability of combination amlodipine/valsartan in non-white patients with hypertension. 2013;13(5):301–13.

  174. Volpe M, Tocci G. Rationale for triple fixed-dose combination therapy with an angiotensin II receptor blocker, a calcium channel blocker and a thiazide diuretic. Vasc Health Risk Manage. 2012;8:371–80.

    Article  CAS  Google Scholar 

  175. Yusuf S, Pais P, Sigammani A, et al. Comparison of risk factor reduction and tolerability of a full dose polypill (with potassium) versus low-dose polypill (polycap) in individuals at high risk of cardiovascular diseases: the Second Indian Polycap Study (TIPS-2) Investigators. Circ Cardiovasc Qual Outcomes. 2012;5:463–71.

    Article  PubMed  Google Scholar 

  176. Elley CR, Gupta AK, Webster R, et al. The efficacy and tolerability of ‘Polypills’: meta-analysis of randomized controlled trials. PLoS One. 2012;7(12):e52145. doi:10.1371/journal.pone.0052145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Huan Y, Townsend R. The single pill triple combination of aliskeren, amlodipine and hydrochlorothiazide in the treatment of hypertension. Expert Opin Pharmacother. 2012;13(16):2409–15.

    Article  CAS  PubMed  Google Scholar 

  178. Rao NS, Oomman A, Bindumathi PL, et al. Efficacy and tolerability of fixed dose combination of metoprolol and amlodipine in Indian patients with essential hypertension. J Midlife Health. 2013;4(3):160–6.

    PubMed Central  PubMed  Google Scholar 

  179. Farsang C. Efficacy and tolerability of fixed-dose combination of perindopril/indapamide in type 2 diabetes mellitus: PICASSO Trial. Adv Ther. 2014;31(3):333–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Ram CV. Fixed-dose triple combination treatments in the management of hypertension. Manag Care. 2013;22(12):45–55.

    PubMed  Google Scholar 

  181. Evans CD, Eurich DT, Lu X, et al. The association between market availability and adherence to antihypertensive medications: an observational study. Am J Hypertens. 2013;26(2):180–90.

    Article  PubMed  Google Scholar 

  182. Wong MCS, Tam WWS, Cheung CSK, et al. Initial antihypertensive prescription and switching: a 5 year cohort study from 250,851 patients. PLoS One. 2013;8(1):e53625. doi:10.1371/journal.pone.0053625.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Houston MC. Nutrition and nutraceutical supplements for the treatment of hypertension: part 1. J Clin Hypertens (Greenwich). 2013;15:752–57.

  184. Alexander W. Hypertension: is it time to replace drugs with nutrition and nutraceuticals? P T. 2014;39(4):291–5.

    PubMed Central  PubMed  Google Scholar 

  185. Arem H, Moore SC, Patel A, et al. Leisure time physical activity and mortality. A detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015;175(6):959–67.

    Article  PubMed  Google Scholar 

  186. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease; a meta-analysis of 147 randomized trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Turnbull F, Neal B, Ninomiya T, Blood Pressure Lowering Treatment Trialists’ Collaboration, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults; meta-analysis of randomized trials. BMJ. 2008;336(7653):1121–3.

    Article  CAS  PubMed  Google Scholar 

  188. Aronow WS. Multiple blood pressure medications and mortality among elderly individuals. JAMA. 2015;313:1362–3.

    Article  CAS  PubMed  Google Scholar 

  189. Tinetti ME, Han L, McAvay GJ, et al. Anti-hypertensive medications and cardiovascular events in older adults with multiple chronic conditions. PLos One. 2014;9(3):e90733. doi:10.1371/journal.pone.0090733.

  190. Fick D, Semla T, Beizer J, et al. American Geriatrics Society Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults. The American Geriatrics Society 2012 Beers Criteria Update Expert Panel. J Am Geriatr Soc. 2012:1–16.

  191. O’Mahony D, Gallager P, Ryan C, et al. STOPP & START criteria: a new approach to detecting potentially inappropriate prescribing in old age. Eur Geriatr Med. 2010;1:45–51.

    Article  Google Scholar 

  192. Barochiner J, Alfie J, Aparicio L, et al. Orthostatic hypotension in treated hypertensive patients. Rom J Intern Med. 2012;50(3):203–9.

    PubMed  Google Scholar 

  193. Reddy P, Dupree L. Approach to antihypertensive therapy. Am J Ther. 2015 (Epub ahead of print).

  194. Go AS, Bauman A, Coleman M, et al. An effective approach to high blood pressure control. A science advisory from the American Heart Association, the American College of Cardiology and the Centers for Disease Control and Prevention. J Am Coll Cardiol. 2014;63(12):1230–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiruvinvamalai S. Dharmarajan.

Ethics declarations

Financial Support

No external funds were used in the preparation of this manuscript.

Conflict of interest

TS. Dharmarajan and L. Dharmarajan have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmarajan, T.S., Dharmarajan, L. Tolerability of Antihypertensive Medications in Older Adults. Drugs Aging 32, 773–796 (2015). https://doi.org/10.1007/s40266-015-0296-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-015-0296-3

Keywords

Navigation