Skip to main content

Advertisement

Log in

Mechanisms, Management and Prevention of Pemetrexed-Related Toxicity

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Pemetrexed is a cytostatic antifolate drug and a cornerstone in the treatment of lung cancer. Although generally well tolerated, a substantial part of the patient population experiences dose-limiting or even treatment-limiting toxicities. These include mucositis, skin problems, fatigue, renal toxicity, and neutropenia. Several studies confirmed that pemetrexed pharmacokinetics can serve as a prognostic factor for the development of toxicity, especially for neutropenia. Preventing and managing toxicity of pemetrexed can help to ensure durable treatment. Several evidence-based strategies are already implemented in clinical care. With the introduction of standard vitamin supplementation and dexamethasone, the incidence of hematological toxicity and skin reactions substantially decreased. In the case of high risk for toxicity, granulocyte colony-stimulating factor can be used to prevent severe hematological toxicity. Moreover, high-dose folinic acid can resolve severe pemetrexed-induced toxicity. There are several experimental options to prevent or manage pemetrexed-related toxicity, such as the use of standard folinic acid, hemodialysis, antidotes such as thymidine, hypoxanthine, and glucarpidase, and the use of therapeutic drug monitoring. These strategies still need clinical evaluation before implementation, but could enable treatment with pemetrexed for patients who are at risk for toxicity, such as in renal impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baas P, Fennell D, Kerr KM, Van Schil PE, Haas RL, Peters S, et al. Malignant pleural mesothelioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl. 5):v31–9.

    Article  PubMed  Google Scholar 

  2. Girard N, Ruffini E, Marx A, Faivre-Finn C, Peters S, Committee EG. Thymic epithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl. 5):v40-55.

    Article  PubMed  Google Scholar 

  3. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl. 4):iv192-237.

    Article  CAS  PubMed  Google Scholar 

  4. European Medicines Agency (EMA). ALIMTA EPAR: product information. 2017. Eli Lilly, Utrecht, Netherlands

  5. Gridelli C, de Marinis F, Thomas M, Prabhash K, El Kouri C, Blackhall F, et al. Final efficacy and safety results of pemetrexed continuation maintenance therapy in the elderly from the PARAMOUNT phase III study. J Thorac Oncol. 2014;9(7):991–7.

    Article  CAS  PubMed  Google Scholar 

  6. de Rouw N, Boosman RJ, van de Bruinhorst H, Biesma B, van den Heuvel MM, Burger DM, et al. Cumulative pemetrexed dose increases the risk of nephrotoxicity. Lung Cancer. 2020;146:30–5.

    Article  PubMed  Google Scholar 

  7. de Rouw N, Boosman RJ, Huitema ADR, Hilbrands LB, Svensson EM, Derijks HJ, et al. Rethinking the application of pemetrexed for patients with renal impairment: a pharmacokinetic analysis. Clin Pharmacokinet. 2021;60(5):649–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Visser S, Koolen SLW, de Bruijn P, Belderbos HNA, Cornelissen R, Mathijssen RHJ, et al. Pemetrexed exposure predicts toxicity in advanced non-small-cell lung cancer: a prospective cohort study. Eur J Cancer. 2019;121:64–73.

    Article  CAS  PubMed  Google Scholar 

  9. Latz JE, Chaudhary A, Ghosh A, Johnson RD. Population pharmacokinetic analysis of ten phase II clinical trials of pemetrexed in cancer patients. Cancer Chemother Pharmacol. 2006;57(4):401–11.

    Article  PubMed  Google Scholar 

  10. Paz-Ares LG, de Marinis F, Dediu M, Thomas M, Pujol JL, Bidoli P, et al. PARAMOUNT: final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J Clin Oncol. 2013;31(23):2895–902.

    Article  CAS  PubMed  Google Scholar 

  11. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    Article  CAS  PubMed  Google Scholar 

  13. Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 Study. J Clin Oncol. 2020;38(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  14. Visentin M, Zhao R, Goldman ID. The antifolates. Hematol Oncol Clin N Am. 2012;26(3):629–48, ix.

    Article  Google Scholar 

  15. Fowler B. The folate cycle and disease in humans. Kidney Int Suppl. 2001;78:S221–9.

    Article  CAS  PubMed  Google Scholar 

  16. Zakrzewski SF, Nichol CA. Evidence for a single enzyme reducing folate and dihydrofolate. J Biol Chem. 1960;235:2984–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kisliuk RL. Folate biochemistry in relation to antifolate selectivity. In: Javckman AL, editor. Antifolate drugs in cancer therapy. New York: Humana Press Inc.; 1999.

    Google Scholar 

  18. Zhao R, Qiu A, Tsai E, Jansen M, Akabas MH, Goldman ID. The proton-coupled folate transporter: impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol Pharmacol. 2008;74(3):854–62.

    Article  CAS  PubMed  Google Scholar 

  19. Mendelsohn LG, Shih C, Chen VJ, Habeck LL, Gates SB, Shackelford KA. Enzyme inhibition, polyglutamation, and the effect of LY231514 (MTA) on purine biosynthesis. Semin Oncol. 1999;26(2 Suppl. 6):42–7.

    CAS  PubMed  Google Scholar 

  20. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 1997;57(6):1116–23.

    CAS  PubMed  Google Scholar 

  21. Racanelli AC, Rothbart SB, Heyer CL, Moran RG. Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res. 2009;69(13):5467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bleyer WA. The clinical pharmacology of methotrexate: new applications of an old drug. Cancer. 1978;41(1):36–51.

    Article  CAS  PubMed  Google Scholar 

  23. Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. 2007;6(2):404–17.

    Article  CAS  PubMed  Google Scholar 

  24. Fry DW, Anderson LA, Borst M, Goldman ID. Analysis of the role of membrane transport and polyglutamation of methotrexate in gut and the Ehrlich tumor in vivo as factors in drug sensitivity and selectivity. Cancer Res. 1983;43(3):1087–92.

    CAS  PubMed  Google Scholar 

  25. National Centre for Biotechnology Information. PubChem compound summary for CID 135410875, pemetrexed. https://pubchem.ncbi.nlm.nih.gov/compound/Pemetrexed. Accessed 28 Oct 2021.

  26. Rinaldi DA, Burris HA, Dorr FA, Woodworth JR, Kuhn JG, Eckardt JR, et al. Initial phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modified continual reassessment method for dose escalation. J Clin Oncol. 1995;13(11):2842–50.

    Article  CAS  PubMed  Google Scholar 

  27. Rinaldi DA, Kuhn JG, Burris HA, Dorr FA, Rodriguez G, Eckhardt SG, et al. A phase I evaluation of multitargeted antifolate (MTA, LY231514), administered every 21 days, utilizing the modified continual reassessment method for dose escalation. Cancer Chemother Pharmacol. 1999;44(5):372–80.

    Article  CAS  PubMed  Google Scholar 

  28. Mita AC, Sweeney CJ, Baker SD, Goetz A, Hammond LA, Patnaik A, et al. Phase I and pharmacokinetic study of pemetrexed administered every 3 weeks to advanced cancer patients with normal and impaired renal function. J Clin Oncol. 2006;24(4):552–62.

    Article  CAS  PubMed  Google Scholar 

  29. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, von Pawel J, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004;22(9):1589–97.

    Article  CAS  PubMed  Google Scholar 

  30. Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.

    Article  CAS  PubMed  Google Scholar 

  31. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–44.

    Article  CAS  PubMed  Google Scholar 

  32. Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD. Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol. 2006;57(4):427–35.

    Article  PubMed  Google Scholar 

  33. Latz J, Adachi S, Symanowski J, et al. Correlation of pemetrexed (PEM) NSCLC exposure-response relationships (ERRs) to clinical study results from Western and Japanese patient populations. In: 12th world conference on lung cancer abstract PD4-3-4. J Thorac Oncol. 2007;2(8):s4.

  34. Chen CY, Lin JW, Huang JW, Chen KY, Shih JY, Yu CJ, et al. Estimated creatinine clearance rate is associated with the treatment effectiveness and toxicity of pemetrexed as continuation maintenance therapy for advanced nonsquamous non-small-cell lung cancer. Clin Lung Cancer. 2015;16(6):e131–40.

    Article  CAS  PubMed  Google Scholar 

  35. Boosman RJ, Dorlo TPC, Rouw N, Burgers JA, Dingemans A-MC, Heuvel MM, et al. Toxicity of pemetrexed during renal impairment explained: implications for safe treatment. Int J Cancer. 2021;149(8):1576–84.

    Article  CAS  PubMed  Google Scholar 

  36. Poser RG, Sirotnak FM, Chello PL. Differential synthesis of methotrexate polyglutamates in normal proliferative and neoplastic mouse tissues in vivo. Cancer Res. 1981;41(11 Pt 1):4441–6.

    CAS  PubMed  Google Scholar 

  37. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rusthoven JJ, Eisenhauer E, Butts C, Gregg R, Dancey J, Fisher B, et al. Multitargeted antifolate LY231514 as first-line chemotherapy for patients with advanced non-small-cell lung cancer: a phase II study. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1999;17(4):1194.

    Article  CAS  PubMed  Google Scholar 

  39. Clarke SJ, Abratt R, Goedhals L, Boyer MJ, Millward MJ, Ackland SP. Phase II trial of pemetrexed disodium (ALIMTA, LY231514) in chemotherapy-naive patients with advanced non-small-cell lung cancer. Ann Oncol. 2002;13(5):737–41.

    Article  CAS  PubMed  Google Scholar 

  40. Niyikiza C, Baker SD, Seitz DE, Walling JM, Nelson K, Rusthoven JJ, et al. Homocysteine and methylmalonic acid: markers to predict and avoid toxicity from pemetrexed therapy. Mol Cancer Ther. 2002;1(7):545–52.

    CAS  PubMed  Google Scholar 

  41. Stoller RG, Kaplan HG, Cummings FJ, Calabresi P. A clinical and pharmacological study of high-dose methotrexate with minimal leucovorin rescue. Cancer Res. 1979;39(3):908–12.

    CAS  PubMed  Google Scholar 

  42. Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer. 2004;100(2):228–37.

    Article  PubMed  Google Scholar 

  43. Caggiano V, Weiss RV, Rickert TS, Linde-Zwirble WT. Incidence, cost, and mortality of neutropenia hospitalization associated with chemotherapy. Cancer. 2005;103(9):1916–24.

    Article  PubMed  Google Scholar 

  44. Lyman GH, Michels SL, Reynolds MW, Barron R, Tomic KS, Yu J. Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer. 2010;116(23):5555–63.

    Article  PubMed  Google Scholar 

  45. Visser S, Huisbrink J, van’t Veer NE, van Toor JJ, van Boxem AJM, van Walree NC, et al. Renal impairment during pemetrexed maintenance in patients with advanced nonsmall cell lung cancer: a cohort study. Eur Respir J. 2018;52(4):1800884.

    Article  PubMed  CAS  Google Scholar 

  46. Umehara K, Yama K, Koike N, Takayama S, Wakamoto A, Hatuyama T, et al. Long-term exposure to pemetrexed induces chronic renal dysfunction in patients with advanced and recurrent non-squamous cell lung cancer: a retrospective study. Renal Replace Ther. 2020;6(1):43.

    Article  Google Scholar 

  47. Perazella MA. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol. 2012;7(10):1713–21.

    Article  CAS  PubMed  Google Scholar 

  48. Middleton G, Gridelli C, De Marinis F, Pujol JL, Reck M, Ramlau R, et al. Evaluation of changes in renal function in PARAMOUNT: a phase III study of maintenance pemetrexed plus best supportive care versus placebo plus best supportive care after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. Curr Med Res Opin. 2018;34(5):865–71.

    Article  CAS  PubMed  Google Scholar 

  49. Langer CJ, Paz-Ares LG, Wozniak AJ, Gridelli C, de Marinis F, Pujol JL, et al. Safety analyses of pemetrexed-cisplatin and pemetrexed maintenance therapies in patients with advanced non-squamous NSCLC: retrospective analyses from 2 phase III studies. Clin Lung Cancer. 2017;18(5):489–96.

    Article  CAS  PubMed  Google Scholar 

  50. Paz-Ares L, de Marinis F, Dediu M, Thomas M, Pujol JL, Bidoli P, et al. Maintenance therapy with pemetrexed plus best supportive care versus placebo plus best supportive care after induction therapy with pemetrexed plus cisplatin for advanced non-squamous non-small-cell lung cancer (PARAMOUNT): a double-blind, phase 3, randomised controlled trial. Lancet Oncol. 2012;13(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  51. ASCO. Emetic risk charts. https://www.asco.org/sites/new-www.asco.org/files/content-files/advocacy-and-policy/documents/2020-Emetic-Risk-Charts.pdf. Accessed 28 Oct 2021.

  52. Sonis ST. The pathobiology of mucositis. Nat Rev Cancer. 2004;4(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  53. Pierard-Franchimont C, Lesuisse M, Humbert P, Delvenne P, Pierard GE. Toxic epidermal necrolysis and antifolate drugs in cancer chemotherapy. Curr Drug Saf. 2012;7(5):357–60.

    Article  CAS  PubMed  Google Scholar 

  54. Eichhoff G. Slowly developing toxic epidermal necrolysis-like reaction associated with pemetrexed and carboplatin. Ecancer Med Sci. 2020;14:1010.

    Google Scholar 

  55. Pierard-Franchimont C, Quatresooz P, Reginster MA, Pierard GE. Revisiting cutaneous adverse reactions to pemetrexed. Oncol Lett. 2011;2(5):769–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Guitierrez Garcia-Rodrigo C, Menis D, Sanz-Motilva VHL, Larrain H, Ortiz de Frutos J, Vanaclocha SF. Pemetrexed-related cytotoxic skin reaction. J Am Acad Dermatol. 2015;72(5):AB211.

    Google Scholar 

  57. Eguia B, Ruppert AM, Fillon J, Lavole A, Gounant V, Epaud C, et al. Skin toxicities compromise prolonged pemetrexed treatment. J Thorac Oncol. 2011;6(12):2083–9.

    Article  PubMed  Google Scholar 

  58. Zhang L, Belani CP, Zhang PH, Wang X, Yang L, Orlando M, et al. Dynamic change of fatigue of pemetrexed maintenance treatment in the JMEN trial. Lung Cancer. 2018;115:121–6.

    Article  PubMed  Google Scholar 

  59. Horneber M, Fischer I, Dimeo F, Ruffer JU, Weis J. Cancer-related fatigue: epidemiology, pathogenesis, diagnosis, and treatment. Dtsch Arztebl Int. 2012;109(9):161–71 (quiz 72).

    PubMed  PubMed Central  Google Scholar 

  60. Morgan SL, Baggott JE, Vaughn WH, Young PK, Austin JV, Krumdieck CL, et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 1990;33(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  61. Alati T, Worzalla JF, Shih C, Bewley JR, Lewis S, Moran RG, et al. Augmentation of the therapeutic activity of lometrexol -(6-R)5,10-dideazatetrahydrofolate- by oral folic acid. Cancer Res. 1996;56(10):2331–5.

    CAS  PubMed  Google Scholar 

  62. Roberts JD, Poplin EA, Tombes MB, Kyle B, Spicer DV, Grant S, et al. Weekly iometrexol with daily oral folic acid is appropriate for phase II evaluation. Cancer Chemother Pharmacol. 2000;45(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  63. Worzalla JF, Shih C, Schultz RM. Role of folic acid in modulating the toxicity and efficacy of the multitargeted antifolate, LY231514. Anticancer Res. 1998;18(5A):3235–9.

    CAS  PubMed  Google Scholar 

  64. Zhao R, Gao F, Goldman ID. Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochem Pharmacol. 2001;61(7):857–65.

    Article  CAS  PubMed  Google Scholar 

  65. Fabre I, Fabre G, Goldman ID. Polyglutamylation, an important element in methotrexate cytotoxicity and selectivity in tumor versus murine granulocytic progenitor cells in vitro. Cancer Res. 1984;44(8):3190–5.

    CAS  PubMed  Google Scholar 

  66. Takagi Y, Hosomi Y, Nagamata M, Watanabe K, Takahashi S, Nakahara Y, et al. Phase II study of oral vitamin B12 supplementation as an alternative to intramuscular injection for patients with non-small cell lung cancer undergoing pemetrexed therapy. Cancer Chemother Pharmacol. 2016;77(3):559–64.

    Article  CAS  PubMed  Google Scholar 

  67. Takimoto CH, Hammond-Thelin LA, Latz JE, Forero L, Beeram M, Forouzesh B, et al. Phase I and pharmacokinetic study of pemetrexed with high-dose folic acid supplementation or multivitamin supplementation in patients with locally advanced or metastatic cancer. Clin Cancer Res. 2007;13(9):2675–83.

    Article  CAS  PubMed  Google Scholar 

  68. Latz JE, Schneck KL, Nakagawa K, Miller MA, Takimoto CH. Population pharmacokinetic/pharmacodynamic analyses of pemetrexed and neutropenia: effect of vitamin supplementation and differences between Japanese and Western patients. Clin Cancer Res. 2009;15(1):346–54.

    Article  CAS  PubMed  Google Scholar 

  69. Takagi Y, Hosomi Y, Sunami K, Nakahara Y, Okuma Y, Yomota M, et al. A prospective study of shortened vitamin supplementation prior to cisplatin-pemetrexed therapy for non-small cell lung cancer. Oncologist. 2014;19(11):1194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Singh N, Baldi M, Kaur J, Muthu V, Prasad KT, Behera D, et al. Timing of folic acid/vitamin B12 supplementation and hematologic toxicity during first-line treatment of patients with nonsquamous non-small cell lung cancer using pemetrexed-based chemotherapy: the PEMVITASTART randomized trial. Cancer. 2019;125(13):2203–12.

    Article  CAS  PubMed  Google Scholar 

  71. Schlei Z, Tan W, Faber MG, Chen H, Meagher A, Dy GK. Safety of same-day vitamin B12 supplementation in patients receiving pemetrexed for the treatment of non-small-cell lung cancer or pleural mesothelioma: a retrospective analysis. Clin Lung Cancer. 2018;19(6):467–75.

    Article  CAS  PubMed  Google Scholar 

  72. Sakurada T, Kakiuchi S, Tajima S, Horinouchi Y, Konaka K, Okada N, et al. Pemetrexed-induced rash may be prevented by supplementary corticosteroids. Biol Pharm Bull. 2015;38(11):1752–6.

    Article  CAS  PubMed  Google Scholar 

  73. Elsoueidi R, Lander MJ, Richa EM, Adane ED. Single-dose dexamethasone for the prevention of pemetrexed associated cutaneous adverse reactions. J Oncol Pharm Pract. 2016;22(2):271–4.

    Article  CAS  PubMed  Google Scholar 

  74. Klastersky J, de Naurois J, Rolston K, Rapoport B, Maschmeyer G, Aapro M, et al. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann Oncol. 2016;27(Suppl. 5):v111–8.

    Article  CAS  PubMed  Google Scholar 

  75. Aapro MS, Bohlius J, Cameron DA, Dal Lago L, Donnelly JP, Kearney N, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer. 2011;47(1):8–32.

    Article  CAS  PubMed  Google Scholar 

  76. Ackland SP, Schilsky RL. High-dose methotrexate: a critical reappraisal. J Clin Oncol. 1987;5(12):2017–31.

    Article  CAS  PubMed  Google Scholar 

  77. Chow M, Rubin H. Selective killing of preneoplastic and neoplastic cells by methotrexate with leucovorin. Proc Natl Acad Sci USA. 1998;95(8):4550–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Balis FM, Savitch JL, Bleyer WA, Reaman GH, Poplack DG. Remission induction of meningeal leukemia with high-dose intravenous methotrexate. J Clin Oncol. 1985;3(4):485–9.

    Article  CAS  PubMed  Google Scholar 

  79. Goldman ID, Zhao R. Molecular, biochemical, and cellular pharmacology of pemetrexed. Semin Oncol. 2002;29(6 Suppl. 18):3–17.

    Article  PubMed  Google Scholar 

  80. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J, et al. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem. 1992;35(23):4450–4.

    Article  CAS  PubMed  Google Scholar 

  81. Application number 21-462. Pharmacology review Alimta. Center for Drug Evaluation and Research, August 14, 2003.

  82. Farrugia DC, Aherne GW, Brunton L, Clarke SJ, Jackman AL. Leucovorin rescue from raltitrexed (tomudex)-induced antiproliferative effects: in vitro cell line and in vivo mouse studies. Clin Cancer Res. 2000;6(9):3646–56.

    CAS  PubMed  Google Scholar 

  83. McDonald AC, Vasey PA, Adams L, Walling J, Woodworth JR, Abrahams T, et al. A phase I and pharmacokinetic study of LY231514, the multitargeted antifolate. Clin Cancer Res. 1998;4(3):605–10.

    CAS  PubMed  Google Scholar 

  84. McGuire BW, Sia LL, Haynes JD, Kisicki JC, Gutierrez ML, Stokstad EL. Absorption kinetics of orally administered leucovorin calcium. NCI Monogr. 1987;5:47–56.

    Google Scholar 

  85. OCEBM Levels of Evidence Working Group, “The Oxford Levels of Evidence 2”. Oxford Centre for Evidence-Based Medicine. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence.

  86. Zaharko DS, Fung WP, Yang KH. Relative biochemical aspects of low and high doses of methotrexate in mice. Cancer Res. 1977;37(6):1602–7.

    CAS  PubMed  Google Scholar 

  87. Cohen IJ, Wolff JE. How long can folinic acid rescue be delayed after high-dose methotrexate without toxicity? Pediatr Blood Cancer. 2014;61(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  88. Greiner PO, Zittoun J, Marquet J, Cheron JM. Pharmacokinetics of (-)-folinic acid after oral and intravenous administration of the racemate. Br J Clin Pharmacol. 1989;28(3):289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. de Rouw N, Croes S, Posthuma R, Agterhuis DE, Schoenmaekers JJAO, Derijks HJ, et al. Pharmacokinetically-guided dosing of pemetrexed in a patient with renal impairment and a patient requiring hemodialysis. Lung Cancer. 2019;130(April):156–8.

    Article  PubMed  Google Scholar 

  90. Zhao R, Zhang S, Hanscom M, Chattopadhyay S, Goldman ID. Loss of reduced folate carrier function and folate depletion result in enhanced pemetrexed inhibition of purine synthesis. Clin Cancer Res. 2005;11(3):1294–301.

    CAS  PubMed  Google Scholar 

  91. Ensminger WD, Frei E 3rd. The prevention of methotrexate toxicity by thymidine infusions in humans. Cancer Res. 1977;37(6):1857–63.

    CAS  PubMed  Google Scholar 

  92. van den Bongard HJ, Mathjt RA, Boogerd W, Schornagel JH, Soesan M, Schellens JH, et al. Successful rescue with leucovorin and thymidine in a patient with high-dose methotrexate induced acute renal failure. Cancer Chemother Pharmacol. 2001;47(6):537–40.

    Article  PubMed  Google Scholar 

  93. Castro M. Thymidine rescue: an antidote for pemetrexed-related toxicity in the setting of acute renal failure. J Clin Oncol. 2003;21(21):4066.

    Article  PubMed  Google Scholar 

  94. Food and Drug Adminisration (FDA), Voraxaze drug label. 2012. BTG International, Brentwood, TN, United States of America

  95. Widemann BC, Schwartz S, Jayaprakash N, Christensen R, Pui CH, Chauhan N, et al. Efficacy of glucarpidase (carboxypeptidase g2) in patients with acute kidney injury after high-dose methotrexate therapy. Pharmacotherapy. 2014;34(5):427–39.

    Article  CAS  PubMed  Google Scholar 

  96. Chabner BA, Johns DG, Bertino JR. Enzymatic cleavage of methotrexate provides a method for prevention of drug toxicity. Nature. 1972;239(5372):395–7.

    Article  CAS  PubMed  Google Scholar 

  97. Auton T, Glover J, Melton R, Bastian G, Lovell E. In vitro demonstration that pemetrexed is a good substrate for glucarpidase. Cancer Res. 2007;67(9 Suppl.):4773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki de Rouw.

Ethics declarations

Funding

This research was supported by ZonMw, The Netherlands (Grant number: 848016010).

Conflicts of interest/competing interests

Drs. Nikki de Rouw, Dr. Hieronymus J. Derijks, Prof. Dr. Michel M. van den Heuvel and Dr. Rob ter Heine have nothing to disclose. Dr. Berber Piet reports membership of Advisory Boards of Takeda and Bristol Meyer Squibb and lecturer fees from Astra Zeneca and Pfizer, outside the submitted work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Manuscript writing, editing, and revisions: Drs. Nikki de Rouw, Dr. Berber Piet, Dr. Hieronymus J. Derijks, Prof. Dr. Michel M. van den Heuvel, and Dr. Rob ter Heine. All authors read and approved the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Rouw, N., Piet, B., Derijks, H.J. et al. Mechanisms, Management and Prevention of Pemetrexed-Related Toxicity. Drug Saf 44, 1271–1281 (2021). https://doi.org/10.1007/s40264-021-01135-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-021-01135-2