Skip to main content
Log in

Effectiveness of Nutritional Therapies in Male Factor Infertility Treatment: A Systematic Review and Network Meta-analysis

  • Systematic Review
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Background

Nutritional therapies are effective alternative treatments for male infertility or subfertility. These are cost-effective and easily implementable, unlike other advanced invasive treatments. Even moderate improvements in sperm quality could improve spontaneous pregnancy.

Objective

We aimed to compare the effectiveness of all nutritional therapies in male infertility/subfertility treatment and ranked their efficacy based on type and etiology. We intend to aid clinicians with an evidence-based approach to affordable and safer initial infertility treatment for those who mainly do not wish to have other advanced invasive treatments or could not afford or have access to them.

Methods

We included 69 studies with 94 individual study arms identified from bibliographic databases and registries. We included studies in adult men with proven infertility or subfertility that investigated nutritional or dietary supplement therapies compared with control or placebo and at least reported on a sperm parameter. We undertook a network meta-analysis and performed a pairwise meta-analysis on all sperm parameter outcomes and meta-regression. No language or date restriction was imposed. A systematic article search was concluded on August 29, 2022.

Results

Our network meta-analysis is the first to compare all dietary interventions in a single analysis, sub-grouped by intervention type and type of infertility. l-Carnitine with micronutrients, antioxidants, and several traditional herbal supplements showed statistically and clinically significant improvement in sperm quality. Meta-regression identified that improvement in the sperm count, motility and morphology translated into increased pregnancy rates (p < 0.001; p < 0.001; p < 0.002, respectively). In particular, l-carnitine with micronutrient therapy (risk ratio [RR]: 3.60, 95% CI 1.86, 6.98, p = 0.0002), followed by zinc (RR 5.39, 95% CI 1.26, 23.04, p = 0.02), significantly improved pregnancy rates. Men with oligozoospermia (RR 4.89), followed by oligoasthenozoospermia (RR 4.20) and asthenoteratozoospermia (RR 3.53), showed a significant increase in pregnancy rates.

Conclusion

We ranked nutritional therapies for their ability to improve sperm quality in men with infertility. Nutritional therapies, particularly l-carnitine alone or combined with micronutrients, significantly improved sperm parameters and pregnancy rates even under severe conditions. We believe these affordable solutions may be valuable for people without access to or who do not wish to undergo more invasive and costly fertility treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cavallini G, Beretta G. Clinical management of male infertility. Geneva: Springer International; 2015.

    Book  Google Scholar 

  2. Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.

    Article  PubMed  Google Scholar 

  3. Mascarenhas MN, Cheung H, Mathers CD, Stevens GA. Measuring infertility in populations: constructing a standard definition for use with demographic and reproductive health surveys. Popul Health Metr. 2012;10:17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod Oxf Engl. 2007;22:1506–12.

    Article  Google Scholar 

  5. Rutstein SO, Shah IH. Infecundity, infertility, and childlessness in developing countries. 2004. https://dhsprogram.com/publications/publication-cr9-comparative-reports.cfm. Accessed 15 Apr 2022.

  6. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol RBE. 2015;13:37.

    Article  Google Scholar 

  7. Lotti F, Maggi M. Ultrasound of the male genital tract in relation to male reproductive health. Hum Reprod Update. 2015;21:56–83.

    Article  PubMed  Google Scholar 

  8. WHO. WHO Laboratory Manual for the examination of human semen and sperm-cervial mucus interaction. Int J Androl. 1996;19:149–149.

    Article  Google Scholar 

  9. Plachot M, Belaisch-Allart J, Mayenga J-M, Chouraqui A, Tesquier L, Serkine AM. Outcome of conventional IVF and ICSI on sibling oocytes in mild male factor infertility. Hum Reprod Oxf Engl. 2002;17:362–9.

    Article  Google Scholar 

  10. Harris ID, Fronczak C, Roth L, Meacham RB. Fertility and the aging male. Rev Urol. 2011;13:e184-190.

    PubMed  PubMed Central  Google Scholar 

  11. Sabra SMM, Al-Harbi MS. An influential relationship of seminal fluid microbial infections and infertility, Taif Region, KSA. World J Med Sci. 2014;10:32–7.

    Google Scholar 

  12. Ghuman N, Ramalingam M. Male infertility. Obstet Gynaecol Reprod Med. 2018;28:7–14.

    Article  Google Scholar 

  13. Cozzolino DJ, Lipshultz LI. Varicocele as a progressive lesion: positive effect of varicocele repair. Hum Reprod Update. 2001;7:55–8.

    Article  CAS  PubMed  Google Scholar 

  14. Nieschlag E, Behre HM, Nieschlag S, editors. Andrology: Male Reproductive Health and Dysfunction [Internet]. 3rd ed. Berlin Heidelberg: Springer-Verlag; 2010. https://www.springer.com/gp/book/9783540783541. Accessed 29 Sep 2021.

  15. Kort HI, Massey JB, Elsner CW, Mitchell-Leef D, Shapiro DB, Witt MA, et al. Impact of body mass index values on sperm quantity and quality. J Androl. 2006;27:450–2.

    Article  PubMed  Google Scholar 

  16. Asare-Anane H, Bannison SB, Ofori EK, Ateko RO, Bawah AT, Amanquah SD, et al. Tobacco smoking is associated with decreased semen quality. Reprod Health. 2016;13:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiu YH, Afeiche MC, Gaskins AJ, Williams PL, Mendiola J, Jørgensen N, et al. Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men. Hum Reprod. 2014;29:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jensen TK, Swan S, Jørgensen N, Toppari J, Redmon B, Punab M, et al. Alcohol and male reproductive health: a cross-sectional study of 8344 healthy men from Europe and the USA. Hum Reprod Oxf Engl. 2014;29:1801–9.

    Article  CAS  Google Scholar 

  19. Giahi L, Mohammadmoradi S, Javidan A, Sadeghi MR. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev. 2016;74:118–30.

    Article  PubMed  Google Scholar 

  20. Ricci E, Al-Beitawi S, Cipriani S, Alteri A, Chiaffarino F, Candiani M, et al. Dietary habits and semen parameters: a systematic narrative review. Andrology. 2018;6:104–16.

    Article  CAS  PubMed  Google Scholar 

  21. Salas-Huetos A, Bulló M, Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23:371–89.

    Article  PubMed  Google Scholar 

  22. Salas-Huetos A, James ER, Aston KI, Jenkins TG, Carrell DT. Diet and sperm quality: nutrients, foods and dietary patterns. Reprod Biol. 2019;19:219–24.

    Article  PubMed  Google Scholar 

  23. Hosseini B, Nourmohamadi M, Hajipour S, Taghizadeh M, Asemi Z, Keshavarz SA, et al. The Effect of omega-3 fatty acids, EPA, and/or DHA on male infertility: a systematic review and meta-analysis. J Diet Suppl. 2019;16:245–56.

    Article  CAS  PubMed  Google Scholar 

  24. Lafuente R, González-Comadrán M, Solà I, López G, Brassesco M, Carreras R, et al. Coenzyme Q10 and male infertility: a meta-analysis. J Assist Reprod Genet. 2013;30:1147–56.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Salas-Huetos A, Rosique-Esteban N, Becerra-Tomás N, Vizmanos B, Bulló M, Salas-Salvadó J. The effect of nutrients and dietary supplements on sperm quality parameters: a systematic review and meta-analysis of randomized clinical trials. Adv Nutr Bethesda Md. 2018;9:833–48.

    Article  Google Scholar 

  26. Salvio G, Cutini M, Ciarloni A, Giovannini L, Perrone M, Balercia G. Coenzyme Q10 and male infertility: a systematic review. Antioxidants. 2021;10:874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buhling K, Schumacher A, Eulenburg CZ, Laakmann E. Influence of oral vitamin and mineral supplementation on male infertility: a meta-analysis and systematic review. Reprod Biomed Online. 2019;39:269–79.

    Article  CAS  PubMed  Google Scholar 

  28. Boitani C, Puglisi R. Selenium, a key element in spermatogenesis and male fertility. Adv Exp Med Biol. 2008;636:65–73.

    Article  CAS  PubMed  Google Scholar 

  29. Abel BJ, Carswell G, Elton R, Hargreave TB, Kyle K, Orr S, et al. Randomised trial of clomiphene citrate treatment and vitamin C for male infertility. Br J Urol. 1982;54:780–4.

    Article  CAS  PubMed  Google Scholar 

  30. Cyrus A, Kabir A, Goodarzi D, Moghimi M. The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: a double-blind placebo controlled clinical trial. Int Braz J Urol Off J Braz Soc Urol. 2015;41:230–8.

    Article  Google Scholar 

  31. ElSheikh MG, Hosny MB, Elshenoufy A, Elghamrawi H, Fayad A, Abdelrahman S. Combination of vitamin E and clomiphene citrate in treating patients with idiopathic oligoasthenozoospermia: a prospective, randomized trial. Andrology. 2015;3:864–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ghanem H, Shaeer O, El-Segini A. Combination clomiphene citrate and antioxidant therapy for idiopathic male infertility: a randomized controlled trial. Fertil Steril. 2010;93:2232–5.

    Article  CAS  PubMed  Google Scholar 

  33. Kessopoulou E, Powers HJ, Sharma KK, Pearson MJ, Russell JM, Cooke ID, et al. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertil Steril. 1995;64:825–31.

    Article  CAS  PubMed  Google Scholar 

  34. Blomberg Jensen M, Lawaetz JG, Petersen JH, Juul A, Jørgensen N. Effects of vitamin D supplementation on semen quality, reproductive hormones, and live birth rate: a randomized clinical trial. J Clin Endocrinol Metab. 2018;103:870–81.

    Article  PubMed  Google Scholar 

  35. Agarwal A, Cannarella R, Saleh R, Harraz AM, Kandil H, Salvio G, et al. Impact of antioxidant therapy on natural pregnancy outcomes and semen parameters in infertile men: a systematic review and meta-analysis of randomized controlled trials. World J Mens Health. 2023;41:14–48.

    Article  PubMed  Google Scholar 

  36. Chiware TM, Vermeulen N, Blondeel K, Farquharson R, Kiarie J, Lundin K, et al. IVF and other ART in low- and middle-income countries: a systematic landscape analysis. Hum Reprod Update. 2021;27:213–28.

    Article  PubMed  Google Scholar 

  37. Ekechi C. Addressing inequality in fertility treatment. Lancet. 2021;398:645–6.

    Article  PubMed  Google Scholar 

  38. Omar MI, Pal RP, Kelly BD, Bruins HM, Yuan Y, Diemer T, et al. Benefits of empiric nutritional and medical therapy for semen parameters and pregnancy and live birth rates in couples with idiopathic infertility: a systematic review and meta-analysis. Eur Urol. 2019;75:615–25.

    Article  PubMed  Google Scholar 

  39. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.

    Article  PubMed  Google Scholar 

  40. Thomas J, Graziosi S, Brunton J, Ghouze Z, O’Driscoll P, Bond M, et al. EPPI-Reviewer: advanced software for systematic reviews, maps and evidence synthesis. London: EPPI-Centre, Social Science Research Institute, University College London; 2022.

    Google Scholar 

  41. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rücker G, Krahn U, König J, Efthimiou O, Davies A, Papakonstantinou T, et al. netmeta: Network Meta-Analysis using Frequentist Methods [Internet]. 2022. https://CRAN.R-project.org/package=netmeta. Accessed 9 Sep 2022.

  43. Rohatgi, Ankit. WebPlotDigitizer [Internet]. Austin, Texas, USA; 2017. http://arohatgi.info/WebPlotDigitizer

  44. Shi J, Luo D, Wan X, Liu Y, Liu J, Bian Z, et al. Detecting the skewness of data from the sample size and the five-number summary. ArXiv201005749 Stat [Internet]. 2020. http://arxiv.org/abs/2010.05749. Accessed 21 Sep 2021.

  45. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27:1785–805.

    Article  PubMed  Google Scholar 

  46. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Centre TNC. Review Manager (RevMan). Copenhagen: The Cochrane Collaboration; 2014.

    Google Scholar 

  48. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  49. Higgins JP, Greeen S. Cochrane handbook for systematic reviews of interventions. London: The Cochrane Collaboration; 2011.

    Google Scholar 

  50. Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2012;49:1–15.

    Article  Google Scholar 

  51. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer, New York; 2016. https://ggplot2.tidyverse.org

  52. Salanti G, Ades AE, Ioannidis JPA. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64:163–71.

    Article  PubMed  Google Scholar 

  53. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.

    Article  PubMed  Google Scholar 

  54. Bostofte E, Serup J, Rebbe H. Relation between sperm count and semen volume, and pregnancies obtained during a twenty-year follow-up period. Int J Androl. 1982;5:267–75.

    Article  CAS  PubMed  Google Scholar 

  55. Puhan MA, Schünemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ. 2014;349: g5630.

    Article  PubMed  Google Scholar 

  56. Yepes-Nuñez JJ, Li S-A, Guyatt G, Jack SM, Brozek JL, Beyene J, et al. Development of the summary of findings table for network meta-analysis. J Clin Epidemiol. 2019;115:1–13.

    Article  PubMed  Google Scholar 

  57. Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods. 2012;3:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sterne JAC, Egger M, Moher D, editors. 10.4.3.1 Recommendations on testing for funnel plot asymmetry. Cochrane Handb Syst Rev Interv [Internet]. 5.1. Cochrane Collaboration; 2011. https://handbook-5-1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm. Accessed 10 Feb 2023.

  60. Li Z, Chen G, Shang X, Bai W, Han Y, Chen B, et al. A controlled randomized trial of the use of combined L-carnitine and acetyl-L-carnitine treatment in men with oligoasthenozoospermia. Zhonghua Nan Ke Xue Natl J Androl. 2005;11:761–4.

    Google Scholar 

  61. Deng X-L, Li Y-M, Yang X-Y, Huang J-R, Guo S-L, Song L-M. Efficacy and safety of vitamin D in the treatment of idiopathic oligoasthenozoospermia. Zhonghua Nan Ke Xue Natl J Androl. 2014;20:1082–5.

    Google Scholar 

  62. Omu AE, Dashti H, Al-Othman S. Treatment of asthenozoospermia with zinc sulphate: andrological, immunological and obstetric outcome. Eur J Obstet Gynecol Reprod Biol. 1998;79:179–84.

    Article  CAS  PubMed  Google Scholar 

  63. Rege NN, Date J, Kulkarni V, Prem AR, Punekar SV, Dahanukar SA. Effect of Y virilin on male infertility. J Postgrad Med. 1997;43:64–7.

    CAS  PubMed  Google Scholar 

  64. Masterson JM, Kim HH, Robbins WA. Walnuts improve semen quality in infertile men: a randomized control dietary intervention trial. Fertil Steril Elsevier. 2020;114:e23–4.

    Article  Google Scholar 

  65. Vinogradov IV, Gabliya MY, Lychagin AS, Moskvichev DV. Comparative study of the efficacy and safety of the vitamin-mineral complex with L-carnitine and the complex of acetyl-L-carnitine, L-carnitine fumarate, alpha-lipoic acid in the treatment of male infertility. Russ J Hum Reprod. 2020;26:97–103.

    Google Scholar 

  66. Ismail SB, Bakar MB, Nik Hussain NH, Norhayati MN, Sulaiman SA, Jaafar H, et al. Comparison on the effects and safety of Tualang Honey and Tribestan in sperm parameters, erectile function, and hormonal profiles among oligospermic males. Evid-Based Complement Altern Med ECAM. 2014;2014: 126138.

    Article  Google Scholar 

  67. Ma L, Sun Y. Comparison of L-carnitine vs. Coq10 and vitamin E for idiopathic male infertility: a randomized controlled trial. Eur Rev Med Pharmacol Sci. 2022;26:4698–704.

    CAS  PubMed  Google Scholar 

  68. Ambiye VR, Langade D, Dongre S, Aptikar P, Kulkarni M, Dongre A. Clinical evaluation of the spermatogenic activity of the root extract of ashwagandha (Withania somnifera) in oligospermic males: a pilot study. Evid-Based Complement Altern Med ECAM. 2013;2013: 571420.

    Article  Google Scholar 

  69. Kumar R, Saxena V, Shamsi MB, Venkatesh S, Dada R. Herbo-mineral supplementation in men with idiopathic oligoasthenoteratospermia: a double blind randomized placebo-controlled trial. Indian J Urol IJU J Urol Soc India. 2011;27:357–62.

    Article  Google Scholar 

  70. Tijani KH, Adegoke K, Oluwole AA, Ogunlewe J. The role of manix in the management of idiopathic oligospermia. A pilot study at the Lagos University Teaching Hospital. Niger Q J Hosp Med. 2008;18:142–4.

    CAS  Google Scholar 

  71. Li Z, Gu R-H, Liu Y, Xiang Z-Q, Cao X-R, Han Y-F, et al. Curative effect of L-carnitine supplementation in the treatment of male infertility. Acta Univ Med Second Shanghai. 2005;25:292–4.

    Google Scholar 

  72. Wang Y, Yang S, Qu C, Huo H, Li W, Li J, et al. L-carnitine: safe and effective for asthenozoospermia. Zhonghua Nan Ke Xue Natl J Androl. 2010;16:420–2.

    Google Scholar 

  73. Falsig A-ML, Gleerup CS, Knudsen UB. The influence of omega-3 fatty acids on semen quality markers: a systematic PRISMA review. Andrology. 2019;7:794–803.

    Article  CAS  PubMed  Google Scholar 

  74. Irani M, Sadeghi R, Amirian M, Le Lez J, Roudsari RL. The effect of folate and folate plus zinc supplementation on endocrine parameters and sperm characteristics in sub-fertile men: a systematic review and meta-analysis. Urol J. 2017;14:4069–78.

    PubMed  Google Scholar 

  75. Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2019;3: CD007411.

    PubMed  Google Scholar 

  76. Li K, Yang X, Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: a network meta-analysis of randomized controlled trials. Front Endocrinol. 2022. https://doi.org/10.3389/fendo.2022.810242.

    Article  Google Scholar 

  77. Findeklee S, Radosa JC, Radosa MP, Hammadeh ME. Correlation between total sperm count and sperm motility and pregnancy rate in couples undergoing intrauterine insemination. Sci Rep. 2020;10:7555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney A, Lynch CD, Kim S, et al. Semen quality and time to pregnancy: the Longitudinal Investigation of Fertility and the Environment Study. Fertil Steril. 2014;101:453–62.

    Article  PubMed  Google Scholar 

  79. Slama R, Eustache F, Ducot B, Jensen TK, Jørgensen N, Horte A, et al. Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum Reprod Oxf Engl. 2002;17:503–15.

    Article  CAS  Google Scholar 

  80. Lemmens L, Kos S, Beijer C, Brinkman JW, van der Horst FAL, van den Hoven L, et al. Predictive value of sperm morphology and progressively motile sperm count for pregnancy outcomes in intrauterine insemination. Fertil Steril. 2016;105:1462–8.

    Article  PubMed  Google Scholar 

  81. Sripada S, Townend J, Campbell D, Murdoch L, Mathers E, Bhattacharya S. Relationship between semen parameters and spontaneous pregnancy. Fertil Steril. 2010;94:624–30.

    Article  PubMed  Google Scholar 

  82. Gubert PG, Pudwell J, Van Vugt D, Reid RL, Velez MP. Number of motile spermatozoa inseminated and pregnancy outcomes in intrauterine insemination. Fertil Res Pract. 2019;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Galfano A, Novara G, Iafrate M, De Marco V, Cosentino M, D’Elia C, et al. Improvement of seminal parameters and pregnancy rates after antegrade sclerotherapy of internal spermatic veins. Fertil Steril. 2009;91:1085–9.

    Article  PubMed  Google Scholar 

  84. Yazdani M, Hadi M, Abbasi H, Nourimahdavi K, Khalighinejad P, Mirsattari A, et al. Efficacy of varicocele repair in different age groups. Urology. 2015;86:273–5.

    Article  PubMed  Google Scholar 

  85. Taiyeb AM, Ridha-Albarzanchi MT, Taiyeb SM, Kanan ZA, Alatrakchi SK, Kjelland ME, et al. Improvement in pregnancy outcomes in couples with immunologically male infertility undergoing prednisolone treatment and conventional in vitro fertilization preceded by sperm penetration assay: a randomized controlled trial. Endocrine. 2017;58:448–57.

    Article  CAS  PubMed  Google Scholar 

  86. Mandal A, Chattopadhyay S, Sasmal C, Maiti TK, Bhattacharyya S. Effects of clomiphene citrate on seminal parameters in idiopathic oligospermia: a single blinded prospective randomized controlled trial. Int J Reprod Contracept Obstet Gynecol. 2019;9:94–8.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Elena Smertina for translating several articles from Russian into English and Sima Haee for translating articles from Farsi into English. We want to thank the University of Canberra library staff for prompt, thorough, cheerful, and professional assistance. We would like to thank our reviewers for extremely thorough, detailed, and helpful feedback on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerry E. Mills or Honggang Li.

Ethics declarations

Author contributors

MIZ, KEM, and HL designed the study and defined the inclusion and exclusion criteria; MIZ and KEM designed the study search; MIZ and KEM did abstract and full-text inclusion and exclusion; HJ and KEM extracted data from studies and cross-checked; CDB designed the network meta-analysis approach, undertook all network meta-analysis and sensitivity analyses for the networks; KEM did pairwise meta-analysis and meta-regression; MIZ, KEM, and CDB wrote the manuscript; HL provided critical feedback on the manuscript.

Conflict of interest/competing interest

 MIZ, KEM, CBD, HJ and HL have no conflicts to declare.

Funding

The study was supported by two grants to MI Zafar: the Research Fund for Young International Scientists from the National Natural Science Foundation Fund (Grant number 82150410456) and a research fund from the Postdoctoral Science Foundation, P.R. China (Grant number 2019M662636).

Role of the funder/sponsor

The funding bodies are public entities; they had no role in the study conception, design, conduct, or result interpretation and publication of the manuscript.

Data availability

All data and network meta-analysis are available at https://github.com/trucharles/fertility. The meta-analyses themselves are available upon request to the authors.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

The code used in this study is available at https://github.com/trucharles/fertility.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10574 KB)

Supplementary file2 (PDF 1346 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M.I., Mills, K.E., Baird, C.D. et al. Effectiveness of Nutritional Therapies in Male Factor Infertility Treatment: A Systematic Review and Network Meta-analysis. Drugs 83, 531–546 (2023). https://doi.org/10.1007/s40265-023-01853-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01853-0

Navigation