Skip to main content
Log in

Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20–40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berger J, Hinglais N. intercapillary deposits of IgA-IgG. J Urol Nephrol (Paris). 1968;74(9):694–5.

    CAS  PubMed  Google Scholar 

  2. Berthoux FC, Mohey H, Afiani A. Natural history of primary IgA nephropathy. Semin Nephrol. 2008;28(1):4–9. https://doi.org/10.1016/j.semnephrol.2007.10.001.

    Article  PubMed  Google Scholar 

  3. Hastings MC, Bursac Z, Julian BA, Villa Baca E, Featherston J, Woodford SY, et al. Life expectancy for patients from the southeastern United States with IgA nephropathy. Kidney Int Rep. 2018;3(1):99–104. https://doi.org/10.1016/j.ekir.2017.08.008.

    Article  PubMed  Google Scholar 

  4. Jennette JC. The immunohistology of IgA nephropathy. Am J Kidney Dis. 1988;12(5):348–52. https://doi.org/10.1016/s0272-6386(88)80022-2.

    Article  CAS  PubMed  Google Scholar 

  5. Conley ME, Cooper MD, Michael AF. Selective deposition of immunoglobulin A1 in immunoglobulin A nephropathy, anaphylactoid purpura nephritis, and systemic lupus erythematosus. J Clin Invest. 1980;66(6):1432–6. https://doi.org/10.1172/jci109998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: an interesting autoimmune kidney disease. Am J Med Sci. 2021;361(2):176–94. https://doi.org/10.1016/j.amjms.2020.10.003.

    Article  PubMed  Google Scholar 

  7. D’Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol. 2004;24(3):179–96. https://doi.org/10.1016/j.semnephrol.2004.01.001.

    Article  PubMed  Google Scholar 

  8. Saha MK, Julian BA, Novak J, Rizk DV. Secondary IgA nephropathy. Kidney Int. 2018;94(4):674–81. https://doi.org/10.1016/j.kint.2018.02.030.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hastings MC, Rizk DV, Kiryluk K, Nelson R, Zahr RS, Novak J, et al. IgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatr Nephrol. 2022;37(4):719–33. https://doi.org/10.1007/s00467-021-04950-y.

    Article  PubMed  Google Scholar 

  10. Simon P, Ramee MP, Boulahrouz R, Stanescu C, Charasse C, Ang KS, et al. Epidemiologic data of primary glomerular diseases in western France. Kidney Int. 2004;66(3):905–8. https://doi.org/10.1111/j.1523-1755.2004.00834.x.

    Article  PubMed  Google Scholar 

  11. Donadio JV, Grande JP. IgA nephropathy. N Engl J Med. 2002;347(10):738–48. https://doi.org/10.1056/NEJMra020109.

    Article  CAS  PubMed  Google Scholar 

  12. Utsunomiya Y, Koda T, Kado T, Okada S, Hayashi A, Kanzaki S, et al. Incidence of pediatric IgA nephropathy. Pediatr Nephrol. 2003;18(6):511–5. https://doi.org/10.1007/s00467-003-1127-z.

    Article  PubMed  Google Scholar 

  13. Shibano T, Takagi N, Maekawa K, Mae H, Hattori M, Takeshima Y, et al. Epidemiological survey and clinical investigation of pediatric IgA nephropathy. Clin Exp Nephrol. 2016;20(1):111–7. https://doi.org/10.1007/s10157-015-1129-8.

    Article  CAS  PubMed  Google Scholar 

  14. McQuarrie EP, Mackinnon B, McNeice V, Fox JG, Geddes CC. The incidence of biopsy-proven IgA nephropathy is associated with multiple socioeconomic deprivation. Kidney Int. 2014;85(1):198–203. https://doi.org/10.1038/ki.2013.329.

    Article  PubMed  Google Scholar 

  15. Schena FP, Nistor I. Epidemiology of IgA nephropathy: a global perspective. Semin Nephrol. 2018;38(5):435–42. https://doi.org/10.1016/j.semnephrol.2018.05.013.

    Article  PubMed  Google Scholar 

  16. Julian BA, Quiggins PA, Thompson JS, Woodford SY, Gleason K, Wyatt RJ. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N Engl J Med. 1985;312(4):202–8. https://doi.org/10.1056/nejm198501243120403.

    Article  CAS  PubMed  Google Scholar 

  17. Hsu SI, Ramirez SB, Winn MP, Bonventre JV, Owen WF. Evidence for genetic factors in the development and progression of IgA nephropathy. Kidney Int. 2000;57(5):1818–35. https://doi.org/10.1046/j.1523-1755.2000.00032.x.

    Article  CAS  PubMed  Google Scholar 

  18. Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45. https://doi.org/10.1038/ki.2009.243.

    Article  PubMed  Google Scholar 

  19. Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int. 2017;91(5):1014–21. https://doi.org/10.1016/j.kint.2017.02.003.

    Article  PubMed  Google Scholar 

  20. Berthoux F, Mohey H, Laurent B, Mariat C, Afiani A, Thibaudin L. Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol. 2011;22(4):752–61. https://doi.org/10.1681/asn.2010040355.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Inker LA, Heerspink HJL, Tighiouart H, Chaudhari J, Miao S, Diva U, et al. Association of treatment effects on early change in urine protein and treatment effects on GFR slope in IgA nephropathy: an individual participant meta-analysis. Am J Kidney Dis. 2021;78(3):340-9.e1. https://doi.org/10.1053/j.ajkd.2021.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson A, Carroll K, Inker LA, Floege J, Perkovic V, Boyer-Suavet S, et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol. 2019;14(3):469–81. https://doi.org/10.2215/cjn.08600718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barratt J, Lafayette R, Kristensen J, Stone A, Cattran D, Floege J, et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 2023;103(2):391–402. https://doi.org/10.1016/j.kint.2022.09.017.

    Article  CAS  PubMed  Google Scholar 

  24. Heerspink HJL, Radhakrishnan J, Alpers CE, Barratt J, Bieler S, Diva U, et al. Sparsentan in patients with IgA nephropathy: A prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet. 2023;401(10388):1584–94. https://doi.org/10.1016/s0140-6736(23)00569-x.

    Article  CAS  PubMed  Google Scholar 

  25. Fagarasan S. Evolution, development, mechanism and function of IgA in the gut. Curr Opin Immunol. 2008;20(2):170–7. https://doi.org/10.1016/j.coi.2008.04.002.

    Article  CAS  PubMed  Google Scholar 

  26. Allen AC, Bailey EM, Brenchley PE, Buck KS, Barratt J, Feehally J. Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int. 2001;60(3):969–73. https://doi.org/10.1046/j.1523-1755.2001.060003969.x.

    Article  CAS  PubMed  Google Scholar 

  27. Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 2001;59(3):1077–85. https://doi.org/10.1046/j.1523-1755.2001.0590031077.x.

    Article  CAS  PubMed  Google Scholar 

  28. Tomana M, Matousovic K, Julian BA, Radl J, Konecny K, Mestecky J. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997;52(2):509–16. https://doi.org/10.1038/ki.1997.361.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119(6):1668–77. https://doi.org/10.1172/jci38468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest. 1999;104(1):73–81. https://doi.org/10.1172/jci5535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L, et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int. 2005;67(2):504–13. https://doi.org/10.1111/j.1523-1755.2005.67107.x.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22(10):1795–803. https://doi.org/10.1681/asn.2011050464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Launay P, Grossetête B, Arcos-Fajardo M, Gaudin E, Torres SP, Beaudoin L, et al. Fc α receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-IgA complexes in patients and CD89 transgenic mice. J Exp Med. 2000;191(11):1999–2009. https://doi.org/10.1084/jem.191.11.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rizk DV, Saha MK, Hall S, Novak L, Brown R, Huang ZQ, et al. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J Am Soc Nephrol. 2019;30(10):2017–26. https://doi.org/10.1681/asn.2018111156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aucouturier P, Monteiro RC, Noël LH, Preud’homme JL, Lesavre P. Glomerular and serum immunoglobulin G subclasses in IgA nephropathy. Clin Immunol Immunopathol. 1989;51(3):338–47. https://doi.org/10.1016/0090-1229(89)90032-9.

    Article  CAS  PubMed  Google Scholar 

  36. Berger J, Yaneva H, Nabarra B, Barbanel C. Recurrence of mesangial deposition of IgA after renal transplantation. Kidney Int. 1975;7(4):232–41. https://doi.org/10.1038/ki.1975.35.

    Article  CAS  PubMed  Google Scholar 

  37. Berger J, Noël LH, Nabarra B. Recurrence of mesangial IgA nephropathy after renal transplantation. Contrib Nephrol. 1984;40:195–7. https://doi.org/10.1159/000409749.

    Article  CAS  PubMed  Google Scholar 

  38. Berger J. Recurrence of IgA nephropathy in renal allografts. Am J Kidney Dis. 1988;12(5):371–2. https://doi.org/10.1016/s0272-6386(88)80027-1.

    Article  CAS  PubMed  Google Scholar 

  39. Chandrakantan A, Ratanapanichkich P, Said M, Barker CV, Julian BA. Recurrent IgA nephropathy after renal transplantation despite immunosuppressive regimens with mycophenolate mofetil. Nephrol Dial Transplant. 2005;20(6):1214–21. https://doi.org/10.1093/ndt/gfh773.

    Article  CAS  PubMed  Google Scholar 

  40. Rizk DV, Maillard N, Julian BA, Knoppova B, Green TJ, Novak J, et al. The emerging role of complement proteins as a target for therapy of IgA nephropathy. Front Immunol. 2019;10:504. https://doi.org/10.3389/fimmu.2019.00504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barnum SR. Complement: a primer for the coming therapeutic revolution. Pharmacol Ther. 2017;172:63–72. https://doi.org/10.1016/j.pharmthera.2016.11.014.

    Article  CAS  PubMed  Google Scholar 

  42. Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol. 2017;18(12):1288–98. https://doi.org/10.1038/ni.3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nesargikar PN, Spiller B, Chavez R. The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp). 2012;2(2):103–11. https://doi.org/10.1556/EuJMI.2.2012.2.2.

    Article  CAS  PubMed  Google Scholar 

  44. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. https://doi.org/10.1038/ni.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alper CA, Johnson AM, Birtch AG, Moore FD. Human C3: evidence for the liver as the primary site of synthesis. Science. 1969;163(3864):286–8. https://doi.org/10.1126/science.163.3864.286.

    Article  CAS  PubMed  Google Scholar 

  46. Hauptmann G, Tongio MM, Klein J, Mayer S, Cinqualbre J, Jeanblanc B, et al. Change in serum properdin factor B phenotype following human orthoptic liver transplantation. Immunobiology. 1980;158(1–2):76–81. https://doi.org/10.1016/s0171-2985(80)80043-x.

    Article  CAS  PubMed  Google Scholar 

  47. Wölpl A, Robin-Winn M, Pichlmayr R, Goldmann SF. Fourth component of complement (C4) polymorphism in human orthotopic liver transplantation. Transplantation. 1985;40(2):154–7. https://doi.org/10.1097/00007890-198508000-00009.

    Article  PubMed  Google Scholar 

  48. Colten HR. Biosynthesis of complement. Adv Immunol. 1976;22:67–118. https://doi.org/10.1016/s0065-2776(08)60548-9.

    Article  CAS  PubMed  Google Scholar 

  49. Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. Embo J. 2015;34(22):2735–57. https://doi.org/10.15252/embj.201591881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. 2016;12(7):383–401. https://doi.org/10.1038/nrneph.2016.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wouters D, Zeerleder S. Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Haematologica. 2015;100(11):1388–95. https://doi.org/10.3324/haematol.2015.128538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kemper C, Pangburn MK, Fishelson Z. Complement nomenclature 2014. Mol Immunol. 2014;61(2):56–8. https://doi.org/10.1016/j.molimm.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  53. Kerr MA. Limited proteolysis of complement components C2 and factor B. Structural analogy and limited sequence homology. Biochem J. 1979;183(3):615–22. https://doi.org/10.1042/bj1830615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dobó J, Kocsis A, Gál P. Be on target: strategies of targeting alternative and lectin pathway components in complement-mediated diseases. Front Immunol. 2018;9:1851. https://doi.org/10.3389/fimmu.2018.01851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262. https://doi.org/10.3389/fimmu.2015.00262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33(6):479–92. https://doi.org/10.1016/j.semnephrol.2013.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Békássy ZD, Kristoffersson AC, Rebetz J, Tati R, Olin AI, Karpman D. Aliskiren inhibits renin-mediated complement activation. Kidney Int. 2018;94(4):689–700. https://doi.org/10.1016/j.kint.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  58. Almitairi JOM, Venkatraman Girija U, Furze CM, Simpson-Gray X, Badakshi F, Marshall JE, et al. Structure of the C1r–C1s interaction of the C1 complex of complement activation. Proc Natl Acad Sci USA. 2018;115(4):768–73. https://doi.org/10.1073/pnas.1718709115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ. Structure and activation of the C1 complex of complement: Unraveling the puzzle. Trends Immunol. 2004;25(7):368–73. https://doi.org/10.1016/j.it.2004.04.008.

    Article  CAS  PubMed  Google Scholar 

  60. Medjeral-Thomas NR, Cook HT, Pickering MC. Complement activation in IgA nephropathy. Semin Immunopathol. 2021;43(5):679–90. https://doi.org/10.1007/s00281-021-00882-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiology. 2016;221(6):747–51. https://doi.org/10.1016/j.imbio.2015.04.006.

    Article  CAS  PubMed  Google Scholar 

  62. Meri S, Waldmann H, Lachmann PJ. Distribution of protectin (CD59), a complement membrane attack inhibitor, in normal human tissues. Lab Invest. 1991;65(5):532–7.

    CAS  PubMed  Google Scholar 

  63. Morgan BP, Harris CL. Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov. 2015;14(12):857–77. https://doi.org/10.1038/nrd4657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barnum SR, Bubeck D, Schein TN. Soluble membrane attack complex: biochemistry and immunobiology. Front Immunol. 2020;11: 585108. https://doi.org/10.3389/fimmu.2020.585108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729–40. https://doi.org/10.1038/nri2620.

    Article  CAS  PubMed  Google Scholar 

  66. Fujita T, Matsushita M, Endo Y. The lectin-complement pathway—its role in innate immunity and evolution. Immunol Rev. 2004;198:185–202. https://doi.org/10.1111/j.0105-2896.2004.0123.x.

    Article  CAS  PubMed  Google Scholar 

  67. Davis AE 3rd, Lu F, Mejia P. C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost. 2010;104(5):886–93. https://doi.org/10.1160/th10-01-0073.

    Article  CAS  PubMed  Google Scholar 

  68. Beinrohr L, Dobó J, Závodszky P, Gál P. C1, MBL-MASPs and C1-inhibitor: Novel approaches for targeting complement-mediated inflammation. Trends Mol Med. 2008;14(12):511–21. https://doi.org/10.1016/j.molmed.2008.09.009.

    Article  CAS  PubMed  Google Scholar 

  69. Ermert D, Blom AM. C4b-binding protein: The good, the bad and the deadly. Novel functions of an old friend. Immunol Lett. 2016;169:82–92. https://doi.org/10.1016/j.imlet.2015.11.014.

    Article  CAS  PubMed  Google Scholar 

  70. Nilsson B, Nilsson EK. The tick-over theory revisited: is C3 a contact-activated protein? Immunobiology. 2012;217(11):1106–10. https://doi.org/10.1016/j.imbio.2012.07.008.

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt CQ, Herbert AP, Hocking HG, Uhrín D, Barlow PN. Translational mini-review series on complement factor H: structural and functional correlations for factor H. Clin Exp Immunol. 2008;151(1):14–24. https://doi.org/10.1111/j.1365-2249.2007.03553.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim DD, Song WC. Membrane complement regulatory proteins. Clin Immunol. 2006;118(2–3):127–36. https://doi.org/10.1016/j.clim.2005.10.014.

    Article  CAS  PubMed  Google Scholar 

  73. Liszewski MK, Atkinson JP. Complement regulator CD46: genetic variants and disease associations. Hum Genomics. 2015;9(1):7. https://doi.org/10.1186/s40246-015-0029-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lublin DM. Review: Cromer and DAF: role in health and disease. Immunohematology. 2005;21(2):39–47.

    Article  CAS  PubMed  Google Scholar 

  75. Medjeral-Thomas N, Pickering MC. The complement factor H-related proteins. Immunol Rev. 2016;274(1):191–201. https://doi.org/10.1111/imr.12477.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu L, Guo WY, Shi SF, Liu LJ, Lv JC, Medjeral-Thomas NR, et al. Circulating complement factor H-related protein 5 levels contribute to development and progression of IgA nephropathy. Kidney Int. 2018;94(1):150–8. https://doi.org/10.1016/j.kint.2018.02.023.

    Article  CAS  PubMed  Google Scholar 

  77. Tortajada A, Gutiérrez E, Goicoechea de Jorge E, Anter J, Segarra A, Espinosa M, et al. Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int. 2017;92(4):953–63. https://doi.org/10.1016/j.kint.2017.03.041.

    Article  CAS  PubMed  Google Scholar 

  78. Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, Willicombe M, McLean AG, Brookes P, et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 2017;92(4):942–52. https://doi.org/10.1016/j.kint.2017.03.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Medjeral-Thomas NR, Troldborg A, Constantinou N, Lomax-Browne HJ, Hansen AG, Willicombe M, et al. Progressive IgA nephropathy is associated with low circulating mannan-binding lectin-associated serine protease-3 (MASP-3) and increased glomerular factor H-related protein-5 (FHR5) deposition. Kidney Int Rep. 2018;3(2):426–38. https://doi.org/10.1016/j.ekir.2017.11.015.

    Article  PubMed  Google Scholar 

  80. Tortajada A, Gutierrez E, Pickering MC, Praga Terente M, Medjeral-Thomas N. The role of complement in IgA nephropathy. Mol Immunol. 2019;114:123–32. https://doi.org/10.1016/j.molimm.2019.07.017.

    Article  CAS  PubMed  Google Scholar 

  81. Daina E, Cortinovis M, Remuzzi G. Kidney diseases. Immunol Rev. 2023;313(1):239–61. https://doi.org/10.1111/imr.13167.

    Article  CAS  PubMed  Google Scholar 

  82. Goicoechea de Jorge E, Caesar JJ, Malik TH, Patel M, Colledge M, Johnson S, et al. Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci USA. 2013;110(12):4685–90. https://doi.org/10.1073/pnas.1219260110.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Intercapillary deposits of IgA-IgG. J Am Soc Nephrol. 2000;11(10):1957–9 https://doi.org/10.1681/asn.V11101957.

  84. Floege J, Daha MR. IgA nephropathy: new insights into the role of complement. Kidney Int. 2018;94(1):16–8. https://doi.org/10.1016/j.kint.2018.03.009.

    Article  CAS  PubMed  Google Scholar 

  85. Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, et al. Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol. 2015;26(7):1503–12. https://doi.org/10.1681/asn.2014101000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wyatt RJ, Kanayama Y, Julian BA, Negoro N, Sugimoto S, Hudson EC, et al. Complement activation in IgA nephropathy. Kidney Int. 1987;31(4):1019–23. https://doi.org/10.1038/ki.1987.101.

    Article  CAS  PubMed  Google Scholar 

  87. Endo M, Ohi H, Ohsawa I, Fujita T, Matsushita M, Fujita T. Glomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy. Nephrol Dial Transplant. 1998;13(8):1984–90. https://doi.org/10.1093/ndt/13.8.1984.

    Article  CAS  PubMed  Google Scholar 

  88. Lhotta K, Würzner R, König P. Glomerular deposition of mannose-binding lectin in human glomerulonephritis. Nephrol Dial Transplant. 1999;14(4):881–6. https://doi.org/10.1093/ndt/14.4.881.

    Article  CAS  PubMed  Google Scholar 

  89. Endo M, Ohi H, Satomura A, Hidaka M, Ohsawa I, Fujita T, et al. Regulation of in situ complement activation via the lectin pathway in patients with IgA nephropathy. Clin Nephrol. 2001;55(3):185–91.

    CAS  PubMed  Google Scholar 

  90. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol. 2001;167(5):2861–8. https://doi.org/10.4049/jimmunol.167.5.2861.

    Article  CAS  PubMed  Google Scholar 

  91. Daha MR, van Kooten C. Role of complement in IgA nephropathy. J Nephrol. 2016;29(1):1–4. https://doi.org/10.1007/s40620-015-0245-6.

    Article  CAS  PubMed  Google Scholar 

  92. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006;17(6):1724–34. https://doi.org/10.1681/asn.2005090923.

    Article  CAS  PubMed  Google Scholar 

  93. Liu LL, Liu N, Chen Y, Wang LN, Jiang Y, Wang J, et al. Glomerular mannose-binding lectin deposition is a useful prognostic predictor in immunoglobulin A nephropathy. Clin Exp Immunol. 2013;174(1):152–60. https://doi.org/10.1111/cei.12154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Segarra-Medrano A, Carnicer-Caceres C, Valtierra-Carmeno N, Agraz-Pamplona I, Ramos-Terrades N, Jatem Escalante E, et al. Study of the variables associated with local complement activation in IgA nephropathy. Nefrologia. 2017;37(3):320–9. https://doi.org/10.1016/j.nefro.2016.11.019.

    Article  PubMed  Google Scholar 

  95. Czerkinsky C, Koopman WJ, Jackson S, Collins JE, Crago SS, Schrohenloher RE, et al. Circulating immune complexes and immunoglobulin A rheumatoid factor in patients with mesangial immunoglobulin A nephropathies. J Clin Invest. 1986;77(6):1931–8. https://doi.org/10.1172/jci112522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Crowley-Nowick PA, Campbell E, Schrohenloher RE, Mestecky J, Mestecky J, Jackson S. Polyethylene glycol precipitates of serum contain a large proportion of uncomplexed immunoglobulins and C3. Immunol Invest. 1996;25(1–2):91–101. https://doi.org/10.3109/08820139609059293.

    Article  CAS  PubMed  Google Scholar 

  97. Julian BA, Wyatt RJ, McMorrow RG, Galla JH. Serum complement proteins in IgA nephropathy. Clin Nephrol. 1983;20(5):251–8.

    CAS  PubMed  Google Scholar 

  98. Maeda A, Gohda T, Funabiki K, Horikoshi S, Shirato I, Tomino Y. Significance of serum IgA levels and serum IgA/C3 ratio in diagnostic analysis of patients with IgA nephropathy. J Clin Lab Anal. 2003;17(3):73–6. https://doi.org/10.1002/jcla.10071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ishiguro C, Yaguchi Y, Funabiki K, Horikoshi S, Shirato I, Tomino Y. Serum IgA/C3 ratio may predict diagnosis and prognostic grading in patients with IgA nephropathy. Nephron. 2002;91(4):755–8. https://doi.org/10.1159/000065043.

    Article  PubMed  Google Scholar 

  100. Tomino Y, Suzuki S, Imai H, Saito T, Kawamura T, Yorioka N, et al. Measurement of serum IgA and C3 may predict the diagnosis of patients with IgA nephropathy prior to renal biopsy. J Clin Lab Anal. 2000;14(5):220–3. https://doi.org/10.1002/1098-2825(2000)14:5%3c220::AID-JCLA4%3e3.0.CO;2-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gong WY, Liu M, Luo D, Liu FN, Yin LH, Li YQ, et al. High serum IgA/C3 ratio better predicts a diagnosis of IgA nephropathy among primary glomerular nephropathy patients with proteinuria ≤ 1 g/d: An observational cross-sectional study. BMC Nephrol. 2019;20(1):150. https://doi.org/10.1186/s12882-019-1331-0.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Komatsu H, Fujimoto S, Hara S, Sato Y, Yamada K, Eto T. Relationship between serum IgA/C3 ratio and progression of IgA nephropathy. Intern Med. 2004;43(11):1023–8. https://doi.org/10.2169/internalmedicine.43.1023.

    Article  CAS  PubMed  Google Scholar 

  103. Karahisar Şirali S, Büberci R. Correlation between IgAC3 ratio and Oxford score in IgA nephropathy. Clin Exp Nephrol. 2022;26(10):982–7. https://doi.org/10.1007/s10157-022-02244-7.

    Article  CAS  PubMed  Google Scholar 

  104. Kawasaki Y, Maeda R, Ohara S, Suyama K, Hosoya M. Serum IgA/C3 and glomerular C3 staining predict severity of IgA nephropathy. Pediatr Int. 2018;60(2):162–7. https://doi.org/10.1111/ped.13461.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang J, Wang C, Tang Y, Peng H, Ye ZC, Li CC, et al. Serum immunoglobulin A/C3 ratio predicts progression of immunoglobulin A nephropathy. Nephrology (Carlton). 2013;18(2):125–31. https://doi.org/10.1111/nep.12010.

    Article  CAS  PubMed  Google Scholar 

  106. Lang Y, Song S, Zhao L, Yang Y, Liu T, Shen Y, et al. Serum IgA/C3 ratio and glomerular C3 staining predict progression of IgA nephropathy in children. Transl Pediatr. 2021;10(3):666–72. https://doi.org/10.21037/tp-21-90.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mizerska-Wasiak M, Małdyk J, Rybi-Szumińska A, Wasilewska A, Miklaszewska M, Pietrzyk J, et al. Relationship between serum IgA/C3 ratio and severity of histological lesions using the Oxford classification in children with IgA nephropathy. Pediatr Nephrol. 2015;30(7):1113–20. https://doi.org/10.1007/s00467-014-3024-z.

    Article  PubMed  Google Scholar 

  108. Guo WY, Zhu L, Meng SJ, Shi SF, Liu LJ, Lv JC, et al. Mannose-binding lectin levels could predict prognosis in IgA nephropathy. J Am Soc Nephrol. 2017;28(11):3175–81. https://doi.org/10.1681/asn.2017010076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang Z, Xie X, Li J, Zhang X, He J, Wang M, et al. Complement activation is associated with crescents in IgA nephropathy. Front Immunol. 2021;12: 676919. https://doi.org/10.3389/fimmu.2021.676919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Niu X, Zhang S, Shao C, Guo Z, Wu J, Tao J, et al. Urinary complement proteins in IgA nephropathy progression from a relative quantitative proteomic analysis. PeerJ. 2023;11: e15125. https://doi.org/10.7717/peerj.15125.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hall S, Coffee CS, Huang ZQ, Maillard N, Moldoveanu Z, Hargett AA, et al. Biologically active circulatory immune complexes in IgA nephropathy contain polymeric IgA1, with galactose-deficient and minimally sialylated O-glycans, IgG, and complement C3b and iC3b. J Am Soc Nephrol. 2022;33:780.

    Google Scholar 

  112. Law SK, Dodds AW. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 1997;6(2):263–74. https://doi.org/10.1002/pro.5560060201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Antón LC, Ruiz S, Barrio E, Marqués G, Sánchez A, Vivanco F. C3 binds with similar efficiency to Fab and Fc regions of IgG immune aggregates. Eur J Immunol. 1994;24(3):599–604. https://doi.org/10.1002/eji.1830240316.

    Article  PubMed  Google Scholar 

  114. Gadd KJ, Reid KB. The binding of complement component C3 to antibody-antigen aggregates after activation of the alternative pathway in human serum. Biochem J. 1981;195(2):471–80. https://doi.org/10.1042/bj1950471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sahu A, Pangburn MK. Covalent attachment of human complement C3 to IgG. Identification of the amino acid residue involved in ester linkage formation. J Biol Chem. 1994;269(46):28997–9002.

    Article  CAS  PubMed  Google Scholar 

  116. Vidarte L, Pastor C, Mas S, Blazquez AB, de los Rios V, Guerrero R, et al. Serine 132 is the C3 covalent attachment point on the CH1 domain of human IgG1. J Biol Chem. 2001;276(41):38217–23. https://doi.org/10.1074/jbc.M104870200.

    Article  CAS  PubMed  Google Scholar 

  117. de Bruijn MH, Fey GH. Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci USA. 1985;82(3):708–12. https://doi.org/10.1073/pnas.82.3.708.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K, et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature. 2005;437(7058):505–11. https://doi.org/10.1038/nature04005.

    Article  CAS  PubMed  Google Scholar 

  119. Nishida N, Walz T, Springer TA. Structural transitions of complement component C3 and its activation products. Proc Natl Acad Sci USA. 2006;103(52):19737–42. https://doi.org/10.1073/pnas.0609791104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev. 2023;313(1):120–38. https://doi.org/10.1111/imr.13147.

    Article  CAS  PubMed  Google Scholar 

  121. Renner B, Laskowski J, Poppelaars F, Ferreira VP, Blaine J, Antonioli AH, et al. Factor H related proteins modulate complement activation on kidney cells. Kidney Int. 2022;102(6):1331–44. https://doi.org/10.1016/j.kint.2022.07.035.

    Article  CAS  PubMed  Google Scholar 

  122. Papp A, Papp K, Uzonyi B, Cserhalmi M, Csincsi ÁI, Szabó Z, et al. Complement factor H-related proteins FHR1 and FHR5 interact with extracellular matrix ligands, reduce factor H regulatory activity and enhance complement activation. Front Immunol. 2022;13: 845953. https://doi.org/10.3389/fimmu.2022.845953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pangburn MK, Schreiber RD, Muller-Eberhard HJ. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med. 1981;154(3):856–67. https://doi.org/10.1084/jem.154.3.856.

    Article  CAS  PubMed  Google Scholar 

  124. Pangburn MK. Spontaneous reformation of the intramolecular thioester in complement protein C3 and low temperature capture of a conformational intermediate capable of reformation. J Biol Chem. 1992;267(12):8584–90.

    Article  CAS  PubMed  Google Scholar 

  125. Isenman DE, Kells DI, Cooper NR, Muller-Eberhard HJ, Pangburn MK. Nucleophilic modification of human complement protein C3: correlation of conformational changes with acquisition of C3b-like functional properties. Biochemistry. 1981;20(15):4458–67. https://doi.org/10.1021/bi00518a034.

    Article  CAS  PubMed  Google Scholar 

  126. Pangburn MK. Initiation of the alternative pathway of complement and the history of “tickover.” Immunol Rev. 2023;313(1):64–70. https://doi.org/10.1111/imr.13130.

    Article  CAS  PubMed  Google Scholar 

  127. Hiemstra PS, Gorter A, Stuurman ME, Van Es LA, Daha MR. Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol. 1987;17(3):321–6. https://doi.org/10.1002/eji.1830170304.

    Article  CAS  PubMed  Google Scholar 

  128. Suzuki H, Novak J. IgA glycosylation and immune complex formation in IgAN. Semin Immunopathol. 2021;43(5):669–78. https://doi.org/10.1007/s00281-021-00883-8.

    Article  CAS  PubMed  Google Scholar 

  129. Knoppova B, Reily C, King RG, Julian BA, Novak J, Green TJ. Pathogenesis of IgA nephropathy: Current understanding and implications for development of disease-specific treatment. J Clin Med. 2021. https://doi.org/10.3390/jcm10194501.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, et al. The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol. 2016;7:117. https://doi.org/10.3389/fimmu.2016.00117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maillard N, Boerma L, Hall S, Huang Z, Mrug M, Moldoveanu Z, et al. Proteomic analysis of engineered IgA1-IgG immune complexes reveals association with activated complement C3. J Am Soc Nephrol. 2013;24:490A.

    Google Scholar 

  132. Novak J, Raskova Kafkova L, Suzuki H, Tomana M, Matousovic K, Brown R, et al. IgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured human mesangial cells. Nephrol Dial Transplant. 2011;26(11):3451–7. https://doi.org/10.1093/ndt/gfr448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Placzek WJ, Yanagawa H, Makita Y, Renfrow MB, Julian BA, Rizk DV, et al. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS ONE. 2018;13(1): e0190967. https://doi.org/10.1371/journal.pone.0190967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82(7):790–6. https://doi.org/10.1038/ki.2012.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012;23(9):1579–87. https://doi.org/10.1681/asn.2012010053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Berthoux F, Suzuki H, Mohey H, Maillard N, Mariat C, Novak J, et al. Prognostic value of serum biomarkers of autoimmunity for recurrence of IgA nephropathy after kidney transplantation. J Am Soc Nephrol. 2017;28(6):1943–50. https://doi.org/10.1681/asn.2016060670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maixnerova D, Ling C, Hall S, Reily C, Brown R, Neprasova M, et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS ONE. 2019;14(2): e0212254. https://doi.org/10.1371/journal.pone.0212254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Berthelot L, Robert T, Vuiblet V, Tabary T, Braconnier A, Dramé M, et al. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int. 2015;88(4):815–22. https://doi.org/10.1038/ki.2015.158.

    Article  CAS  PubMed  Google Scholar 

  139. Gutiérrez E, Egido J, Rubio-Navarro A, Buendía I, Blanco Colio LM, Toldos O, et al. Oxidative stress, macrophage infiltration and CD163 expression are determinants of long-term renal outcome in macrohematuria-induced acute kidney injury of IgA nephropathy. Nephron Clin Pract. 2012;121(1–2):c42-53. https://doi.org/10.1159/000342385.

    Article  CAS  PubMed  Google Scholar 

  140. Gerogianni A, Dimitrov JD, Zarantonello A, Poillerat V, Chonat S, Sandholm K, et al. Heme interferes with complement factor I-dependent regulation by enhancing alternative pathway activation. Front Immunol. 2022;13: 901876. https://doi.org/10.3389/fimmu.2022.901876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moldoveanu Z, Suzuki H, Reily C, Satake K, Novak L, Xu N, et al. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J Autoimmun. 2021;118: 102593. https://doi.org/10.1016/j.jaut.2021.102593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kiryluk K, Julian BA, Wyatt RJ, Scolari F, Zhang H, Novak J, et al. Genetic studies of IgA nephropathy: past, present, and future. Pediatr Nephrol. 2010;25(11):2257–68. https://doi.org/10.1007/s00467-010-1500-7.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kiryluk K, Gharavi AG, Izzi C, Scolari F. IgA nephropathy—the case for a genetic basis becomes stronger. Nephrol Dial Transplant. 2010;25(2):336–8. https://doi.org/10.1093/ndt/gfp593.

    Article  PubMed  Google Scholar 

  144. Feehally J, Farrall M, Boland A, Gale DP, Gut I, Heath S, et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J Am Soc Nephrol. 2010;21(10):1791–7. https://doi.org/10.1681/asn.2010010076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43(4):321–7. https://doi.org/10.1038/ng.787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8(6): e1002765. https://doi.org/10.1371/journal.pgen.1002765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96. https://doi.org/10.1038/ng.3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet. 2011;44(2):178–82. https://doi.org/10.1038/ng.1047.

    Article  CAS  PubMed  Google Scholar 

  149. Li M, Foo JN, Wang JQ, Low HQ, Tang XQ, Toh KY, et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun. 2015;6:7270. https://doi.org/10.1038/ncomms8270.

    Article  CAS  PubMed  Google Scholar 

  150. Li M, Wang L, Shi DC, Foo JN, Zhong Z, Khor CC, et al. Genome-wide meta-analysis identifies three novel susceptibility loci and reveals ethnic heterogeneity of genetic susceptibility for IgA nephropathy. J Am Soc Nephrol. 2020;31(12):2949–63. https://doi.org/10.1681/asn.2019080799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med. 2013;64:339–56. https://doi.org/10.1146/annurev-med-041811-142014.

    Article  CAS  PubMed  Google Scholar 

  152. Kiryluk K, Novak J. The genetics and immunobiology of IgA nephropathy. J Clin Invest. 2014;124(6):2325–32. https://doi.org/10.1172/jci74475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhu L, Zhai YL, Wang FM, Hou P, Lv JC, Xu DM, et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol. 2015;26(5):1195–204. https://doi.org/10.1681/asn.2014010096.

    Article  CAS  PubMed  Google Scholar 

  154. Jullien P, Laurent B, Claisse G, Masson I, Dinic M, Thibaudin D, et al. Deletion variants of CFHR1 and CFHR3 associate with mesangial immune deposits but not with progression of IgA nephropathy. J Am Soc Nephrol. 2018;29(2):661–9. https://doi.org/10.1681/asn.2017010019.

    Article  CAS  PubMed  Google Scholar 

  155. Guo WY, Liu QZ, Zhu L, Li ZY, Meng SJ, Shi SF, et al. Coding and noncoding variants in CFH act synergistically for complement activation in immunoglobulin A nephropathy. Am J Med Sci. 2018;356(2):114–20. https://doi.org/10.1016/j.amjms.2018.04.006.

    Article  PubMed  Google Scholar 

  156. Zhai YL, Meng SJ, Zhu L, Shi SF, Wang SX, Liu LJ, et al. Rare variants in the complement factor H-related protein 5 gene contribute to genetic susceptibility to IgA nephropathy. J Am Soc Nephrol. 2016;27(9):2894–905. https://doi.org/10.1681/asn.2015010012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Guzzo G, Sadallah S, Fodstad H, Venetz JP, Rotman S, Teta D, et al. Case report: a rare truncating variant of the CFHR5 gene in IgA nephropathy. Front Genet. 2021;12: 529236. https://doi.org/10.3389/fgene.2021.529236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hou W, Shi S, Zhou X, Wang S, Cai Q, Chen P, et al. Complement factor H variants are associated with microangiopathy lesions in IgA nephropathy. Int Immunopharmacol. 2022;112: 109234. https://doi.org/10.1016/j.intimp.2022.109234.

    Article  CAS  PubMed  Google Scholar 

  159. Shi D, Zhong Z, Xu R, Li B, Li J, Habib U, et al. Association of ITGAX and ITGAM gene polymorphisms with susceptibility to IgA nephropathy. J Hum Genet. 2019;64(9):927–35. https://doi.org/10.1038/s10038-019-0632-2.

    Article  CAS  PubMed  Google Scholar 

  160. Sanchez-Rodriguez E, Southard CT, Kiryluk K. GWAS-based discoveries in IgA nephropathy, membranous nephropathy, and steroid-sensitive nephrotic syndrome. Clin J Am Soc Nephrol. 2021;16(3):458–66. https://doi.org/10.2215/cjn.14031119.

    Article  CAS  PubMed  Google Scholar 

  161. Liu L, Khan A, Sanchez-Rodriguez E, Zanoni F, Li Y, Steers N, et al. Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits. Nat Commun. 2022;13(1):6859. https://doi.org/10.1038/s41467-022-34456-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xiao M, Ran Y, Shao J, Lei Z, Chen Y, Li Y. Causal association between inflammatory bowel disease and IgA nephropathy: a bidirectional two-sample mendelian randomization study. Front Genet. 2022;13:1002928. https://doi.org/10.3389/fgene.2022.1002928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet. 2018;102(5):717–30. https://doi.org/10.1016/j.ajhg.2018.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Falola O, Adam Y, Ajayi O, Kumuthini J, Adewale S, Mosaku A, et al. SysBiolPGWAS: simplifying post-GWAS analysis through the use of computational technologies and integration of diverse omics datasets. Bioinformatics. 2023. https://doi.org/10.1093/bioinformatics/btac791.

    Article  PubMed  Google Scholar 

  165. Jurrjens AW, Seldin MM, Giles C, Meikle PJ, Drew BG, Calkin AC. The potential of integrating human and mouse discovery platforms to advance our understanding of cardiometabolic diseases. eLife. 2023. https://doi.org/10.7554/eLife.86139.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Baron C, Cherkaoui S, Therrien-Laperriere S, Ilboudo Y, Poujol R, Mehanna P, et al. Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results. bioRxiv. 2023. https://doi.org/10.1101/2023.03.22.533869.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kong S, Li R, Tian Y, Zhang Y, Lu Y, Ou Q, et al. Single-cell omics: a new direction for functional genetic research in human diseases and animal models. Front Genet. 2022;13:1100016. https://doi.org/10.3389/fgene.2022.1100016.

    Article  CAS  PubMed  Google Scholar 

  168. Battram T, Gaunt TR, Relton CL, Timpson NJ, Hemani G. A comparison of the genes and genesets identified by GWAS and EWAS of fifteen complex traits. Nat Commun. 2022;13(1):7816. https://doi.org/10.1038/s41467-022-35037-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gulbranson DR. Generating custom pooled CRISPR libraries for genetic dissection of biological pathways. Methods Mol Biol. 2022;2473:333–47. https://doi.org/10.1007/978-1-0716-2209-4_21.

    Article  CAS  PubMed  Google Scholar 

  170. Rosenblad T, Rebetz J, Johansson M, Békássy Z, Sartz L, Karpman D. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr Nephrol. 2014;29(11):2225–8. https://doi.org/10.1007/s00467-014-2863-y.

    Article  PubMed  Google Scholar 

  171. Ring T, Pedersen BB, Salkus G, Goodship TH. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J. 2015;8(5):489–91. https://doi.org/10.1093/ckj/sfv076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Herzog AL, Wanner C, Amann K, Lopau K. First treatment of relapsing rapidly progressive IgA nephropathy with eculizumab after living kidney donation: a case report. Transplant Proc. 2017;49(7):1574–7. https://doi.org/10.1016/j.transproceed.2017.02.044.

    Article  CAS  PubMed  Google Scholar 

  173. Rizk DV. The rapidly changing landscape of IgA nephropathy treatment. Kidney news. 2022;14(12):23.

    Google Scholar 

  174. Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al. Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int. 2021;100(4):753–79. https://doi.org/10.1016/j.kint.2021.05.015.

    Article  PubMed  Google Scholar 

  175. Barratt J, Yeo SC, Fernstrom A, Barbour S, Sperati J, Villanueva AR, et al. FR-OR67: exploratory results from the phase 2 study of cemdisiran in patients with IgA nephropathy. J Am Soc Nephrol. 2022;33:B2.

    Google Scholar 

  176. Jayne DRW, Merkel PA, Schall TJ, Bekker P. Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med. 2021;384(7):599–609. https://doi.org/10.1056/NEJMoa2023386.

    Article  CAS  PubMed  Google Scholar 

  177. Bruchfeld A, Magin H, Nachman P, Parikh S, Lafayette R, Potarca A, et al. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy-an open-label pilot study. Clin Kidney J. 2022;15(5):922–8. https://doi.org/10.1093/ckj/sfab294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Barratt J, Rovin B, Zhang H, Kashihara N, Maes B, Rizk D, et al. POS-546 efficacy and safety of iptacopan in IgA nephropathy: results of a randomized double-blind placebo-controlled phase 2 study at 6 months. Kidney Int Rep. 2022;7(2, Supplement):S236. https://doi.org/10.1016/j.ekir.2022.01.577.

    Article  Google Scholar 

  179. Rizk DV, Rovin BH, Zhang H, Kashihara N, Maes B, Trimarchi H, et al. Targeting the alternative complement pathway with iptacopan to treat IgA nephropathy: design and rationale of the APPLAUSE-IgAN study. Kidney Int Rep. 2023;8(5):968–79. https://doi.org/10.1016/j.ekir.2023.01.041.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Barbour S, Hladunewich MA, Irvine J, Makris A, Robson RA, Tan SJ, et al. SA-PO714: an exploratory trial of an investigational RNA therapeutic, IONIS-FB-LRx, for treatment of IgA nephropathy. ASN Kidney Week 11/5/2022. J Am Soc Nephrol. 2022;33:800.

    Google Scholar 

  181. Lafayette RA, Rovin BH, Reich HN, Tumlin JA, Floege J, Barratt J. Safety, tolerability and efficacy of narsoplimab, a novel MASP-2 inhibitor for the treatment of IgA nephropathy. Kidney Int Rep. 2020;5(11):2032–41. https://doi.org/10.1016/j.ekir.2020.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Barnum SR. Therapeutic inhibition of complement: well worth the risk. Trends Pharmacol Sci. 2017;38(6):503–5. https://doi.org/10.1016/j.tips.2017.03.009.

    Article  CAS  PubMed  Google Scholar 

  183. Muri L, Ispasanie E, Schubart A, Thorburn C, Zamurovic N, Holbro T, et al. Alternative complement pathway inhibition abrogates pneumococcal opsonophagocytosis in vaccine-naïve, but not in vaccinated individuals. Front Immunol. 2021;12: 732146. https://doi.org/10.3389/fimmu.2021.732146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ispasanie E, Muri L, Schubart A, Thorburn C, Zamurovic N, Holbro T, et al. Alternative complement pathway inhibition does not abrogate meningococcal killing by serum of vaccinated individuals. Front Immunol. 2021;12: 747594. https://doi.org/10.3389/fimmu.2021.747594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Selvaskandan H, Shi S, Twaij S, Cheung CK, Barratt J. Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Front Immunol. 2020;11: 572754. https://doi.org/10.3389/fimmu.2020.572754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tesař V, Radhakrishnan J, Charu V, Barratt J. Challenges in IgA nephropathy management: an era of complement inhibition. Kidney Int Rep. 2023. https://doi.org/10.1016/j.ekir.2023.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81. https://doi.org/10.1056/NEJMoa1208981.

    Article  CAS  PubMed  Google Scholar 

  188. Gavriilaki E, de Latour RP, Risitano AM. Advancing therapeutic complement inhibition in hematologic diseases: PNH and beyond. Blood. 2022;139(25):3571–82. https://doi.org/10.1182/blood.2021012860.

    Article  CAS  PubMed  Google Scholar 

  189. Wang Y, Johnston K, Popoff E, Myren KJ, Cheung A, Faria C, et al. A US cost-minimization model comparing ravulizumab versus eculizumab for the treatment of atypical hemolytic uremic syndrome. J Med Econ. 2020;23(12):1503–15. https://doi.org/10.1080/13696998.2020.1831519.

    Article  PubMed  Google Scholar 

  190. Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P. Structure of C3b reveals conformational changes that underlie complement activity. Nature. 2006;444(7116):213–6. https://doi.org/10.1038/nature05172.

    Article  CAS  PubMed  Google Scholar 

  191. Fernández FJ, Santos-López J, Martínez-Barricarte R, Querol-García J, Martín-Merinero H, Navas-Yuste S, et al. The crystal structure of iC3b-CR3 αI reveals a modular recognition of the main opsonin iC3b by the CR3 integrin receptor. Nat Commun. 2022;13(1):1955. https://doi.org/10.1038/s41467-022-29580-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana V. Rizk.

Ethics declarations

Funding

The authors of this manuscript have been supported in part by Grants AI149431, DK078244, and DK082753 from the National Institutes of Health, and a gift from the IGA Nephropathy Foundation.

Conflict of interest

JN is a co-founder and co-owner of and consultant for Reliant Glycosciences, LLC. JN is a co-inventor on US patent application 14/318,082 (assigned to UAB Research Foundation). JN has a sponsored research agreement with Travere Therapeutics. BAJ is a co-founder and co-owner of Reliant Glycosciences, LLC and a co-inventor on US patent application 14/318,082 (assigned to UAB Research Foundation). MBR is a co-founder and co-owner of and consultant for Reliant Glycosciences, LLC. MBR is a co-inventor on US patent application 14/318,082 (assigned to UAB Research Foundation). DVR received research funding from Reata Pharmaceuticals, Travere Therapeutics (Retrophin), Pfizer Pharmaceuticals, Calliditas Therapeutics (Pharmalink), Otsuka Pharmaceuticals (Visterra), Vertex Pharmaceuticals, Chinook Pharmaceuticals, consultancy fees from Novartis, GSK, George Clinical, Eledon Pharmaceuticals, Otsuka Pharmaceuticals (Visterra), Calliditas Therapeutics (Pharmalink), Chinook Pharmaceuticals. DVR is co-founder and co-owner of Reliant Glycosciences, LLC. None of the listed commercial entities contributed to this study. AR and TJG have nothing to disclose.

Data availability

Not applicable.

Ethics approval

Not applicable.

Consent

Not applicable.

Code availability

Not applicable.

Author contributions

DVR was responsible for conceptualization; DVR, BAJ were responsible for supervision; AR, TJG, MBR, JN and DVR wrote the different sections of the initial draft of the manuscript; all authors edited the manuscript. All authors read and approved the final version of the manuscript and agree to be accountable for all aspects of the work before and after publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, A., Green, T.J., Renfrow, M.B. et al. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 83, 1475–1499 (2023). https://doi.org/10.1007/s40265-023-01940-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01940-2

Navigation