Skip to main content
Log in

Napabucasin: An Update on the First-in-Class Cancer Stemness Inhibitor

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Napabucasin (BBI608) is an orally administered small molecule that blocks stem cell activity in cancer cells by targeting the signal transducer and activator of transcription 3 pathway. The signal transducer and activator of transcription 3 pathway is over-activated in many types of cancer and has been shown to be an important pathway in cancer stem cell-mediated propagation of cancer. Cancer stem cells are a subpopulation of cancer cells considered to be the primary source of tumor growth, metastasis, and resistance to conventional therapies, and thus, responsible for cancer relapse. This review describes the clinical development program of this first-in-class cancer stemness inhibitor, including preclinical discovery, early clinical trials, current phase III clinical trial evaluation, and future therapeutic combinations. The therapeutic potential of napabucasin was first reported in a preclinical study that demonstrated the potent anti-tumor and anti-metastatic activity of napabucasin in several different cancer types, both in vitro and in vivo. In mouse models, napabucasin was effective both as a monotherapy and in combination with other agents; in particular, synergy was observed with paclitaxel in vivo. Napabucasin clinical trials have demonstrated encouraging anti-tumor activity as monotherapy and in combination with conventional therapeutics, with no significant pharmacokinetic interactions when used in combination therapies. Adverse events attributed to napabucasin have been predominantly mild, although some patients have experienced grade 3 gastrointestinal adverse events. More severe adverse events required reduced or discontinued dosing of napabucasin or medication to reverse or manage symptoms. In conclusion, napabucasin may prove useful in targeting cancer stem cells, with the potential to suppress metastasis and prevent relapse in patients with varying cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells: perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.

    Article  CAS  PubMed  Google Scholar 

  2. Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112:4793–807.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Wang K, Jensen TD, et al. Tumor heterogeneity in neoplasms of breast, colon, and skin. BMC Res Notes. 2010;3(1):321.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  5. Gao J-X. Cancer stem cells: the lessons from precancerous stem cells. J Cell Mol Med. 2008;12:67–96.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15(9):1010–2.

    Article  CAS  PubMed  Google Scholar 

  7. Falzacappa MV, Ronchini C, Reavie LB, Pelicci PG. Regulation of self-renewal in normal and cancer stem cells. FEBS J. 2012;279(19):3559–72.

    Article  Google Scholar 

  8. Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vermeulen L, De Sousa E, Melo F, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biol. 2010;12(5):468–76.

    Article  CAS  PubMed  Google Scholar 

  10. Hernandez-Vargas H, Ouzounova M, Le Calvez-Kelm F, et al. Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics. 2011;6:428–39.

    Article  CAS  PubMed  Google Scholar 

  11. Kim JK, Jeon HY, Kim H. The molecular mechanisms underlying the therapeutic resistance of cancer stem cells. Arch Pharm Res. 2015;38:389–401.

    Article  CAS  PubMed  Google Scholar 

  12. Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  CAS  PubMed  Google Scholar 

  15. Morel AP, Lièvre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS One. 2008;3(8):e2888.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 2011;9(12):1608–20.

    Article  CAS  PubMed  Google Scholar 

  18. Fabregat I, Malfettone A, Soukupova J. New insights into the crossroads between EMT and stemness in the context of cancer. J Clin Med. 2016;5(3):1–12.

    Article  Google Scholar 

  19. Alvero AB, Chen R, Fu HH, et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8(1):158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun YL, Patel A, Kumar P, Chen ZS. Role of ABC transporters in cancer chemotherapy. Chin J Cancer. 2012;31(2):51–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34:732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dick DB. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  PubMed  Google Scholar 

  24. Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009;69:3382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res. 2007;67(7):3153–61.

    Article  CAS  PubMed  Google Scholar 

  26. Mack B, Gires O. CD44s and CD44v6 expression in head and neck epithelia. PloS One. 2008;3(10):e3360.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Visvander JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.

    Article  Google Scholar 

  28. Marjanovic ND, Weinberg RA, Chaffer CL. Cell plasticity and heterogeneity in cancer. Clin Chem. 2013;59:168–79.

    Article  CAS  PubMed  Google Scholar 

  29. Wong DJ, Liu H, Ridky TW, et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell. 2008;2(4):333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alvarez JV, Greulich H, Sellers WR, et al. Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res. 2006;66:3162–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lee TK, Castilho A, Cheung VC, et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  32. Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer. Int J Oncol. 2014;44(4):1032–40.

    CAS  PubMed  Google Scholar 

  33. Bromberg J, Wrzeszczynska MH, Devgan G, et al. STAT3 as an oncogene. Cell. 1999;98(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  34. Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates STAT3 and protects hematopoietic cells from cell death. Oncogene. 2002;21(7):1038–47.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang F, Li C, Halfter H, Liu J. Delineating an oncostatin M-activated STAT3 signaling pathway that coordinates the expression of genes involved in cell cycle regulation and extracellular matrix deposition of MCF-7 cells. Oncogene. 2003;22:894–905.

    Article  CAS  PubMed  Google Scholar 

  36. Wake MS, Watson CJ. STAT3 the oncogene: still eluding therapy? FEBS J. 2015;282(14):2600–11.

    Article  CAS  PubMed  Google Scholar 

  37. Okusaka T, Ueno H, Ikeda M, et al. Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. Hepatol Res. 2015;45(13):1283–91.

    Article  CAS  PubMed  Google Scholar 

  38. Wong AL, Soo RA, Tan DS, et al. Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann Oncol. 2015;26(5):998–1005.

    Article  CAS  PubMed  Google Scholar 

  39. Ogura M, Uchida T, Terui Y, et al. Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies. Cancer Sci. 2015;106(7):896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong DS, Younes A, Fayad L, et al. A phase I study of ISIS 481464 (AZD9150), a first-in-human, first-in-class, antisense oligonucleotide inhibitor of STAT3, in patients with advanced cancers [abstract no. 8523]. J Clin Oncol. 2013;31(15 Suppl.):8523.

    Google Scholar 

  41. ClinicalTrials.gov. AZD9150 with MEDI4736 in patients with advanced pancreatic, non-small lung and colorectal cancer. 2017. https://clinicaltrials.gov/ct2/show/NCT02983578. Accessed 7 May 2017.

  42. ClinicalTrials.gov. MEDI4736 alone and in combination with tremelimumab or AZD9150 in adult subjects with diffuse large B-cell lymphoma (D4190C00023). https://clinicaltrials.gov/ct2/show/NCT02549651. Accessed 7 May 2017.

  43. ClinicalTrials.gov. Study to assess MEDI4736 with either AZD9150 or AZD5069 in advanced solid tumors and relapsed metastatic squamous cell carcinoma of head and neck. https://clinicaltrials.gov/ct2/show/NCT02499328. Accessed 7 May 2017.

  44. Lee CS, Ryan EJ, Doherty GA. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: the role of inflammation. World J Gastroenterol. 2014;20(14):3751–61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bromberg J, Darnell JE Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19(21):2468–73.

    Article  CAS  PubMed  Google Scholar 

  46. Kroon P, Berry PA, Stower MJ, et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res. 2013;73:5288–98.

    Article  CAS  PubMed  Google Scholar 

  47. Cafferkey C, Chau I. Novel STAT 3 inhibitors for treating gastric cancer. Expert Opin Investig Drugs. 2016;25(9):1023–31.

    Article  CAS  PubMed  Google Scholar 

  48. Hajimoradi M, Mohammad Hassan Z, Ebrahimi M, et al. STAT3 is overactivated in gastric cancer stem-like cells. Cell J. 2016;17(4):617–28.

    PubMed  PubMed Central  Google Scholar 

  49. Li Y, Rogoff HA, Keates S, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci USA. 2015;112(6):1839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamran MZ, Patil P, Gude RP. Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int. 2013;2013:421821.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang Z, Li CJ, Li W, Leggett D, Inventors; Boston Biomedical, Inc., assignee. STAT3 pathway inhibitors and cancer stem cell inhibitors. US patent 8,877,803 B2. 4 Nov 2014.

  52. Rogoff HA, Li J, Li C. Cancer stemness and resistance: napabucasin (BBI-608) sensitizes stemness-high cancer cells to paclitaxel by inhibiting the STAT3-MUC1 pathway [abstract no. 4777]. Proc Am Assoc Cancer Res. 2017;8:1222.

    Google Scholar 

  53. Langleben A, Supko JG, Hotte SJ, et al. A dose-escalation phase I study of a first-in-class cancer stemness inhibitor in patients with advanced malignancies [abstract no. 2542]. J Clin Oncol. 2013;31(15 Suppl.):2542.

    Google Scholar 

  54. Jonker DJ, Stephenson J, Edenfield WJ, et al. A phase I extension study of BBI608, a first-in-class cancer stem cell (CSC) inhibitor, in patients with advanced solid tumors [abstract no. 2546]. J Clin Oncol. 2014;32(15 Suppl.):2546.

    Google Scholar 

  55. Hitron M, Stephenson J, Chi KN, et al. A phase 1b study of the cancer stem cell inhibitor BBI608 administered with paclitaxel in patients with advanced malignancies [abstract no. 2530]. J Clin Oncol. 2014;32(15 Suppl.):2530.

    Google Scholar 

  56. Garcia AA, Hays JL, Cote GM, et al. A phase Ib/II study of cancer stemness inhibitor napabucasin (BB608) combined with weekly paclitaxel in platinum-resistant ovarian cancer [abstract no. 5578]. J Clin Oncol. 2016;34(15 Suppl):2557.

  57. Garcia AA, Hays JL, Cote GM, et al. A phase Ib/II study of cancer stemness inhibitor napabucasin (BB608) combined with weekly paclitaxel in platinum-resistant ovarian cancer. Poster presented at the 2016 ASCO Annual Meeting; 3–7 June 2016; Chicago (IL).

  58. Becerra C, Stephenson J, Jonker DJ, et al. Phase Ib/II study of cancer stem cell (CSC) inhibitor BBI608 combined with paclitaxel in advanced gastric and gastroesophageal junction (GEJ) adenocarcinoma [abstract no. 4069]. J Clin Oncol. 2015;33(15 Suppl.):4069.

    Google Scholar 

  59. Becerra C, Stephenson J, Jonker DJ, et al. Phase Ib/II study of cancer stem cell (CSC) inhibitor BBI608 combined with paclitaxel in advanced gastric and gastroesophageal junction (GEJ) adenocarcinoma. Poster presented at the 2015 ASCO Annual Meeting; 29 May–2 June 2015; Chicago (IL).

  60. Bekaii-Saab TS, Mikhail S, Langleben A, et al. A phase Ib/II study of BBI608 combined with weekly paclitaxel in advanced pancreatic cancer [abstract no. 196]. J Clin Oncol. 2016;34(Suppl. 4S):196.

    Article  Google Scholar 

  61. Becerra C, Braiteh FS, Spira AI, et al. Phase Ib/II study of cancer stemness inhibitor napabucasin (BB608) combined with weekly paclitaxel in advanced triple negative breast cancer [abstract no. 1094]. J Clin Oncol. 2016;34(Suppl. 15):196.

    Google Scholar 

  62. El-Rayes BF, Shahda S, Starodub A, et al. A phase 1b extension study of cancer stemness inhibitor BB608 (napabucasin) in combination with nab-paclitaxel (nab-PTX) in patients with metastatic pancreatic cancer [abstract no. 4128]. J Clin Oncol. 2016;34(15 Suppl.):4128.

    Google Scholar 

  63. El-Rayes BF, Shahda S, Starodub S, et al. BBI608-118: A phase 1b extension study of cancer stemness inhibitor BB608 (napabucasin) in combination with nab-paclitaxel (nab-PTX) and gemcitabine in patients with metastatic pancreatic cancer. Poster presented at the 2016 ASCO Annual Meeting; 3–7 June 2016; Chicago (IL).

  64. Ciombor KK, Edenfield WJ, Hubbard JM, et al. A phase Ib/II study of cancer stem cell inhibitor BBI608 administered with panitumumab in KRAS wild-type (wt) patients (pts) with metastatic colorectal cancer (mCRC) following progression on anti-EGFR therapy [abstract no. 3617]. J Clin Oncol. 2015;33(15 Suppl.):3617.

    Google Scholar 

  65. Ciombor KK, Edenfield WJ, Hubbard JM, et al. A phase Ib/II study of cancer stem cell inhibitor BBI608 administered with panitumumab in KRAS wild-type (wt) patients (pts) with metastatic colorectal cancer (mCRC) following progression on anti-EGFR therapy. Poster presented at hte 2015 ASCO Annual Meeting; 29 May–2 June 2015; Chicago (IL).

  66. O’Neil BH, Hubbard JM, Starodub A, et al. Phase 1b extension study of cancer stemness inhibitor BB608 (napabucasin) administered in combination with FOLFIRI ± bevacizumab (Bev) in patients (Pts) with advanced colorectal cancer (CRC) [abstract no. 3564]. J Clin Oncol. 2016;34(15 Suppl.):3564.

    Google Scholar 

  67. Bendell JC, O’Neil BH, Starodub A, et al. Cancer stemness inhibition and chemosensitization: phase 1b/II study of cancer stemness inhibitor napabucasin (BBI-608) with FOLFIRI ± bevacizumab (Bev) administered to colorectal cancer (CRC) patients (pts) [abstract no. 593]. J Clin Oncol. 2017;35(Suppl. 4S):593.

    Article  Google Scholar 

  68. Larson T, Ortuzar WF, Bekaii-Saab TS, et al. BBI608-224: a phase Ib/II study of cancer stemness inhibitor napabucasin (BBI-608) administered with panitumumab in KRAS wild-type patients with metastatic colorectal cancer [abstract no. 677]. J Clin Oncol. 2017;35(Suppl. 4S):677.

    Article  Google Scholar 

  69. Shah MA, Muro K, Shitara K, et al. The BRIGHTER trial: a phase III randomized double-blind study of BBI608 + weekly paclitaxel versus placebo (PBO) + weekly paclitaxel in patients (pts) with pretreated advanced gastric and gastro-esophageal junction (GEJ) adenocarcinoma [abstract TPS4139]. J Clin Oncol. 2015;33(15 Suppl.):TPS4139.

    Google Scholar 

  70. Grothey A, Tebbutt N, Van Cutsem E, et al. CanStem303C trial: a phase III study of BBI-608 (napabucasin) in combination with 5-fluorouracil (5-FU), leucovorin, irinotecan (FOLFIRI) in adult patients with previously treated metastatic colorectal cancer (mCRC) [abstract no. 608TiP]. Ann Oncol. 2016;27(Suppl. 6):608TiP.

    Google Scholar 

  71. ClinicalTrials.gov. A study of BBI608 administered in combination with immune checkpoint inhibitors in adult patients with advanced cancers. 2016. https://clinicaltrials.gov/ct2/show/NCT02467361. Accessed 16 Mar 2017.

  72. Jonker DJ, Nott LM, Yoshino T, et al. A randomized phase III study of napabucasin [BBI608] (NAPA) vs placebo (PBO) in patients (pts) with pretreated advanced colorectal cancer (ACRC): the CCTG/AGITG CO.23 trial. Ann Oncol. 2016;27(6):149–206.

    Google Scholar 

  73. Jonker DJ, Nott LM, Yoshino T, et al. The NCI CTG and AGITG CO.23 trial: a phase III randomized study of BBI608 plus best supportive case (BSC) versus placebo (PBO) plus BSC in patients (Pts) with pretreated advanced colorectal carcinoma (CRC) [abstract no. TPS3660]. J Clin Oncol. 2014;32:5(Suppl.): 3660.

  74. Andria ML, Arens JF, Baker DK Jr, et al. ASHP therapeutic guidelines on the pharmacologic management of nausea and vomiting in adult and pediatric patients receiving chemotherapy or radiation therapy or undergoing surgery. Am J Health Syst Pharm. 1999;56(8):729–64.

    Google Scholar 

  75. Ruddy K, Mayer E, Partridge A. Patient adherence and persistence with oral anticancer treatment. Cancer J Clin. 2009;59(1):56–66.

    Article  Google Scholar 

  76. Boussios S, Pentheroudakis G, Katsanos K, Pavlidis N. Systemic treatment-induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann Gastroenterol. 2012;25(2):106–18.

    PubMed  PubMed Central  Google Scholar 

  77. Widakowich C, de Castro G, De Azambuja E, et al. Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist. 2007;12(12):1443–55.

    Article  CAS  PubMed  Google Scholar 

  78. Benson AB, Ajani JA, Catalano RB, et al. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J Clin Oncol. 2004;22(14):2918–26.

    Article  CAS  PubMed  Google Scholar 

  79. Hesketh PJ, Bohlke K, Lyman GH, et al. Antiemetics: American Society of clinical oncology focused guideline update. J Clin Oncol. 2015;34(4):381–6.

    Article  PubMed  Google Scholar 

  80. Grunberg SM, Slusher B, Rugo HS. Emerging treatments in chemotherapy-induced nausea and vomiting. Clin Adv Hematol Oncol. 2013;11(2 Suppl. 1):1–8.

    PubMed  Google Scholar 

  81. Bartsch R, Steger GG. The role of supportive therapy in the era of modern adjuvant treatment: current and future tools. Breast Care. 2009;4(3):167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  82. ClinicalTrials.gov. A study of napabucasin plus nab-paclitaxel with gemcitabine in adult patients with metastatic pancreatic adenocarcinoma. 2016. https://clinicaltrials.gov/ct2/show/study/NCT02993731. Accessed 16 Mar 2017.

  83. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12(4):237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dyck L, Mills KH. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 2017;47(5):765–79.

    Article  CAS  PubMed  Google Scholar 

  85. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao Y, Li Y, Hsu E, et al. Inhibition of cancer stemness sensitizes colorectal cancer to immune checkpoint inhibitors [abstract no. LB-140]. Presented at the ACCR Annual Meeting; 1–5 April 2017; Washington, DC. http://www.abstractsonline.com/pp8/#!/4292/session/959. Accessed 15 May 2017.

  87. Hong D, Falchook G, Cook CE, et al. A phase 1b study (SCORES) assessing safety, tolerability, pharmacokinetics, and preliminary anti-tumor activity of durvalumab combined with AZD9150 or AZD5069 in patients with advanced solid malignancies and SCCHN [abstract no. 1049PD]. Ann Oncol. 2016;27(Suppl. 6):1049PD.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Grothey.

Ethics declarations

Funding

Medical writing and editorial support were provided by Molly Jenkins and Alfred Adomako of Adelphi Communications, New York and were funded by Boston Biomedical, Cambridge, MA. None of the named authors received any compensation for their contributions to this work.

Conflict of interest

Dr. Grothey reports that the Mayo Clinic Foundation has received research grants for work conducted by him from Boston Biomedical, Inc.; Genentech, Bayer, Boehringer Ingelheim, and Eisai. Dr. Hubbard reports that the Mayo Clinic Foundation has received research grants for work conducted by her from Senhwa Biosciences, Inc., Boston Biomedical, Inc., Genentech, Boehringer Ingelheim, and Merck. Dr Hubbard has served on advisory boards for Genentech and Boehringer Ingelheim, with her honoraria paid to the Mayo Clinic Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubbard, J.M., Grothey, A. Napabucasin: An Update on the First-in-Class Cancer Stemness Inhibitor. Drugs 77, 1091–1103 (2017). https://doi.org/10.1007/s40265-017-0759-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0759-4

Navigation