Skip to main content
Log in

Advances in Targeted Therapies for Triple-Negative Breast Cancer

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

While the outcomes for patients diagnosed with hormone receptor positive (HR+) and/or human epidermal growth factor receptor 2-positive (HER2+) breast cancers have continued to improve with the development of targeted therapies, the same cannot be said yet for those affected with triple-negative breast cancer (TNBC). Currently, the mainstay of treatment for the 10–15% of patients diagnosed with TNBC remains cytotoxic chemotherapy, but it is hoped that through an enhanced characterization of TNBC biology, this disease will be molecularly delineated into subgroups with targetable oncogenic drivers. This review will focus on recent therapeutic innovations for TNBC, including poly-ADP-ribosyl polymerase (PARP) inhibitors, phosphoinositide 3-kinase (PI3K) pathway inhibitors, immune checkpoint inhibitors, and cyclin-dependent kinase (CDK) inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang KT, Kim J, Jung J, Chang JH, Chai YJ, Oh SW, Oh S, Kim YA, Park SB, Hwang KR. Impact of breast cancer subtypes on prognosis of women with operable invasive breast cancer: a population-based study using SEER database. Clin Cancer Res. 2018;25:5. https://doi.org/10.1158/1078-0432.ccr-18-2782 (Epub 2018/12/19, PubMed PMID: 30559169).

    Article  Google Scholar 

  2. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67. https://doi.org/10.1172/jci45014 (Epub 2011/06/03, PubMed PMID: 21633166; PMCID: PMC3127435).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98. https://doi.org/10.1158/1078-0432.ccr-14-0432 (Epub 2014/09/12, Epub 2014/09/12, PubMed PMID: 25208879; PMCID: PMC4362882).

    Article  CAS  PubMed  Google Scholar 

  4. Kraus WL, Lis JT. PARP goes transcription. Cell. 2003;113(6):677–83. https://doi.org/10.1016/s0092-8674(03)00433-1.

    Article  CAS  PubMed  Google Scholar 

  5. Schreiber V, Dantzer F, Ame J-C, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006;7(7):517–28. https://doi.org/10.1038/nrm1963.

    Article  CAS  PubMed  Google Scholar 

  6. De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art. Biochem Pharmacol. 2012;84(2):137–46. https://doi.org/10.1016/j.bcp.2012.03.018.

    Article  CAS  PubMed  Google Scholar 

  7. Kim MY. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 2005;19(17):1951–67. https://doi.org/10.1101/gad.1331805.

    Article  CAS  PubMed  Google Scholar 

  8. Kotz J. PARP target practice. Sci Bus eXchange. 2012. https://doi.org/10.1038/scibx.2012.323.

    Article  Google Scholar 

  9. Liscio P, Camaioni E, Carotti A, Pellicciari R, Macchiarulo A. From polypharmacology to target specificity: the case of PARP inhibitors. Curr Topics Med Chem. 2013;13(23):2939–54. https://doi.org/10.2174/15680266113136660209.

    Article  CAS  Google Scholar 

  10. Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG, Pol E, Frostell A, Ekblad T, Oncu D, Kull B, Robertson GM, Pellicciari R, Schuler H, Weigelt J. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol. 2012;30(3):283–8. https://doi.org/10.1038/nbt.2121 PubMed PMID: 22343925.

    Article  CAS  PubMed  Google Scholar 

  11. Murai J, Huang SYN, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99. https://doi.org/10.1158/0008-5472.can-12-2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murai J, Huang SYN, Renaud A, Zhang Y, Ji J, Takeda S, Morris J, Teicher B, Doroshow JH, Pommier Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2013;13(2):433–43. https://doi.org/10.1158/1535-7163.mct-13-0803.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2013;16(1):2–9. https://doi.org/10.1038/ncb2897.

    Article  CAS  Google Scholar 

  14. Robson ME, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung NM, Armstrong A, Wu W, Goessl CD, Runswick S, Conte PF. OlympiAD: phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm). J Clin Oncol. 2017;35(18_suppl):LBA4-LBA. https://doi.org/10.1200/jco.2017.35.18_suppl.lba4.

    Article  Google Scholar 

  15. Robson ME, Tung N, Conte P, Im SA, Senkus E, Xu B, Masuda N, Delaloge S, Li W, Armstrong A, Wu W, Goessl C, Runswick S, Domchek SM. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30(4):558–66. https://doi.org/10.1093/annonc/mdz012 (PubMed PMID: 30689707; PMCID: PMC6503629).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, Roche H, Im YH, Quek RGW, Markova D, Tudor IC, Hannah AL, Eiermann W, Blum JL. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63. https://doi.org/10.1056/NEJMoa1802905 PubMed PMID: 30110579.

    Article  CAS  PubMed  Google Scholar 

  17. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtner H, Fleishman SB, de Haes JC, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85(5):365–76 PubMed PMID: 8433390.

    Article  CAS  PubMed  Google Scholar 

  18. Osoba D, Aaronson N, Zee B, Sprangers M, te Velde A. Modification of the EORTC QLQ-C30 (version 2.0) based on content validity and reliability testing in large samples of patients with cancer. The Study Group on Quality of Life of the EORTC and the Symptom Control and Quality of Life Committees of the NCI of Canada Clinical Trials Group. Qual Life Res. 1997;6(2):103–8 (PubMed PMID: 9161109).

    Article  CAS  PubMed  Google Scholar 

  19. Ettl J, Quek RGW, Lee KH, Rugo HS, Hurvitz S, Goncalves A, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, Roche H, Im YH, Markova D, Bhattacharyya H, Hannah AL, Eiermann W, Blum JL, Litton JK. Quality of life with talazoparib versus physician’s choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase III trial. Ann Oncol. 2018;29(9):1939–47. https://doi.org/10.1093/annonc/mdy257 PubMed PMID: 30124753.

    Article  CAS  PubMed  Google Scholar 

  20. Hopkins TA, Ainsworth WB, Ellis PA, Donawho CK, DiGiammarino EL, Panchal SC, Abraham VC, Algire MA, Shi Y, Olson AM, Johnson EF, Wilsbacher JL, Maag D. PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone marrow. Mol Cancer Res. 2019;17(2):409–19. https://doi.org/10.1158/1541-7786.mcr-18-0138 (Epub 2018/11/16, PubMed PMID: 30429212).

    Article  CAS  PubMed  Google Scholar 

  21. McCann KE. Novel poly-ADP-ribose polymerase inhibitor combination strategies in ovarian cancer. Curr Opin Obstet Gynecol. 2018;30(1):7–16. https://doi.org/10.1097/GCO.0000000000000428 PubMed PMID: 29251678.

    Article  PubMed  Google Scholar 

  22. Loibl S, O’Shaughnessy J, Untch M, Sikov WM, Rugo HS, McKee MD, Huober J, Golshan M, von Minckwitz G, Maag D, Sullivan D, Wolmark N, McIntyre K, Ponce Lorenzo JJ, Metzger Filho O, Rastogi P, Symmans WF, Liu X, Geyer CE. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19(4):497–509. https://doi.org/10.1016/s1470-2045(18)30111-6.

    Article  CAS  PubMed  Google Scholar 

  23. Rugo HS, Olopade OI, DeMichele A, Yau C, van ’t Veer LJ, Buxton MB, Hogarth M, Hylton NM, Paoloni M, Perlmutter J, Symmans WF, Yee D, Chien AJ, Wallace AM, Kaplan HG, Boughey JC, Haddad TC, Albain KS, Liu MC, Isaacs C, Khan QJ, Lang JE, Viscusi RK, Pusztai L, Moulder SL, Chui SY, Kemmer KA, Elias AD, Edmiston KK, Euhus DM, Haley BB, Nanda R, Northfelt DW, Tripathy D, Wood WC, Ewing C, Schwab R, Lyandres J, Davis SE, Hirst GL, Sanil A, Berry DA, Esserman LJ. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. Engl J Med. 2016;375(1):23–34.

    Article  CAS  Google Scholar 

  24. Puhalla S, Beumer JH, Pahuja S, Appleman LJ, Tawbi HAH, Stoller RG, Lee JJ, Lin Y, Kiesel B, Yu J, Tan AR, Belani CP, Chew HK, Garcia AA, Morgan R, Giranda VL, Shepherd SP, Chen AP, Chu E. Final results of a phase 1 study of single-agent veliparib (V) in patients (pis) with either BRCA1/2-mutated cancer (BRCA plus), platinum-refractory ovarian, or basal-like breast cancer (BRCA-wt). J Clin Oncol. 2014;32(15). PubMed PMID: WOS:000358613202835.

  25. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7. https://doi.org/10.1126/science.296.5573.1655 (PubMed PMID: 12040186).

    Article  CAS  PubMed  Google Scholar 

  26. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62. https://doi.org/10.1038/nrc2664 (PubMed PMID: 19629070).

    Article  CAS  PubMed  Google Scholar 

  27. Delaloge S, DeForceville L. Targeting PI3K/AKT pathway in triple-negative breast cancer. Lancet Oncol. 2017;18(10):1293–4. https://doi.org/10.1016/s1470-2045(17)30514-4 (Epub 2017/08/08, PubMed PMID: 28800863).

    Article  CAS  PubMed  Google Scholar 

  28. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75. https://doi.org/10.1146/annurev.cellbio.17.1.615 (PubMed PMID: 11687500).

    Article  CAS  PubMed  Google Scholar 

  29. LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol. 2016;34(31):3803–15. https://doi.org/10.1200/jco.2014.59.0018 (Epub 2016/09/30, PubMed PMID: 27621407).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91. https://doi.org/10.1158/0008-5472.can-07-6854 (PubMed PMID: 18676830; PMCID: PMC2680495).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412 (Epub 2012/09/23, PubMed PMID: 23000897; PMCID: PMC3465532).

    Article  CAS  Google Scholar 

  32. Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA. 1999;96(8):4240–5 (PubMed PMID: 10200246; PMCID: PMC33561).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Massihnia D, Galvano A, Fanale D, Perez A, Castiglia M, Incorvaia L, Listì A, Rizzo S, Cicero G, Bazan V, Castorina S, Russo A. Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget. 2016;7(37):60712–22. https://doi.org/10.18632/oncotarget.10858 (PubMed PMID: 27474173; PMCID: PMC5312414).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin J, Sampath D, Nannini MA, Lee BB, Degtyarev M, Oeh J, Savage H, Guan Z, Hong R, Kassees R, Lee LB, Risom T, Gross S, Liederer BM, Koeppen H, Skelton NJ, Wallin JJ, Belvin M, Punnoose E, Friedman LS, Lin K. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin Cancer Res. 2013;19(7):1760–72. https://doi.org/10.1158/1078-0432.ccr-12-3072 (Epub 2013/01/03, PubMed PMID: 23287563).

    Article  CAS  PubMed  Google Scholar 

  35. Kim SB, Dent R, Im SA, Espié M, Blau S, Tan AR, Isakoff SJ, Oliveira M, Saura C, Wongchenko MJ, Kapp AV, Chan WY, Singel SM, Maslyar DJ, Baselga J, investigators L. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18(10):1360–72. https://doi.org/10.1016/s1470-2045(17)30450-3 (Epub 2017/08/08, PubMed PMID: 28800861; PMCID: PMC5626630).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martín M, Chan A, Dirix L, O’Shaughnessy J, Hegg R, Manikhas A, Shtivelband M, Krivorotko P, Batista López N, Campone M, Ruiz Borrego M, Khan QJ, Beck JT, Ramos Vázquez M, Urban P, Goteti S, Di Tomaso E, Massacesi C, Delaloge S. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2- advanced breast cancer (BELLE-4). Ann Oncol. 2017;28(2):313–20. https://doi.org/10.1093/annonc/mdw562 PubMed PMID: 27803006.

    Article  PubMed  Google Scholar 

  37. Hu ZI, McArthur HL. Immunotherapy in breast cancer: the new frontier. Curr Breast Cancer Rep. 2018;10(2):35–40. https://doi.org/10.1007/s12609-018-0274-y (Epub 2018/04/16, PubMed PMID: 29881518; PMCID: PMC5970253).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012 (PubMed PMID: 23890059).

    Article  CAS  PubMed  Google Scholar 

  39. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, Chawla A, Curran M, Hwu P, Sharma P, Litton JK, Molldrem JJ, Alatrash G. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2(4):361–70. https://doi.org/10.1158/2326-6066.cir-13-0127 (Epub 2014/01/10, PubMed PMID: 24764583; PMCID: PMC4000553).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D, Bertucci F. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 2015;6(7):5449–64. https://doi.org/10.18632/oncotarget.3216 (PubMed PMID: 25669979; PMCID: PMC4467160).

    Article  PubMed  Google Scholar 

  41. Ghebeh H, Mohammed S, Al-Omair A, Qattan A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Bin Amer S, Tulbah A, Ajarim D, Al-Tweigeri T, Dermime S. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia. 2006;8(3):190–8. https://doi.org/10.1593/neo.05733 (PubMed PMID: 16611412; PMCID: PMC1578520).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, Buisseret L. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–7. https://doi.org/10.1200/jco.2015.64.8931 (Epub 2016/05/02, PubMed PMID: 27138582).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21. https://doi.org/10.1056/nejmoa1809615 (Epub 2018/10/20, PubMed PMID: 30345906).

    Article  CAS  PubMed  Google Scholar 

  44. Nanda R, Liu MC, Yau C, Asare S, Hylton N, Veer LVT, Perlmutter J, Wallace AM, Chien AJ, Forero-Torres A, Ellis E, Han H, Clark AS, Albain KS, Boughey JC, Elias AD, Berry DA, Yee D, DeMichele A, Esserman L. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): results from I-SPY. J Clin Oncol. 2017;35(15_suppl):506. https://doi.org/10.1200/jco.2017.35.15_suppl.506.

    Article  Google Scholar 

  45. Loibl S, Untch M, Burchardi N, Huober JB, Blohmer JU, Grischke E-M, Furlanetto J, Tesch H, Hanusch C, Rezai M, Jackisch C, Schmitt WD, Minckwitz GV, Thomalla J, Kummel S, Rautenberg B, Fasching PA, Rhiem K, Denkert C, Schneeweiss A. Randomized phase II neoadjuvant study (GeparNuevo) to investigate the addition of durvalumab to a taxane-anthracycline containing chemotherapy in triple negative breast cancer (TNBC). J Clin Oncol. 2018;36(15_suppl):104. https://doi.org/10.1200/jco.2018.36.15_suppl.104.

    Article  Google Scholar 

  46. Franzese O, Torino F, Fuggetta MP, Aquino A, Roselli M, Bonmassar E, Giuliani A, D’Atri S. Tumor immunotherapy: drug-induced neoantigens (xenogenization) and immune checkpoint inhibitors. Oncotarget. 2017;8(25):41641–69. https://doi.org/10.18632/oncotarget.16335 (PubMed PMID: 28404974).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schmid P, Cortes J, Bergh JCS, Pusztai L, Denkert C, Verma S, McArthur HL, Kummel S, Ding Y, Karantza V, Dang T, Dent RA. KEYNOTE-522: phase III study of pembrolizumab (pembro) + chemotherapy (chemo) vs placebo + chemo as neoadjuvant therapy followed by pembro vs placebo as adjuvant therapy for triple-negative breast cancer (TNBC). J Clin Oncol. 2018;36(15_suppl):TPS602-TPS. https://doi.org/10.1200/jco.2018.36.15_suppl.tps602.

    Article  Google Scholar 

  48. Lundberg AS, Weinberg RA. Control of the cell cycle and apoptosis. Eur J Cancer. 1999;35(14):1886–94 (PubMed PMID: 10711231).

    Article  CAS  PubMed  Google Scholar 

  49. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.

    CAS  PubMed  Google Scholar 

  50. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):77. https://doi.org/10.1186/bcr2419 (PubMed PMID: PMC2790859).

    Article  CAS  Google Scholar 

  51. Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, Gauthier E, Lu DR, Randolph S, Diéras V, Slamon DJ. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36. https://doi.org/10.1056/NEJMoa1607303 PubMed PMID: 27959613.

    Article  CAS  PubMed  Google Scholar 

  52. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, Iwata H, Harbeck N, Zhang K, Theall KP, Jiang Y, Bartlett CH, Koehler M, Slamon D. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39. https://doi.org/10.1016/S1470-2045(15)00613-0.

    Article  CAS  PubMed  Google Scholar 

  53. Hortobagyi GN, Stemmer SM, Burris HA, Yap Y-S, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, André F, Winer EP, Janni W, Verma S, Conte P, Arteaga CL, Cameron DA, Petrakova K, Hart LL, Villanueva C, Chan A, Jakobsen E, Nusch A, Burdaeva O, Grischke E-M, Alba E, Wist E, Marschner N, Favret AM, Yardley D, Bachelot T, Tseng L-M, Blau S, Xuan F, Souami F, Miller M, Germa C, Hirawat S, O’Shaughnessy J. Ribociclib as first-line therapy for HR-Positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48. https://doi.org/10.1056/NEJMoa1609709 PubMed PMID: 27717303.

    Article  CAS  PubMed  Google Scholar 

  54. Slamon DJ, Neven P, Chia S, Fasching PA, Laurentiis MD, Im S-A, Petrakova K, Bianchi GV, Esteva FJ, Martín M, Nusch A, Sonke GS, Cruz-Merino LD, Beck JT, Pivot X, Vidam G, Wang Y, Lorenc KR, Miller M, Taran T, Jerusalem G. Phase III randomized study of ribociclib and fulvestrant in hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018;36(24):2465–72. https://doi.org/10.1200/jco.2018.78.9909 (PubMed PMID: 29860922).

    Article  CAS  PubMed  Google Scholar 

  55. Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, Park IH, Trédan O, Chen SC, Manso L, Freedman OC, Garnica Jaliffe G, Forrester T, Frenzel M, Barriga S, Smith IC, Bourayou N, Di Leo A. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35(32):3638–46. https://doi.org/10.1200/jco.2017.75.6155 (Epub 2017/10/02, Epub 2017/10/02, PubMed PMID: 28968163).

    Article  CAS  PubMed  Google Scholar 

  56. Sledge GW, Toi M, Neven P, Sohn J, Inoue K, Pivot X, Burdaeva O, Okera M, Masuda N, Kaufman PA, Koh H, Grischke EM, Frenzel M, Lin Y, Barriga S, Smith IC, Bourayou N, Llombart-Cussac A. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84. https://doi.org/10.1200/jco.2017.73.7585 (Epub 2017/06/03, PubMed PMID: 28580882).

    Article  CAS  PubMed  Google Scholar 

  57. DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, Lal P, Feldman M, Zhang P, Colameco C, Lewis D, Langer M, Goodman N, Domchek S, Gogineni K, Rosen M, Fox K, O’Dwyer P. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21(5):995–1001. https://doi.org/10.1158/1078-0432.ccr-14-2258.

    Article  CAS  PubMed  Google Scholar 

  58. Clark AS, McAndrew NP, Troxel A, Feldman M, Lal P, Rosen M, Burrell J, Redlinger C, Gallgher M, Bradbury AR, Domchek SM, Fox KR, O’Dwyer PJ, DeMichele AM. Combination paclitaxel and palbociclib: results of a phase I trial in advanced breast cancer. Clin Cancer Res. 2019;5:6. https://doi.org/10.1158/1078-0432.ccr-18-0790 (Epub 2019/01/11, PubMed PMID: 30635336).

    Article  Google Scholar 

  59. Matutino A, Amaro C, Verma S. CDK4/6 inhibitors in breast cancer: beyond hormone receptor-positive HER2-negative disease. Ther Adv Med Oncol. 2018;10:1758835918818346. https://doi.org/10.1177/1758835918818346 (Epub 2018/12/17, PubMed PMID: 30619511; PMCID: PMC6299331).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Asghar U, Herrera-Abreu MT, Cutts R, Babina I, Pearson A, Turner NC. Identification of subtypes of triple negative breast cancer (TNBC) that are sensitive to CDK4/6 inhibition. J Clin Oncol. 2015;33(15_suppl):11098. https://doi.org/10.1200/jco.2015.33.15_suppl.11098.

    Article  Google Scholar 

  61. Rampurwala M, Wisinski KB, O’Regan R. Role of the androgen receptor in triple-negative breast cancer. Clin Adv Hematol Oncol. 2016;14(3):186–93 (PubMed PMID: 27058032; PMCID: PMC5221599).

    PubMed  PubMed Central  Google Scholar 

  62. Lin H, Huang JF, Qiu JR, Zhang HL, Tang XJ, Li H, Wang CJ, Wang ZC, Feng ZQ, Zhu J. Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer. Exp Mol Pathol. 2013;94(1):73–8. https://doi.org/10.1016/j.yexmp.2012.08.004 (Epub 2012/09/29, PubMed PMID: 23031786).

    Article  CAS  PubMed  Google Scholar 

  63. Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, Rossi EA, Chang CH, Goldenberg DM. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015;26(5):919–31. https://doi.org/10.1021/acs.bioconjchem.5b00223 (Epub 2015/05/08, PubMed PMID: 25915780).

    Article  CAS  PubMed  Google Scholar 

  64. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ, Vahdat LT, Thomas SS, Govindan SV, Maliakal PP, Wegener WA, Hamburger SA, Sharkey RM, Goldenberg DM. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21(17):3870–8. https://doi.org/10.1158/1078-0432.ccr-14-3321 (Epub 2015/05/05, PubMed PMID: 25944802; PMCID: PMC4558321).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O’Shaughnessy J, Moroose RL, Santin AD, Abramson VG, Shah NC, Rugo HS, Goldenberg DM, Sweidan AM, Iannone R, Washkowitz S, Sharkey RM, Wegener WA, Kalinsky K. Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51. https://doi.org/10.1056/NEJMoa1814213 (PubMed PMID: 30786188).

    Article  CAS  PubMed  Google Scholar 

  66. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, Shah NC, O’Shaughnessy J, Kalinsky K, Guarino M, Abramson V, Juric D, Tolaney SM, Berlin J, Messersmith WA, Ocean AJ, Wegener WA, Maliakal P, Sharkey RM, Govindan SV, Goldenberg DM, Vahdat LT. Efficacy and safety of anti-trop-2 antibody drug conjugate Sacituzumab Govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol. 2017;35(19):2141–8. https://doi.org/10.1200/jco.2016.70.8297 (Epub 2017/03/14, PubMed PMID: 28291390; PMCID: PMC5559902).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andre F, Ciruelos EM, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, Yamashita T, Lu YS, Inoue K, Takahashi M, Papai Z, Longin AS, Mills D, Wilke C, Hirawat S, Juric D. Alpelisib (ALP) 1 fulvestrant (FUL) for advanced breast cancer (ABC): results of the phase III SOLAR-1 trial. Ann Oncol. 2018;29:709 (PubMed PMID: WOS:000459277304388).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly E. McCann.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Kelly McCann serves on a speaker’s bureau for Eli Lilly’s CDK 4/6 inhibitor abemaciclib in patients with metastatic, hormone receptor-positive breast cancer. Sara Hurvitz reports receiving research grants from Ambryx, Amgen, Bayer, Obi Pharma, Biomarin, Cascadian, Daiichi Sankyo, Dignitana, Genentech, GSK, Lilly, Magrogenics, Medivation, Merrimack, Novartis, Pfizer, Pieris, Puma, Roche, Seattle Genetics, and travel support from Lilly, Novartis, and Obi Pharma. Nicholas McAndrew reports receiving research funding to his institution from Novartis and Daiichi Sankyo, research-related travel accommodations from Roche and Daiichi Sankyo, and an honorarium for a continuing medical education lecture from Med Learning Group/Ultimate Medical Academy, which was funded by an unrestricted education grant provided by Eli Lilly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCann, K.E., Hurvitz, S.A. & McAndrew, N. Advances in Targeted Therapies for Triple-Negative Breast Cancer. Drugs 79, 1217–1230 (2019). https://doi.org/10.1007/s40265-019-01155-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01155-4

Navigation