Skip to main content
Log in

Advances in Long-Acting Agents for the Treatment of HIV Infection

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Long-acting antiretroviral therapy holds the promise of new options for human immunodeficiency virus (HIV) treatment beyond the current paradigm of daily oral pills. Of particular interest is their potential role in addressing challenges with adherence to oral therapy and treatment fatigue. Similar to other conditions where long-acting formulations have proven effective such as contraception and mental health, long-acting antiretroviral therapy could provide additional treatment choices to people with HIV. This review provides an outline of the current landscape of long-acting antiretroviral therapy for HIV treatment, both approved and under development, including cabotegravir, rilpivirine, leronlimab, islatravir, albuvirtide, GS-6207, and broadly neutralizaing antibodies. However, there are a number of research gaps for long-acting antiretroviral therapy including issues regarding resistance and understudied populations, and this review highlights some of the challenges that will need to be addressed for clinical implementation of these novel treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewden C, Chêne G, Morlat P, et al. HIV-infected adults with a CD4 cell count greater than 500 cells/mm3 on long-term combination antiretroviral therapy reach same mortality rates as the general population. J Acquir Immune Defic Syndr. 2007;46(1):72–7.

    PubMed  Google Scholar 

  2. World Health Organization. Updated recommendations on first-line and second-line antiretroviral regimens and post-exposure prophylaxis and recommendations on early infant diagnosis of HIV: interim guidelines. Supplement to the 2016 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: World Health Organization; 2018

  3. Saag MS, Benson CA, Gandhi RT, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2018 recommendations of the International Antiviral Society-USA Panel. JAMA. 2018;320(4):379–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Adolescents. PoAGfAa. Guidelines for the use of antiretroviral agents in adults and adolescents living with HIV; 2019.

  5. Gardner EM, McLees MP, Steiner JF, Del Rio C, Burman WJ. The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection. Clin Infect Dis. 2011;52(6):793–800.

    PubMed  PubMed Central  Google Scholar 

  6. Powers KA, Samoff E, Weaver MA, et al. Longitudinal trajectories of HIV care retention in North Carolina. J Acquir Immune Defic Syndr. 2017;74 Suppl. 2(Suppl. 2):S88–95.

  7. CDC. HIV surveillance report. 2016; vol. 28. 2017.

  8. Williams J, Sayles HR, Meza JL, et al. Long-acting parenteral nanoformulated antiretroviral therapy: interest and attitudes of HIV-infected patients. Nanomedicine (Lond). 2013;8(11):1807–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobson JM, Flexner C. Universal antiretroviral regimens: thinking beyond one-pill-once-a-day. Curr Opin HIV AIDS. 2017;12(4):343.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weld ED, Rana MS, Dallas RH, et al. Interest of youth living with HIV in long-acting antiretrovirals. J Acquir Immune Defic Syndr. 2019;80(2):190–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Winner B, Peipert JF, Zhao Q, et al. Effectiveness of long-acting reversible contraception. N Engl J Med. 2012;366(21):1998–2007.

    CAS  PubMed  Google Scholar 

  12. Terplan M, Hand DJ, Hutchinson M, Salisbury-Afshar E, Heil SH. Contraceptive use and method choice among women with opioid and other substance use disorders: a systematic review. Prev Med. 2015;80:23–31.

    PubMed  PubMed Central  Google Scholar 

  13. Thiebaud D, Burckhardt P, Kriegbaum H, et al. Three monthly intravenous injections of ibandronate in the treatment of postmenopausal osteoporosis. Am J Med. 1997;103(4):298–307.

    CAS  PubMed  Google Scholar 

  14. Crandall CJ, Newberry SJ, Diamant A, et al. Comparative effectiveness of pharmacologic treatments to prevent fractures: an updated systematic review. Ann Intern Med. 2014;161(10):711–23.

    PubMed  Google Scholar 

  15. Buoli M, Rovera C, Esposito CM, Grassi S, Cahn W, Altamura AC. The use of long-acting antipsychotics for the management of aggressiveness in schizophrenia: a clinical overview. Clin Schizophr Relat Psychoses. 2018 Jun 26. [Epub ahead of print].

  16. Kane JM, Schooler NR, Marcy P, Achtyes ED, Correll CU, Robinson DG. Patients with early-phase schizophrenia will accept treatment with sustained-release medication (long-acting injectable antipsychotics): results from the recruitment phase of the PRELAPSE trial. J Clin Psychiatry. 2019;80(3).

  17. Kagan RM, Dunn KJ, Snell GP, Nettles RE, Kaufman HW. Trends in HIV-1 drug resistance mutations from a US reference laboratory from 2006 to 2017. AIDS Res Hum Retroviruses. 2019;35(8):698–709.

    CAS  PubMed  Google Scholar 

  18. Lima VD, Harrigan PR, Sénécal M, et al. Epidemiology of antiretroviral multiclass resistance. Am J Epidemiol. 2010;172(4):460–8.

    PubMed  Google Scholar 

  19. Jacobson JM, Kuritzkes DR, Godofsky E, et al. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob Agents Chemother. 2009;53(2):450–7.

    CAS  PubMed  Google Scholar 

  20. Khanlou H, Gathe J, Schrader S, Towner W, Weinheimer S, Lewis S. Safety, efficacy, and pharmacokinetics of ibalizumab in treatment-experienced HIV-1 infected patients: a phase 2b study. Paper presented at the 51st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2011.

  21. Norris D, Morales J, Godofsky E, Garcia F, Hardwicke R, Lewis S. TNX-355, in combination with optimized background regimen (OBR), achieves statistically significant viral load reduction and CD4 cell count increase when compared with OBR alone in phase 2 study at 48 weeks. Paper presented at the program and abstracts of the 16th International AIDS Conference; 2006.

  22. Emu B, Fessel J, Schrader S, et al. Phase 3 study of ibalizumab for multidrug-resistant HIV-1. N Engl J Med. 2018;379(7):645–54.

    CAS  PubMed  Google Scholar 

  23. Sheikh V, Murray JS, Sherwat A. Ibalizumab in multidrug-resistant HIV: accepting uncertainty. N Engl J Med. 2018;379(7):605–7.

    PubMed  Google Scholar 

  24. Millham L, Scott J, Sax P, et al. Clinical and economic impact of ibalizumab for patients with multidrug-resistant HIV in the United States. 10th IAS Conference on HIV Science; 21–24 July, 2019; Mexico City: abstract MOPEB275.

  25. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2014. https://aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf. Accessed 10 Jun 2014.

  26. US FDA. Drug approval package: Edurant; 2011.

  27. Cohen CJ, Andrade-Villanueva J, Clotet B, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naive adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. Lancet. 2011;378(9787):229–37.

    CAS  PubMed  Google Scholar 

  28. Molina J-M, Cahn P, Grinsztejn B, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet. 2011;378(9787):238–46.

    CAS  PubMed  Google Scholar 

  29. Hoeben E, Borghys H, Looszova A, Bouche M-P, van Velsen F, Baert L. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010;54(5):2042–50.

    PubMed  PubMed Central  Google Scholar 

  30. Verloes R, Deleu S, Niemeijer N, Crauwels H, Meyvisch P, Williams P. Safety, tolerability and pharmacokinetics of rilpivirine following administration of a long-acting formulation in healthy volunteers. HIV Med. 2015;16(8):477–84.

    CAS  PubMed  Google Scholar 

  31. McGowan I, Siegel A, Engstrom J, et al. Persistence of rilpivirine following single dose of long‐acting injection. J Int Aids Society. 2016;19.

  32. Yoshinaga T, Kobayashi M, Seki T, et al. Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob Agents Chemother. 2015;59(1):397–406.

    PubMed  Google Scholar 

  33. Spreen W, Min S, Ford S, et al. Pharmacokinetics, safety, and monotherapy antiviral activity of GSK1265744, an HIV integrase strand transfer inhibitor. HIV Clin Trials. 2013;14(5):192–203.

    CAS  PubMed  Google Scholar 

  34. Spreen W, Ford SL, Chen S, et al. GSK1265744 pharmacokinetics in plasma and tissue after single-dose long-acting injectable administration in healthy subjects. J Acquir Immune Defic Syndr. 2014;67(5):481–6.

    CAS  PubMed  Google Scholar 

  35. Margolis DA, Brinson CC, Smith GH, et al. Cabotegravir plus rilpivirine, once a day, after induction with cabotegravir plus nucleoside reverse transcriptase inhibitors in antiretroviral-naive adults with HIV-1 infection (LATTE): a randomised, phase 2b, dose-ranging trial. Lancet Infect Dis. 2015;15(10):1145–55.

    CAS  PubMed  Google Scholar 

  36. Margolis DA, Gonzalez-Garcia J, Stellbrink H-J, et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet. 2017;390(10101):1499–510.

    CAS  PubMed  Google Scholar 

  37. Margolis D, Gonzalez Garcia J, Stellbrink H, et al. Safety, efficacy and durability of long-acting CAB and RPV as two-drug IM maintenance therapy for HIV-1 infection: LATTE-2 week 160 results. 2018;.

  38. Orkin C, Arasteh K, Hernández-Mora M, et al. Long-acting cabotegravir + rilpivirine for HIV maintenance: FLAIR week 48 results. Presented at the Conference on Retroviruses and Opportunistic Infections; 4–7 March, 2019; Seattle (WA): abstract 3947.

  39. Swindells S, Andrade-Villanueva J, Richmond G, et al. Long-acting cabotegravir + rilpivirine for maintenance therapy: ATLAS week 48 results. Presented at the Conference of Retroviruses and Opportunistic Infectious; 4–7 March, 2019; Seattle (WA): abstract 1475.

  40. Jacobson JM, Saag MS, Thompson MA, et al. Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody. HIV-infected adults. J Infect Dis. 2008;198(9):1345–52.

    PubMed  Google Scholar 

  41. Thompson MA. The return of PRO 140, a CCR5-directed mAb. Curr Opin HIV AIDS. 2018;13(4):346–53.

    CAS  PubMed  Google Scholar 

  42. Dhody K, Pourhassan N, Kazempour K, et al. PRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infection. HIV Clin Trials. 2018;19(3):85–93.

    CAS  PubMed  Google Scholar 

  43. Dhody K, Kazempour K, Pourhassan N, Maddon PJ. Primary efficacy results of PRO 140 SC in a pivotal phase 2b/3 study in heavily treatment-experienced HIV-1 patients. Proceedings of the ASM Microbe; 2018; p. 7–11.

  44. Zhang H, Jin R, Yao C, et al. Combination of long-acting HIV fusion inhibitor albuvirtide and LPV/r showed potent efficacy in HIV-1 patients. AIDS Res Ther. 2016;13(1):8.

    PubMed  PubMed Central  Google Scholar 

  45. Wu H, Yao C, Su B, et al. Efficacy and safety of long acting HIV fusion inhibitor albuvirtide in antiretroviral-experienced adults with HIV-1: interim 48 week results from the randomized, controlled, phase 3 trial, non-inferiority TALENT study. 2018;.

  46. Markowitz M, Sarafianos SG. 4ʹ-Ethynyl-2-fluoro-2ʹ-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor. Curr Opin HIV AIDS. 2018;13(4):294–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Molina J-M, Yazdanpanah Y, Saud AA, et al. MK-8591 at doses of 0.25 to 2.25 mg QD, in combination with doravirine establishes and maintains viral suppression through 48 weeks in treatment-naive adults with HIV-1 infection. Paper presented at the Journal of the International AIDS Society; 2019.

  48. Yant S, Mulato A, Stepan G. GS-6207, a potent and selective first-in-class long-acting HIV-1 capsid inhibitor. Paper presented at the Conference on Retroviruses and Opportunistic Infections; 2019.

  49. Daar E, McDonald C, Crofoot G. Safety and antiviral activity over 10 days following a single dose of subcutaneous GS-6207, a first-in-class, long-acting HIV capsid inhibitor in people living with HIV. Paper presented at the International AIDS Conference; 2019; Mexico City.

  50. Daar ES, McDonald C, Crofoot G, et al. Single doses of long-acting capsid inhibitor GS-6207 administered by subcutaneous injection are safe and efficacious in people living with HIV. Paper presented at HIV Medicine; 2019.

  51. Wang CY, Sawyer LS, Murthy KK, et al. Postexposure immunoprophylaxis of primary isolates by an antibody to HIV receptor complex. Proc Natl Acad Sci. 1999;96(18):10367–72.

    CAS  PubMed  Google Scholar 

  52. Wang C-Y, Wong W-W, Tsai H-C, et al. Effect of anti-CD4 antibody UB-421 on HIV-1 rebound after treatment interruption. N Engl J Med. 2019;380(16):1535–45.

    CAS  PubMed  Google Scholar 

  53. Overton ET OC, Swindells S. Monthly long-acting cabotegravir and rilpivirine is non-inferior to oral ART as maintenance therapy for HIV-1 infection: week 48 pooled analysis from the phase 3 ATLAS and FLAIR studies. 10th IAS Conference on HIV Science; 21–24 July, 2019; Mexico City.

  54. Cohen YZ, Caskey M. Broadly neutralizing antibodies for treatment and prevention of HIV-1 infection. Curr Opin HIV AIDS. 2018;13(4):366–73.

    CAS  PubMed  Google Scholar 

  55. Bar KJ, Sneller MC, Harrison LJ, et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N Engl J Med. 2016;375(21):2037–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Scheid JF, Horwitz JA, Bar-On Y, et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature. 2016;535(7613):556.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Caskey M, Schoofs T, Gruell H, et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med. 2017;23(2):185.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Magnus C, Reh L, Trkola A. HIV-1 resistance to neutralizing antibodies: determination of antibody concentrations leading to escape mutant evolution. Virus Res. 2016;218:57–70.

    CAS  PubMed  Google Scholar 

  59. Chen G, Coates E, Fichtenbaum C, et al. Safety and virologic effect of the HIV-1 broadly neutralizing antibodies, VRC01LS or VRC07-523LS, administered to HIV-infected adults in a phase 1 clinical trial. Paper presented at Journal of the International Aids Society; 2019.

  60. Zash R, Holmes L, Diseko M, et al. Neural-tube defects and antiretroviral treatment regimens in Botswana. N Engl J Med. 2019;381(9):827–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dugdale CM, Ciaranello AL, Bekker L-G, et al. Risks and benefits of dolutegravir-and efavirenz-based strategies for South African women with HIV of child-bearing potential: a modeling study. Ann Intern Med. 2019;170(9):614–25.

    PubMed  PubMed Central  Google Scholar 

  62. Flynn PM, Abrams EJ, Fowler MG, Paul ME. Prevention of mother-to-child HIV transmission in resource-limited settings. UpToDate. Waltham (MA): Wolters Kluwer; 2017.

  63. Ford S, Sutton K, Lou Y, et al. Rifampin (RIF) decreases cabotegravir (CAB) exposure following oral coadministration. Paper presented at the 17th International Workshop on Clinical Pharmacology of HIV and Hepatitis Therapy; Washington, DC; 2016: abstract O18.

  64. Rajoli RK, Curley P, Chiong J, et al. Predicting drug–drug interactions between rifampicin and long-acting cabotegravir and rilpivirine using physiologically based pharmacokinetic modeling. J Infect Dis. 2018;219(11):1735–42.

    Google Scholar 

  65. Rajoli RK, Curley P, Back D, Flexner C, Owen A, Siccardi M. In silico drug interaction of long-acting rilpivirine and cabotegravir with rifampin. Paper presented at the Conference on Retroviruses and Opportunistic Infections; 2018.

  66. Ford SL, Lou Y, Lewis N, et al. Effect of rifabutin on the pharmacokinetics of oral cabotegravir in healthy subjects. Antivir Ther. 2019;24(4):301–8.

    PubMed  Google Scholar 

  67. Shacklett BL, Blanco J, Hightow-Weidman L, et al. HIVR4P 2018: from research to impact conference summary and highlights. AIDS Res Hum Retroviruses. 2019;35(7):598–607.

    PubMed  PubMed Central  Google Scholar 

  68. Johnson JA, Geretti AM. Low-frequency HIV-1 drug resistance mutations can be clinically significant but must be interpreted with caution. J Antimicrob Chemother. 2010;65(7):1322–6.

    CAS  PubMed  Google Scholar 

  69. Chewning B, Mosena P, Wilson D, et al. Evaluation of a computerized contraceptive decision aid for adolescent patients. Patient Educ Couns. 1999;38(3):227–39.

    CAS  PubMed  Google Scholar 

  70. Kamelian K, Lepik KJ, Chau W, et al. Prevalence of human immunodeficiency virus-1 integrase strand transfer inhibitor resistance in British Columbia, Canada Between 2009 and 2016: a longitudinal analysis. Paper presented at the Open Forum Infectious Diseases, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aadia I. Rana.

Ethics declarations

Funding

This work was supported by the National Institute of Mental Health (K23MH100955 to Aadia I. Rana); the UCLA (P30AI028697), UAB (P30AI027767), and Providence/Boston (P30AI042853) Centers for AIDS Research; the UCLA Center for HIV Identification, Prevention, and Treatment Services (P30MH58107); and the UCLA Clinical Translational Science Institute (UL1TR001881).

Conflict of interest

Aadia I. Rana has served on an advisory board for ViiV. Raphael L. Landovitz has consulted for and accepted honoraria from Gilead, Merck, and Roche. Karen T. Tashima has served on advisory boards for Gilead and Merck. Jose R. Castillo-Mancilla has no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, A.I., Castillo-Mancilla, J.R., Tashima, K.T. et al. Advances in Long-Acting Agents for the Treatment of HIV Infection. Drugs 80, 535–545 (2020). https://doi.org/10.1007/s40265-020-01284-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01284-1

Navigation