Skip to main content
Log in

Airway and Lung Remodelling in Chronic Pulmonary Obstructive Disease: A Role for Muscarinic Receptor Antagonists?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Lung tissue remodelling in chronic inflammatory lung diseases has long been regarded as a follow-up event to inflammation. Recent studies have indicated that, although airway and lung tissue remodelling is often independent of inflammation, it precedes or causes inflammation. None of the available therapies has a significant effect on airway and lung tissue remodelling in asthma, bronchiectasis, fibrosis and chronic obstructive pulmonary disease (COPD). The goal of stopping or reversing lung tissue remodelling is difficult, as the term summarizes the net effect of independent events, including (1) cell proliferation, (2) cell volume increase, (3) cell migration, (4) modified deposition and metabolism of specific extracellular matrix components, and (5) local action of infiltrated inflammatory cells. The extracellular matrix of the lung has a very high turnover, and thus small changes may accumulate to significant structural pathologies, which seem to be irreversible. The most important question is ‘why are pathological changes of the lung structure irreversible and resistant to drugs?’ Many drugs have the potential to reduce remodelling mechanisms in vitro but fail in clinical trials. New evidence suggests that muscarinic receptor inhibitors have the potential to improve lung function through modifying tissue remodelling. However, the role of muscarinic receptors in lung remodelling, especially their supportive role for other remodelling driving factors, needs to be further investigated. The focus of this review is the role of muscarinic receptors in lung tissue remodelling as it has been reported in the human lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirota N, Martin JG. Mechanisms of airway remodeling. Chest. 2013;144:1026–32.

    Article  PubMed  Google Scholar 

  2. Postma DS, Reddel HK, ten Hacken NH, van den Berge M. Asthma and chronic obstructive pulmonary disease: similarities and differences. Clin Chest Med. 2014;35:143–56.

    Article  PubMed  Google Scholar 

  3. Sohal SS, Ward C, Danial W, Wood-Baker R, Walters EH. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2013;7:275–88.

    Article  CAS  PubMed  Google Scholar 

  4. Hirota N, Martin JG. Mechanisms of airway remodeling. Chest. 2013;144:1026–32.

    Article  PubMed  Google Scholar 

  5. Foley AR, Quijano-Roy S, Collins J, Straub V, McCallum M, Deconinck N, Mercuri E, Pane M, D’Amico A, Bertini E, North K, Ryan MM, Richard P, Allamand V, Hicks D, Lamandé S, Hu Y, Gualandi F, Auh S, Muntoni F, Bönnemann CG. Natural history of pulmonary function in collagen VI-related myopathies. Brain. 2013;136:3625–33.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest. 2013;123:4950–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Parker MW, Rossi D, Peterson M, Smith K, Sikström K, White ES, Connett JE, Henke CA, Larsson O, Bitterman PB. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest. 2014;124:1622–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, Holgate S, Davies DE, Howarth PH. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2011;364:2006–15.

    Article  CAS  PubMed  Google Scholar 

  9. Grainge C, Howarth PH. Repeated high-dose inhalation allergen challenge in asthma. Clin Respir J. 2011;5:150–5.

    Article  PubMed  Google Scholar 

  10. Senhorini A, Ferreira DS, Shiang C, Silva LF, Dolhnikoff M, Gelb AF, Mauad T. Airway dimensions in fatal asthma and fatal COPD: overlap in older patients. COPD. 2013;10:348–56.

    Article  PubMed  Google Scholar 

  11. Kosciuch J, Krenke R, Gorska K, Zukowska M, Maskey-Warzechowska M, Chazan R. Airway dimensions in asthma and COPD in high resolution computed tomography: can we see the difference? Respir Care. 2013;58:1335–42.

    Article  PubMed  Google Scholar 

  12. Wright JL, Postma DS, Kerstjens HA, Timens W, Whittaker P, Churg A. Airwayremodeling in the smoke exposed guinea pig model. Inhal Toxicol. 2007;19:915–23.

    Article  CAS  PubMed  Google Scholar 

  13. Evans MJ, Fanucchi MV, Plopper CG, Hyde DM. Postnatal development of the lamina reticularis in primate airways. Anat Rec (Hoboken). 2010;293(6):947-54. doi:10.1002/ar.20824.

  14. Plopper CG, Hyde DM. The non-human primate as a model for studying COPD andasthma. Pulm Pharmacol Ther. 2008;21:755–66.

    Article  CAS  PubMed  Google Scholar 

  15. Hirota N, Martin JG. Mechanisms of airway remodeling. Chest. 2013;144:1026–32.

    Article  PubMed  Google Scholar 

  16. Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 2014;9:629–45.

    Article  CAS  PubMed  Google Scholar 

  17. Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res. 2006;7:73.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mak JC, Baraniuk JN, Barnes PJ. Localization of muscarinic receptor subtype mRNAs in human lung. Am J Respir Cell Mol Biol. 1992;7:344–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda T, Anisuzzaman AS, Yoshiki H, Sasaki M, Koshiji T, Uwada J, Nishimune A, Itoh H, Muramatsu I. Regional quantification of muscarinic acetylcholine receptors and β-adrenoceptors in human airways. Br J Pharmacol. 2012;166:1804–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kistemaker LE, Oenema TA, Meurs H, Gosens R. Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therap in asthma and COPD. Life Sci. 2012;91:1126–33.

    Article  CAS  PubMed  Google Scholar 

  21. Plopper CG, Smiley-Jewell SM, Miller LA, Fanucchi MV, Evans MJ, Buckpitt AR, Avdalovic M, Gershwin LJ, Joad JP, Kajekar R, Larson S, Pinkerton KE, Van Winkle LS, Schelegle ES, Pieczarka EM, Wu R, Hyde DM. Asthma/allergic airways disease:does postnatal exposure to environmental toxicants promote airway pathobiology? Toxicol Pathol. 2007;35:97–110.

    Article  CAS  PubMed  Google Scholar 

  22. Nordgren TM, Wyatt TA, Sweeter J, Bailey KL, Poole JA, Heires AJ, Sisson JH, Romberger DJ. Motile cilia harbor serum response factor as a mechanism of environment sensing and injury response in the airway. Am J Physiol Lung Cell Mol Physiol. 2014;306:L829–39.

    Article  CAS  PubMed  Google Scholar 

  23. Hessel J, Heldrich J, Fuller J, Staudt MR, Radisch S, Hollmann C, Harvey BG, Kaner RJ, Salit J, Yee-Levin J, Sridhar S, Pillai S, Hilton H, Wolff G, Bitter H, Visvanathan S, Fine J, Stevenson CS, Crystal RG, Tilley AE. Intraflagellar transport gene expression associated with short cilia in smoking and COPD. PLoS One. 2014;9:e85453.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Klein MK, Haberberger RV, Hartmann P, Faulhammer P, Lips KS, Krain B, Wess J, Kummer W, König P. Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development. Eur Respir J. 2009;33:1113–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Choi JY, Joo NS, Krouse ME, Wu JV, Robbins RC, Ianowski JP, Hanrahan JW, Wine JJ. Synergistic airway gland mucus secretion in response to vasoactive intestinalpeptide and carbachol is lost in cystic fibrosis. J Clin Invest. 2007;117:3118–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wu D, Lee D, Sung YK. Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review. Respir Res. 2011;12:45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Aguayo SM. Determinants of susceptibility to cigarette smoke. Potential roles for neuroendocrine cells and neuropeptides in airway inflammation, airway wall remodeling, and chronic airflow obstruction. Am J Respir Crit Care Med. 1994;149:1692–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kong KC, Tobin AB. The role of M(3)-muscarinic receptor signaling in insulin secretion. Commun Integr Biol. 2011;4:489–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Li YR, Matsunami H. Activation state of the M3 muscarinic acetylcholin receptor modulates mammalian odorant receptor signaling. Sci Signal. 2011;. doi:10.1126/scisignal.2001230.

    Google Scholar 

  30. Kong KC, Butcher AJ, McWilliams P, Jones D, Wess J, Hamdan FF, Werry T, Rosethorne EM, Charlton SJ, Munson SE, Cragg HA, Smart AD, Tobin AB. M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc Natl Acad Sci USA. 2010;107:21181–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jiang X, Sinnett-Smith J, Rozengurt E. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells. Biochem Biophys Res Commun. 2009;387:521–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Profita M, Bonanno A, Montalbano AM, Ferraro M, Siena L, Bruno A, Girbino S, Albano GD, Casarosa P, Pieper MP, Gjomarkaj M. Cigarette smoke extract activates human bronchial epithelial cells affecting non-neuronal cholinergic system signalling in vitro. Life Sci. 2011;89:36–43.

    Article  CAS  PubMed  Google Scholar 

  33. Tsutsumi H, Ohsaki M, Seki K, Chiba S. Respiratory syncytial virus infection of human respiratory epithelial cells enhances both muscarinic and beta2-adrenergic receptor gene expression. Acta Virol. 1999;43:267–70.

    CAS  PubMed  Google Scholar 

  34. Golkar L, Yarkony KA, Fryer AD. Inhibition of neuronal M(2) muscarinic receptor function in the lungs by extracellular nitric oxide. Br J Pharmacol. 2000;131:312–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gras D, Chanez P, Vachier I, Petit A, Bourdin A. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther. 2013;140:290–305.

    Article  CAS  PubMed  Google Scholar 

  36. Park HJ, Ward SM, Desgrosellier JS, Georgescu SP, Papageorge AG, Zhuang X, Barnett JV, Galper JB. Transforming growth factor beta regulates the expression of the M2 muscarinic receptor in atrial myocytes via an effect on RhoA and p190RhoGAP. J Biol Chem. 2006;281:19995–20002.

    Article  CAS  PubMed  Google Scholar 

  37. Nie Z, Scott GD, Weis PD, Itakura A, Fryer AD, Jacoby DB. Role of TNF-α in virus-induced airway hyperresponsiveness and neuronal M2 muscarinic receptor dysfunction. Br J Pharmacol. 2011;164:444–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Suzaki I, Asano K, Shikama Y, Hamasaki T, Kanei A, Suzaki H. Suppression of IL-8 production from airway cells by tiotropium bromide in vitro. Int J Chron Obstruct Pulmon Dis. 2011;6:439–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Profita M, Bonanno A, Siena L, Ferraro M, Montalbano AM, Pompeo F, Riccobono L, Pieper MP, Gjomarkaj M. Acetylcholine mediates the release of IL-8 in human bronchial epithelial cells by a NFkB/ERK-dependent mechanism. Eur J Pharmacol. 2008;582(1–3):145–53.

    Article  CAS  PubMed  Google Scholar 

  40. Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66:105–43.

    Article  CAS  PubMed  Google Scholar 

  41. Jiménez E, Gámez MI, Bragado MJ, Montiel M. Muscarinic activation of mitogen-activated protein kinase in rat thyroid epithelial cells. Cell Signal. 2002;14:665–72.

    Article  PubMed  Google Scholar 

  42. Arrighi N, Bodei S, Lucente A, Michel MC, Zani D, Simeone C, Cunico SC, Spano P, Sigala S. Muscarinic receptors stimulate cell proliferation in the human urothelium-derived cell line UROtsa. Pharmacol Res. 2011;64:420–5.

    Article  CAS  PubMed  Google Scholar 

  43. Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER. Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology. 2004;145:2498–506.

    Article  CAS  PubMed  Google Scholar 

  44. Profita M, Albano GD, Montalbano AM, Di Sano C, Anzalone G, Gagliardo R, Riccobono L, Bonanno A, Siena L, Pieper MP, Gjomarkaj M. Acetylcholine leads to signal transducer and activator of transcription 1 (STAT-1) mediated oxidative/nitrosative stress in human bronchial epithelial cell line. Biochim Biophys Acta. 2013;1832:1949–58.

    Article  CAS  PubMed  Google Scholar 

  45. Evans MJ, Fanucchi MV, Plopper CG, Hyde DM. Postnatal development of the lamina reticularis in primate airways. Anat Rec (Hoboken). 2010;293:947–54.

    Article  CAS  Google Scholar 

  46. Royce SG, Tan L, Koek AA, Tang ML. Effect of extracellular matrix composition on airway epithelial cell and fibroblast structure: implications for airway remodeling in asthma. Ann Allergy Asthma Immunol. 2009;102:238–46.

    Article  PubMed  Google Scholar 

  47. André C, Marullo S, Convents A, Lü BZ, Guillet JG, Hoebeke J, Strosberg DA. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors. Eur J Biochem. 1988;171:401–7.

    Article  PubMed  Google Scholar 

  48. Profita M, Bonanno A, Siena L, Bruno A, Ferraro M, Montalbano AM, Albano GD, Riccobono L, Casarosa P, Pieper MP, Gjomarkaj M. Smoke, choline acetyltransferase, muscarinic receptors, and fibroblast proliferation in chronic obstructive pulmonary disease. J Pharmacol Exp Ther. 2009;329:753–63.

    Article  CAS  PubMed  Google Scholar 

  49. Milara J, Serrano A, Peiró T, Gavaldà A, Miralpeix M, Morcillo EJ, Cortijo J. Aclidinium inhibits human lung fibroblast to myofibroblast transition. Thorax. 2012;67:229–37.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Matthiesen S, Bahulayan A, Holz O, Racké K. MAPK pathway mediates muscarinic receptor-induced human lung fibroblast proliferation. Life Sci. 2007;80:2259–62.

    Article  CAS  PubMed  Google Scholar 

  51. Pieper MP, Chaudhary NI, Park JE. Acetylcholine-induced proliferation of fibroblasts and myofibroblasts in vitro is inhibited by tiotropium bromide. Life Sci. 2007;80:2270–3.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmedat AS, Warnken M, Seemann WK, Mohr K, Kostenis E, Juergens UR, Racké K. Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine/paracrine endothelinergic system. Br J Pharmacol. 2013;168:471–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ahmedat AS, Warnken M, Juergens UR, Paul Pieper M, Racké K. β2-adrenoceptors and muscarinic receptors mediate opposing effects on endothelin-1 expression in human lung fibroblasts. Eur J Pharmacol. 2012;691:218–24.

    Article  CAS  PubMed  Google Scholar 

  54. Haag S, Matthiesen S, Juergens UR, Racké K. Muscarinic receptors mediate stimulation of collagen synthesis in human lung fibroblasts. Eur Respir J. 2008;32:555–62.

    Article  CAS  PubMed  Google Scholar 

  55. Tang JM, Yuan J, Li Q, Wang JN, Kong X, Zheng F, Zhang L, Chen L, Guo LY, Huang YH, Yang JY, Chen SY. Acetylcholine induces mesenchymal stem cell migration via Ca2+/PKC/ERK1/2 signal pathway. J Cell Biochem. 2012;113:2704–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Milara J, Serrano A, Peiró T, Artigues E, Gavaldà A, Miralpeix M, Morcillo EJ, Cortijo J. Aclidinium inhibits cigarette smoke-induced lung fibroblast-to-myofibroblast transition. Eur Respir J. 2013;41:1264–74.

    Article  CAS  PubMed  Google Scholar 

  57. Asano K, Shikama Y, Shibuya Y, Nakajima H, Kanai K, Yamada N, Suzaki H. Suppressive activity of tiotropium bromide on matrix metalloproteinase production from lung fibroblasts in vitro. Int J Chron Obstruct Pulmon Dis. 2008;3:781–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Haddad EB, Rousell J, Mak JC, Barnes PJ. Transforming growth factor-beta 1 induces transcriptional down-regulation of m2 muscarinic receptor gene expression. Mol Pharmacol. 1996;49:781–7.

    CAS  PubMed  Google Scholar 

  59. Haddad EB, Rousell J, Mak JC, Barnes PJ. Long-term carbachol treatment-induced down-regulation of muscarinic M2-receptors but not m2 receptor mRNA in a human lung cell line. Br J Pharmacol. 1995;116:2027–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Matthiesen S, Bahulayan A, Kempkens S, Haag S, Fuhrmann M, Stichnote C, Juergens UR, Racké K. Muscarinic receptors mediate stimulation of human lung fibroblast proliferation. Am J Respir Cell Mol Biol. 2006;35:621–7.

    Article  CAS  PubMed  Google Scholar 

  61. Postma DS, Reddel HK, ten Hacken NH, van den Berge M. Asthma and chronic obstructive pulmonary disease: similarities and differences. Clin Chest Med. 2014;35:143–56.

    Article  PubMed  Google Scholar 

  62. Postma DS, Kerkhof M, Boezen HM, Koppelman GH. Asthma and chronic obstructive pulmonary disease: common genes, common environments? Am J Respir Crit Care Med. 2011;183:1588–94.

    Article  PubMed  Google Scholar 

  63. Meurs H, Oenema TA, Kistemaker LE, Gosens R. A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Curr Opin Pharmacol. 2013;13:316–23.

    Article  CAS  PubMed  Google Scholar 

  64. Evans RA, Morgan MD. The systemic nature of chronic lung disease. Clin Chest Med. 2014;35:283–93.

    Article  PubMed  Google Scholar 

  65. Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol. 2013;305(12):L912–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Lammers JW, Minette P, McCusker M, Barnes PJ. The role of pirenzepine-sensitive (M1) muscarinic receptors in vagally mediated bronchoconstriction in humans. Am Rev Respir Dis. 1989;139:446–9.

    Article  CAS  PubMed  Google Scholar 

  67. Fryer AD, Jacoby DB. Muscarinic receptors and control of airway smooth muscle. Am J Respir Crit Care Med. 1998;158:S154–60.

    Article  CAS  PubMed  Google Scholar 

  68. Xiao H, Liao Z, Meng X, Yan X, Chen S, Mo Z. Effects of the selective muscarinic receptor antagonist penehyclidine hydrochloride on the respiratory tract. Pharmazie. 2009;64:337–41.

    CAS  PubMed  Google Scholar 

  69. Brown SM, Koarai A, Sturton RG, Nicholson AG, Barnes PJ, Donnelly LE. A role for M(2) and M(3) muscarinic receptors in the contraction of rat and human small airways. Eur J Pharmacol. 2013;702:109–15.

    Article  CAS  PubMed  Google Scholar 

  70. Castro JM, Resende RR, Mirotti L, Florsheim E, Albuquerque LL, Lino-dos-Santos-Franco A, Gomes E, de Lima WT, de Franco M, Ribeiro OG, Russo M. Role of m2 muscarinic receptor in the airway response to methacholine of mice selected for minimal or maximal acute inflammatory response. Biomed Res Int. 2013;2013:805627.

    PubMed Central  PubMed  Google Scholar 

  71. Rynko AE, Fryer AD, Jacoby DB. Interleukin-1β mediates virus-induced M2 muscarinic receptor dysfunction and airway hyperreactivity. Am J Respir Cell Mol Biol. 2014;51(4):494-501

  72. Roffel AF, Elzinga CR, Zaagsma J. Muscarinic M3 receptors mediate contraction of human central and peripheral airway smooth muscle. Pulm Pharmacol. 1990;3:47–51.

    Article  CAS  PubMed  Google Scholar 

  73. Cao R, Dong XW, Jiang JX, Yan XF, He JS, Deng YM, Li FF, Bao MJ, Xie YC, Chen XP, Xie QM. M(3) muscarinic receptor antagonist bencycloquidium bromide attenuates allergic airway inflammation, hyperresponsiveness and remodeling in mice. Eur J Pharmacol. 2011;655:83–90.

    Article  CAS  PubMed  Google Scholar 

  74. Kong KC, Billington CK, Gandhi U, Panettieri RA Jr, Penn RB. Cooperative mitogenic signaling by G protein-coupled receptors and growth factors is dependent on G(q/11). FASEB J. 2006;20:1558–60.

    Article  CAS  PubMed  Google Scholar 

  75. Oenema TA, Smit M, Smedinga L, Racké K, Halayko AJ, Meurs H, Gosens R. Muscarinic receptor stimulation augments TGF-β1-induced contractile protein expression by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303:L589–97.

    Article  CAS  PubMed  Google Scholar 

  76. Gosens R, Bos IS, Zaagsma J, Meurs H. Protective effects of tiotropium bromide in the progression of airway smooth muscle remodeling. Am J Respir Crit Care Med. 2005;171:1096–102.

    Article  PubMed  Google Scholar 

  77. Bos IS, Gosens R, Zuidhof AB, Schaafsma D, Halayko AJ, Meurs H, Zaagsma J. Inhibition of allergen-induced airway remodeling by tiotropium and budesonide: a comparison. Eur Respir J. 2007;30:653–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author has no conflicts of interest. I would like to thank Mr. C. T. S’ng for reading and correcting the manuscript critically. This manuscript was supported by the Swiss National Foundation (SNF 310030_143360/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Roth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, M. Airway and Lung Remodelling in Chronic Pulmonary Obstructive Disease: A Role for Muscarinic Receptor Antagonists?. Drugs 75, 1–8 (2015). https://doi.org/10.1007/s40265-014-0319-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-014-0319-0

Keywords

Navigation