Skip to main content

Advertisement

Log in

Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1–4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dumont DJ, et al. The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene. 1993;8(5):1293–301.

    CAS  PubMed  Google Scholar 

  2. Sato TN, et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376(6535):70–4.

    Article  CAS  PubMed  Google Scholar 

  3. Maisonpierre PC, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60.

    Article  CAS  PubMed  Google Scholar 

  4. Jones N, et al. Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem. 1999;274(43):30896–905.

    Article  CAS  PubMed  Google Scholar 

  5. Akwii RG, et al. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471.

    Article  CAS  PubMed Central  Google Scholar 

  6. Kim I, et al. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene. 2000;19(39):4549–52.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen VP, et al. Differential response of lymphatic, venous and arterial endothelial cells to angiopoietin-1 and angiopoietin-2. BMC Cell Biol. 2007;8:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Andrawes NG, et al. Angiopoietin-2 as a marker of retinopathy in children and adolescents with sickle cell disease: relation to subclinical atherosclerosis. J Pediatr Hematol Oncol. 2019;41(5):361–70.

    Article  CAS  PubMed  Google Scholar 

  9. Kinnen A, et al. Gene expression in the Angiopoietin/TIE axis is altered in peripheral tissue of ovarian cancer patients: a prospective observational study. Life Sci. 2021;274:119345.

    Article  CAS  PubMed  Google Scholar 

  10. Pirouzpanah S, et al. The contribution of dietary and plasma folate and cobalamin to levels of angiopoietin-1, angiopoietin-2 and Tie-2 receptors depend on vascular endothelial growth factor status of primary breast cancer patients. Sci Rep. 2019;9(1):14851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. van der Heijden M, et al. Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax. 2008;63(10):903–9.

    Article  PubMed  Google Scholar 

  12. Parikh SM, et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med. 2006;3(3):e46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kim I, et al. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res. 2000;86(9):952–9.

    Article  CAS  PubMed  Google Scholar 

  14. Papapetropoulos A, et al. Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest. 1999;79(2):213–23.

    CAS  PubMed  Google Scholar 

  15. Davis S, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 1996;87(7):1161–9.

    Article  CAS  PubMed  Google Scholar 

  16. Dumont DJ, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994;8(16):1897–909.

    Article  CAS  PubMed  Google Scholar 

  17. Chu M, et al. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII. Elife. 2016;5:e21032.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res. 1998;56(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  19. Suri C, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87(7):1171–80.

    Article  CAS  PubMed  Google Scholar 

  20. Hansen TM, et al. Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Cell Signal. 2010;22(3):527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim I, et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res. 2000;86(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  22. Harfouche R, et al. Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res. 2002;64(1):135–47.

    Article  CAS  PubMed  Google Scholar 

  23. Kim YM, et al. Hydrogen peroxide produced by angiopoietin-1 mediates angiogenesis. Cancer Res. 2006;66(12):6167–74.

    Article  CAS  PubMed  Google Scholar 

  24. Sako K, et al. Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2. J Biol Chem. 2009;284(9):5592–601.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, et al. Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of beta-catenin. J Biol Chem. 2011;286(10):8055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell. 2008;14(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  27. Oubaha M, Gratton JP. Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro. Blood. 2009;114(15):3343–51.

    Article  CAS  PubMed  Google Scholar 

  28. Gao F, et al. Modulation of long-term endothelial-barrier integrity is conditional to the cross-talk between Akt and Src signaling. J Cell Physiol. 2017;232(10):2599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teichert-Kuliszewska K, et al. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res. 2001;49(3):659–70.

    Article  CAS  PubMed  Google Scholar 

  30. Yuan HT, et al. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol. 2009;29(8):2011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eklund L, Saharinen P. Angiopoietin signaling in the vasculature. Exp Cell Res. 2013;319(9):1271–80.

    Article  CAS  PubMed  Google Scholar 

  32. Holash J, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8.

    Article  CAS  PubMed  Google Scholar 

  33. Fiedler U, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004;103(11):4150–6.

    Article  CAS  PubMed  Google Scholar 

  34. Kim M, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest. 2016;126(9):3511–25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Korhonen EA, et al. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest. 2016;126(9):3495–510.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Song SH, et al. Tie1 regulates the Tie2 agonistic role of angiopoietin-2 in human lymphatic endothelial cells. Biochem Biophys Res Commun. 2012;419(2):281–6.

    Article  CAS  PubMed  Google Scholar 

  37. Singh H, et al. Vascular endothelial growth factor activates the Tie family of receptor tyrosine kinases. Cell Signal. 2009;21(8):1346–50.

    Article  CAS  PubMed  Google Scholar 

  38. Gale NW, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell. 2002;3(3):411–23.

    Article  CAS  PubMed  Google Scholar 

  39. Singh H, et al. The molecular balance between receptor tyrosine kinases Tie1 and Tie2 is dynamically controlled by VEGF and TNFalpha and regulates angiopoietin signalling. PLoS ONE. 2012;7(1):e29319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leppanen VM, Saharinen P, Alitalo K. Structural basis of Tie2 activation and Tie2/Tie1 heterodimerization. Proc Natl Acad Sci USA. 2017;114(17):4376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yabkowitz R, et al. Inflammatory cytokines and vascular endothelial growth factor stimulate the release of soluble tie receptor from human endothelial cells via metalloprotease activation. Blood. 1999;93(6):1969–79.

    Article  CAS  PubMed  Google Scholar 

  42. Yabkowitz R, et al. Regulation of tie receptor expression on human endothelial cells by protein kinase C-mediated release of soluble tie. Blood. 1997;90(2):706–15.

    Article  CAS  PubMed  Google Scholar 

  43. McCarthy MJ, et al. Potential roles of metalloprotease mediated ectodomain cleavage in signaling by the endothelial receptor tyrosine kinase Tie-1. Lab Invest. 1999;79(7):889–95.

    CAS  PubMed  Google Scholar 

  44. Chen-Konak L, et al. Transcriptional and post-translation regulation of the Tie1 receptor by fluid shear stress changes in vascular endothelial cells. FASEB J. 2003;17(14):2121–3.

    Article  CAS  PubMed  Google Scholar 

  45. Marron MB, et al. Evidence for heterotypic interaction between the receptor tyrosine kinases TIE-1 and TIE-2. J Biol Chem. 2000;275(50):39741–6.

    Article  CAS  PubMed  Google Scholar 

  46. Marron MB, et al. Tie-1 receptor tyrosine kinase endodomain interaction with SHP2: potential signalling mechanisms and roles in angiogenesis. Adv Exp Med Biol. 2000;476:35–46.

    Article  CAS  PubMed  Google Scholar 

  47. Findley CM, et al. VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb Vasc Biol. 2007;27(12):2619–26.

    Article  CAS  PubMed  Google Scholar 

  48. Reusch P, et al. Identification of a soluble form of the angiopoietin receptor TIE-2 released from endothelial cells and present in human blood. Angiogenesis. 2001;4(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  49. Onimaru M, et al. An autocrine linkage between matrix metalloproteinase-14 and Tie-2 via ectodomain shedding modulates angiopoietin-1-dependent function in endothelial cells. Arterioscler Thromb Vasc Biol. 2010;30(4):818–26.

    Article  CAS  PubMed  Google Scholar 

  50. Goel S, et al. Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst. 2013;105(16):1188–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fachinger G, Deutsch U, Risau W. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene. 1999;18(43):5948–53.

    Article  CAS  PubMed  Google Scholar 

  52. Saharinen P, et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol. 2008;10(5):527–37.

    Article  CAS  PubMed  Google Scholar 

  53. Winderlich M, et al. VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol. 2009;185(4):657–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nawroth R, et al. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J. 2002;21(18):4885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nottebaum AF, et al. VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med. 2008;205(12):2929–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bäumer S, et al. Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood. 2006;107(12):4754–62.

    Article  PubMed  CAS  Google Scholar 

  57. Dominguez MG, et al. Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo vasculogenesis but die embryonically because of defects in angiogenesis. Proc Natl Acad Sci USA. 2007;104(9):3243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frye M, et al. Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J Exp Med. 2015;212(13):2267–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Broermann A, et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J Exp Med. 2011;208(12):2393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fiedler U, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235–9.

    Article  CAS  PubMed  Google Scholar 

  61. Buehler D, et al. Expression of angiopoietin-TIE system components in angiosarcoma. Mod Pathol. 2013;26(8):1032–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hasenstein JR, et al. Efficacy of Tie2 receptor antagonism in angiosarcoma. Neoplasia. 2012;14(2):131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wong-Riley MT. Energy metabolism of the visual system. Eye Brain. 2010;2:99–116.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hayreh SS. The cilio-retinal arteries. Br J Ophthalmol. 1963;47:71–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pournaras CJ, et al. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27(3):284–330.

    Article  CAS  PubMed  Google Scholar 

  66. Saint-Geniez M, D’Amore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol. 2004;48(8–9):1045–58.

    Article  PubMed  Google Scholar 

  67. Dreher Z, Robinson SR, Distler C. Muller cells in vascular and avascular retinae: a survey of seven mammals. J Comp Neurol. 1992;323(1):59–80.

    Article  CAS  PubMed  Google Scholar 

  68. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87.

    Article  CAS  PubMed  Google Scholar 

  69. Al-Latayfeh M, et al. Antiangiogenic therapy for ischemic retinopathies. Cold Spring Harb Perspect Med. 2012;2(6):a006411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol. 2019;63(1):15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hackett SF, et al. Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol. 2002;192(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  72. Hackett SF, et al. Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol. 2000;184(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  73. Gengenbacher N, et al. Timed Ang2-targeted therapy identifies the angiopoietin-tie pathway as key regulator of fatal lymphogenous metastasis. Cancer Discov. 2021;11(2):424–45.

    Article  CAS  PubMed  Google Scholar 

  74. Kapiainen E, et al. The amino-terminal oligomerization domain of Angiopoietin-2 affects vascular remodeling, mammary gland tumor growth, and lung metastasis in mice. Cancer Res. 2021;81(1):129–143.

  75. Nambu H, et al. Angiopoietin 1 prevents retinal detachment in an aggressive model of proliferative retinopathy, but has no effect on established neovascularization. J Cell Physiol. 2005;204(1):227–35.

    Article  CAS  PubMed  Google Scholar 

  76. Dumont DJ, et al. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn. 1995;203(1):80–92.

    Article  CAS  PubMed  Google Scholar 

  77. Fruttiger M. Development of the retinal vasculature. Angiogenesis. 2007;10(2):77–88.

    Article  PubMed  Google Scholar 

  78. Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease. Prog Retin Eye Res. 2018;63:1–19.

    Article  CAS  PubMed  Google Scholar 

  79. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  PubMed  Google Scholar 

  80. Ng EW, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  81. Michels S, et al. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology. 2005;112(6):1035–47.

    Article  PubMed  Google Scholar 

  82. Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36(4):331–5.

    Article  PubMed  Google Scholar 

  83. Rosenfeld PJ, Fung AE, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic Surg Lasers Imaging. 2005;36(4):336–9.

    Article  PubMed  Google Scholar 

  84. Chen Y, et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol. 1999;293(4):865–81.

    Article  CAS  PubMed  Google Scholar 

  85. Ferrara N, et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26(8):859–70.

    Article  PubMed  Google Scholar 

  86. Rosenfeld PJ, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  CAS  PubMed  Google Scholar 

  87. Brown DM, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–44.

    Article  CAS  PubMed  Google Scholar 

  88. Kim H, Robinson SB, Csaky KG. FcRn receptor-mediated pharmacokinetics of therapeutic IgG in the eye. Mol Vis. 2009;15:2803–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Heiduschka P, et al. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci. 2007;48(6):2814–23.

    Article  PubMed  Google Scholar 

  90. Gerber HP, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623–8.

    Article  CAS  PubMed  Google Scholar 

  91. Ferrara N, et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med. 1998;4(3):336–40.

    Article  CAS  PubMed  Google Scholar 

  92. Holash J, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99(17):11393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yun JH, et al. Angiopoietin 2 induces astrocyte apoptosis via αvβ5-integrin signaling in diabetic retinopathy. Cell Death Dis. 2016;7(2):e2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cai J, et al. The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49(5):2163–71.

    Article  PubMed  Google Scholar 

  95. Soto I, et al. Vascular inflammation risk factors in retinal disease. Annu Rev Vis Sci. 2019;5:99–122.

    Article  PubMed  Google Scholar 

  96. Wong TY, Mitchell P. The eye in hypertension. Lancet. 2007;369(9559):425–35.

    Article  PubMed  Google Scholar 

  97. Le HG, Shakoor A. Diabetic and retinal vascular eye disease. Med Clin N Am. 2021;105(3):455–72.

    Article  PubMed  Google Scholar 

  98. DellaCroce JT, Vitale AT. Hypertension and the eye. Curr Opin Ophthalmol. 2008;19(6):493–8.

    Article  PubMed  Google Scholar 

  99. Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26(2):71–83.

    Article  CAS  PubMed  Google Scholar 

  100. Brand CS. Management of retinal vascular diseases: a patient-centric approach. Eye (Lond). 2012;26(Suppl 2):S1-16.

    Article  CAS  Google Scholar 

  101. Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Interv Aging. 2017;12:1313–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mitchell P, et al. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.

    Article  PubMed  Google Scholar 

  103. Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim J, et al. Tie2 activation promotes choriocapillary regeneration for alleviating neovascular age-related macular degeneration. Sci Adv. 2019;5(2):eaau6732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maguire MG, et al. Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2016;123(8):1751–61.

    Article  PubMed  Google Scholar 

  106. Young M, et al. Exacerbation of choroidal and retinal pigment epithelial atrophy after anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration. Retina. 2014;34(7):1308–15.

    Article  CAS  PubMed  Google Scholar 

  107. Kurihara T, et al. Targeted deletion of Vegfa in adult mice induces vision loss. J Clin Invest. 2012;122(11):4213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Saint-Geniez M, et al. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA. 2009;106(44):18751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sharma A, et al. Faricimab: expanding horizon beyond VEGF. Eye (Lond). 2020;34(5):802–4.

    Article  Google Scholar 

  110. Regula JT, et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol Med. 2016;8(11):1265–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ng DS, et al. Elevated angiopoietin 2 in aqueous of patients with neovascular age related macular degeneration correlates with disease severity at presentation. Sci Rep. 2017;7:45081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shen J, et al. Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. J Clin Invest. 2014;124(10):4564–76.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nambu H, et al. Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther. 2004;11(10):865–73.

    Article  CAS  PubMed  Google Scholar 

  114. Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816.

    Article  PubMed Central  CAS  Google Scholar 

  115. Romero-Aroca P, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory. J Diabetes Res. 2016;2016:2156273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Das A, McGuire PG, Rangasamy S. Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology. 2015;122(7):1375–94.

    Article  PubMed  Google Scholar 

  117. Daruich A, et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res. 2018;63:20–68.

    Article  PubMed  Google Scholar 

  118. Arjamaa O, Nikinmaa M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res. 2006;83(3):473–83.

    Article  CAS  PubMed  Google Scholar 

  119. Urias EA, et al. Novel therapeutic targets in diabetic macular edema: beyond VEGF. Vis Res. 2017;139:221–7.

    Article  PubMed  Google Scholar 

  120. Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol. 2008;30(2):65–84.

    Article  CAS  PubMed  Google Scholar 

  121. Elman MJ, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117(6):1064-1077.e35.

    Article  PubMed  Google Scholar 

  122. Sang DN, D’Amore PA. Is blockade of vascular endothelial growth factor beneficial for all types of diabetic retinopathy? Diabetologia. 2008;51(9):1570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. David S, et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis*. Crit Care Med. 2012;40(11):3034–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ando M, et al. Angiopoietin-2 expression in patients with an acute exacerbation of idiopathic interstitial pneumonias. Respir Med. 2016;117:27–32.

    Article  PubMed  Google Scholar 

  125. Clajus C, et al. Angiopoietin-2 is a potential mediator of endothelial barrier dysfunction following cardiopulmonary bypass. Cytokine. 2012;60(2):352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rangasamy S, McGuire PG, Das A. Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol. 2012;19(1):52–9.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Eklund L, Kangas J, Saharinen P. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond). 2017;131(1):87–103.

    Article  CAS  Google Scholar 

  128. Aspelund A, et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J Clin Invest. 2014;124(9):3975–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Park DY, et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J Clin Invest. 2014;124(9):3960–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. QBioMed. 2021. https://qbiomed.com/pipeline/man-01.

  131. Insight, A. MAN 01. 2020. https://adisinsight.springer.com/drugs/800058669.

  132. Campochiaro PA, et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology. 2016;123(8):1722–30.

    Article  PubMed  Google Scholar 

  133. Pharmaceuticals, A. Razuprotafib (AKB-9778) diabetic nephropathy. 2020. https://aerpio.com/pipeline/razuprotafib-akb-9778-diabetic-nephropathy/.

  134. Hussain RM, et al. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs. 2019;28(10):861–9.

    Article  CAS  PubMed  Google Scholar 

  135. Pharmaceuticals, A. ARP-1536 Retinopathy/Nephropathy. 2020. https://aerpio.com/pipeline/arp-1536-diabetic-retinopathy-nephropathy/.

  136. Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi- and multispecific antibodies. MAbs. 2016;8(6):1010–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Roche H-L. ClinialTrials.gov—Faricimab. 2020. https://clinicaltrials.gov/ct2/results?cond=&term=faricimab&cntry=&state=&city=&dist=.

  138. Chong V. Ranibizumab for the treatment of wet AMD: a summary of real-world studies. Eye (Lond). 2016;30(2):270–86.

    Article  CAS  Google Scholar 

  139. Blick SK, Keating GM, Wagstaff AJ. Ranibizumab. Drugs. 2007;67(8):1199–206 (discussion 1207–1209).

    Article  CAS  PubMed  Google Scholar 

  140. Sahni J, et al. Safety and efficacy of different doses and regimens of faricimab vs ranibizumab in neovascular age-related macular degeneration: the AVENUE phase 2 randomized clinical trial. JAMA Ophthalmol. 2020;138(9):955–63.

    Article  PubMed  Google Scholar 

  141. Sahni J, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-A with faricimab in diabetic macular edema: BOULEVARD phase 2 randomized trial. Ophthalmology. 2019;126(8):1155–70.

    Article  PubMed  Google Scholar 

  142. Khanani AM, et al. Efficacy of every four monthly and quarterly dosing of faricimab vs ranibizumab in neovascular age-related macular degeneration: the STAIRWAY phase 2 randomized clinical trial. JAMA Ophthalmol. 2020;138(9):964–72.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lee JY, et al. Regulation of angiopoietin-2 secretion from human pulmonary microvascular endothelial cells. Exp Lung Res. 2016;42(7):335–45.

    Article  CAS  PubMed  Google Scholar 

  144. Huang YQ, et al. Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. Blood. 2002;99(5):1646–50.

    Article  CAS  PubMed  Google Scholar 

  145. Papadopoulos KP, et al. A Phase I first-in-human study of nesvacumab (REGN910), a fully human anti-angiopoietin-2 (Ang2) monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 2016;22(6):1348–55.

    Article  CAS  PubMed  Google Scholar 

  146. Kim J, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma. J Clin Invest. 2017;127(10):3877–96.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Han S, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med. 2016;8(335):335ra55.

    Article  PubMed  CAS  Google Scholar 

  148. Souma T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci USA. 2018;115(6):1298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Takagi H, et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci. 2003;44(1):393–402.

    Article  PubMed  Google Scholar 

  150. Li W, et al. Soluble Tei2 fusion protein inhibits retinopathy of prematurity occurrence via regulation of the Ang/Tie2 pathway. Exp Ther Med. 2019;18(1):614–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90(4):1291–335.

    Article  CAS  PubMed  Google Scholar 

  152. Grzenda A, et al. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia. Dis Model Mech. 2013;6(1):106–14.

    CAS  PubMed  Google Scholar 

  153. Healy AM, et al. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev Dyn. 2000;219(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  154. Tirziu D, Simons M. Endothelium as master regulator of organ development and growth. Vascul Pharmacol. 2009;50(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  155. Dong Z, et al. Ang-2 promotes lung cancer metastasis by increasing epithelial-mesenchymal transition. Oncotarget. 2018;9(16):12705–17.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Xu Y, et al. The role of serum angiopoietin-2 levels in progression and prognosis of lung cancer: a meta-analysis. Medicine (Baltimore). 2017;96(37):e8063.

    Article  CAS  Google Scholar 

  157. Reilly JP, et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med. 2018;44(11):1849–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Calfee CS, et al. Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med. 2012;40(6):1731–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bhandari V, et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med. 2006;12(11):1286–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bhandari V, et al. Increased hyperoxia-induced lung injury in nitric oxide synthase 2 null mice is mediated via angiopoietin 2. Am J Respir Cell Mol Biol. 2012;46(5):668–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Olivier NB. Pulmonary edema. Vet Clin N Am Small Anim Pract. 1985;15(5):1011–30.

    Article  CAS  Google Scholar 

  163. Bhatt AJ, et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80.

    Article  CAS  PubMed  Google Scholar 

  164. Rondelet B, et al. Signaling molecules in overcirculation-induced pulmonary hypertension in piglets: effects of sildenafil therapy. Circulation. 2004;110(15):2220–5.

    Article  CAS  PubMed  Google Scholar 

  165. Rondelet B, et al. Prevention of pulmonary vascular remodeling and of decreased BMPR-2 expression by losartan therapy in shunt-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2005;289(6):H2319–24.

    Article  CAS  PubMed  Google Scholar 

  166. Du L, et al. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med. 2003;348(6):500–9.

    Article  CAS  PubMed  Google Scholar 

  167. Zhao YD, et al. Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res. 2003;92(9):984–91.

    Article  CAS  PubMed  Google Scholar 

  168. Miao H, et al. Novel angiogenesis strategy to ameliorate pulmonary hypertension. J Thorac Cardiovasc Surg. 2021;161(6):e417–e434.

  169. Kugathasan L, et al. Role of angiopoietin-1 in experimental and human pulmonary arterial hypertension. Chest. 2005;128(6 Suppl):633S-642S.

    Article  CAS  PubMed  Google Scholar 

  170. Dewachter L, et al. Angiopoietin/Tie2 pathway influences smooth muscle hyperplasia in idiopathic pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1025–33.

    Article  CAS  PubMed  Google Scholar 

  171. Richter MJ, et al. Circulating angiopoietin-1 is not a biomarker of disease severity or prognosis in pulmonary hypertension. PLoS ONE. 2016;11(11):e0165982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Noda S, et al. Serum Tie2 levels: clinical association with microangiopathies in patients with systemic sclerosis. J Eur Acad Dermatol Venereol. 2011;25(12):1476–9.

    Article  CAS  PubMed  Google Scholar 

  173. Saleby J, et al. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension. Scand Cardiovasc J. 2017;51(5):261–70.

    Article  PubMed  CAS  Google Scholar 

  174. Jonigk D, et al. Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. Am J Pathol. 2011;179(1):167–79.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kugathasan L, et al. The angiopietin-1-Tie2 pathway prevents rather than promotes pulmonary arterial hypertension in transgenic mice. J Exp Med. 2009;206(10):2221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hiremath J, et al. Exercise improvement and plasma biomarker changes with intravenous treprostinil therapy for pulmonary arterial hypertension: a placebo-controlled trial. J Heart Lung Transplant. 2010;29(2):137–49.

    Article  PubMed  Google Scholar 

  177. Kumpers P, et al. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31(18):2291–300.

    Article  PubMed  CAS  Google Scholar 

  178. Hidalgo M, et al. First-in-human phase i study of single-agent vanucizumab, a first-in-class bispecific anti-angiopoietin-2/anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin Cancer Res. 2018;24(7):1536–45.

    Article  CAS  PubMed  Google Scholar 

  179. Peplinski BS, et al. Associations of angiopoietins with heart failure incidence and severity. J Card Fail. 2021;27(7):786–95.

  180. McDonald DM. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med. 2001;164(10 Pt 2):S39-45.

    Article  CAS  PubMed  Google Scholar 

  181. Feistritzer C, et al. Expression and function of the angiopoietin receptor Tie-2 in human eosinophils. J Allergy Clin Immunol. 2004;114(5):1077–84.

    Article  CAS  PubMed  Google Scholar 

  182. Feltis BN, et al. Increased vascular endothelial growth factor and receptors: relationship to angiogenesis in asthma. Am J Respir Crit Care Med. 2006;173(11):1201–7.

    Article  CAS  PubMed  Google Scholar 

  183. Kanazawa H, Nomura S, Asai K. Roles of angiopoietin-1 and angiopoietin-2 on airway microvascular permeability in asthmatic patients. Chest. 2007;131(4):1035–41.

    Article  CAS  PubMed  Google Scholar 

  184. Kanazawa H, Tochino Y, Asai K. Angiopoietin-2 as a contributing factor of exercise-induced bronchoconstriction in asthmatic patients receiving inhaled corticosteroid therapy. J Allergy Clin Immunol. 2008;121(2):390–5.

    Article  CAS  PubMed  Google Scholar 

  185. Kanazawa H, et al. Increased levels of angiopoietin-2 in induced sputum from smoking asthmatic patients. Clin Exp Allergy. 2009;39(9):1330–7.

    Article  CAS  PubMed  Google Scholar 

  186. Tseliou E, et al. Increased levels of angiopoietins 1 and 2 in sputum supernatant in severe refractory asthma. Allergy. 2012;67(3):396–402.

    Article  CAS  PubMed  Google Scholar 

  187. Moon KY, et al. Serum angiopoietin is associated with lung function in patients with asthma: a retrospective cohort study. BMC Pulm Med. 2014;14:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Koksal BT, et al. Evaluation of angiopoietin 1 and 2, vascular endothelial growth factor, and tumor necrosis factor alpha levels in asthmatic children. Allergy Asthma Proc. 2014;35(6):482–8.

    Article  CAS  PubMed  Google Scholar 

  189. Lee PH, et al. Circulating angiopoietin-1 and -2 in patients with stable and exacerbated asthma. Ann Allergy Asthma Immunol. 2016;116(4):339–43.

    Article  CAS  PubMed  Google Scholar 

  190. Makowska JS, et al. Angiopoietin-2 concentration in serum is associated with severe asthma phenotype. Allergy Asthma Clin Immunol. 2016;12:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Simoes DC, et al. Angiopoietin-1 protects against airway inflammation and hyperreactivity in asthma. Am J Respir Crit Care Med. 2008;177(12):1314–21.

    Article  CAS  PubMed  Google Scholar 

  192. Makinde TO, Agrawal DK. Increased expression of angiopoietins and Tie2 in the lungs of chronic asthmatic mice. Am J Respir Cell Mol Biol. 2011;44(3):384–93.

    Article  CAS  PubMed  Google Scholar 

  193. Halim NSS, et al. Aerosolised mesenchymal stem cells expressing angiopoietin-1 enhances airway repair. Stem Cell Rev Rep. 2019;15(1):112–25.

    Article  CAS  PubMed  Google Scholar 

  194. Gal Z, et al. Investigation of the possible role of Tie2 pathway and TEK gene in asthma and allergic conjunctivitis. Front Genet. 2020;11:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fodor LE, et al. Variation in the TEK gene is not associated with asthma but with allergic conjunctivitis. Int J Immunogenet. 2018;45(3):102–8.

    Article  CAS  PubMed  Google Scholar 

  196. Naserghandi A, Allameh SF, Saffarpour R. All about COVID-19 in brief. New Microbes New Infect. 2020;35:100678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Monteil V, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905-913.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chang L, Yan Y, Wang L. Coronavirus disease 2019: coronaviruses and blood safety. Transfus Med Rev. 2020;34(2):75–80.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Varga Z, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Smadja DM, et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. 2020;23(4):611–20.

    Article  CAS  PubMed  Google Scholar 

  201. Qanadli SD, Beigelman-Aubry C, Rotzinger DC. Vascular changes detected with thoracic CT in coronavirus disease (COVID-19) might be significant determinants for accurate diagnosis and optimal patient management. AJR Am J Roentgenol. 2020;215(1):W15.

    Article  PubMed  Google Scholar 

  202. Teuwen LA, et al. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bermejo-Martin JF, et al. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit Care. 2020;24(1):691.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Villa E, et al. Dynamic angiopoietin-2 assessment predicts survival and chronic course in hospitalized patients with COVID-19. Blood Adv. 2021;5(3):662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sugiyama MG, et al. The Tie2-agonist vasculotide rescues mice from influenza virus infection. Sci Rep. 2015;5:11030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kumpers P, et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care. 2011;15(5):R261.

    Article  PubMed  PubMed Central  Google Scholar 

  207. David S, et al. Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol. 2011;300(6):L851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Van Slyke P, et al. Acceleration of diabetic wound healing by an angiopoietin peptide mimetic. Tissue Eng Part A. 2009;15(6):1269–80.

    Article  PubMed  Google Scholar 

  209. Tournaire R, et al. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep. 2004;5(3):262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wu FT, et al. Vasculotide reduces endothelial permeability and tumor cell extravasation in the absence of binding to or agonistic activation of Tie2. EMBO Mol Med. 2015;7(6):770–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Vasomune. Vasomune announces initiation of the first-in-human clinical trial of a potential vascular normalization COVID-19 treatment. 2020. https://vasomune.com/vasomune-announces-initiation-of-the-first-in-human-clinical-trial-of-a-potential-vascular-normalization-covid-19-treatment/.

  212. ClinicalTrials.gov, N. A First-in-Human Study of AV-001 in Healthy Subjects. 2021. Clin Trial Ident: NCT04737486

  213. Martin-Liberal J, et al. First-in-human, dose-escalation, phase 1 study of anti-angiopoietin-2 LY3127804 as monotherapy and in combination with ramucirumab in patients with advanced solid tumours. Br J Cancer. 2020;123(8):1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Patel S, Saxena B, Mehta P. Recent updates in the clinical trials of therapeutic monoclonal antibodies targeting cytokine storm for the management of COVID-19. Heliyon. 2021;7(2):e06158.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos M. Mikelis.

Ethics declarations

Funding

This work was supported in part by the National Institutes of Health Grant (NCI) R15CA231339 and the Texas Tech University Health Sciences Center (TTUHSC) School of Pharmacy Office of the Sciences grant. The funders had no role in study design, decision to write, or preparation of the manuscript.

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent

Not applicable.

Author contributions

Conceptualization, RGA and CMM; writing—review and editing, RGA, CMM; funding acquisition: CMM.

Data availability statement

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akwii, R.G., Mikelis, C.M. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 81, 1731–1749 (2021). https://doi.org/10.1007/s40265-021-01605-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01605-y