Skip to main content
Log in

Myasthenia Gravis Treatment: From Old Drugs to Innovative Therapies with a Glimpse into the Future

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Myasthenia gravis (MG) is a rare autoimmune disease that causes debilitating muscle weakness due to impaired neuromuscular transmission. Since most (about 80–90%) MG patients present autoantibodies against the acetylcholine receptor, standard medical therapy consists of symptomatic treatment with acetylcholinesterase inhibitors (e.g., pyridostigmine). In addition, considering the autoimmune basis of MG, standard therapy includes immunomodulating agents, such as corticosteroids, azathioprine, cyclosporine A, and cyclophosphamide. New strategies have been proposed for the treatment of MG and include complement blockade (i.e., eculizumab, ravulizumab, and zilucoplan) and neonatal Fc receptor antagonism (i.e., efgartigimod and rozanolixizumab). The aim of this review is to provide a detailed overview of the pre- and post-marketing evidence on the five pharmacological treatments most recently approved for the treatment of MG, by identifying both preclinical and clinical studies registered in clinicaltrials.gov. A description of the molecules currently under evaluation for the treatment of MG is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population-based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10:46. https://doi.org/10.1186/1471-2377-10-46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57(2):172–84. https://doi.org/10.1002/mus.25973.

    Article  PubMed  Google Scholar 

  3. Gilhus NE. Myasthenia gravis. N Engl J Med. 2016;375(26):2570–81. https://doi.org/10.1056/NEJMra1602678.

    Article  CAS  PubMed  Google Scholar 

  4. Huijbers MG, Lipka AF, Plomp JJ, et al. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis. J Intern Med. 2014;275(1):12–26. https://doi.org/10.1111/joim.12163.

    Article  CAS  PubMed  Google Scholar 

  5. Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263(4):826–34. https://doi.org/10.1007/s00415-015-7963-5.

    Article  CAS  PubMed  Google Scholar 

  6. Lazaridis K, Tzartos SJ. Myasthenia gravis: autoantibody specificities and their role in MG management. Front Neurol. 2020;11: 596981. https://doi.org/10.3389/fneur.2020.596981.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghazanfari N, Fernandez KJ, Murata Y, et al. Muscle specific kinase: organizer of synaptic membrane domains. Int J Biochem Cell Biol. 2011;43(3):295–8. https://doi.org/10.1016/j.biocel.2010.10.008.

    Article  CAS  PubMed  Google Scholar 

  8. McConville J, Farrugia ME, Beeson D, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol. 2004;55(4):580–4. https://doi.org/10.1002/ana.20061.

    Article  CAS  PubMed  Google Scholar 

  9. Rodríguez Cruz PM, Al-Hajjar M, Huda S, et al. Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol. 2015;72(6):642–9. https://doi.org/10.1001/jamaneurol.2015.0203.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cron MA, Maillard S, Villegas J, et al. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci. 2018;1412(1):137–45. https://doi.org/10.1111/nyas.13519.

    Article  CAS  PubMed  Google Scholar 

  11. Cavalcante P, Le Panse R, Berrih-Aknin S, et al. The thymus in myasthenia gravis: site of “innate autoimmunity”? Muscle Nerve. 2011;44(4):467–84. https://doi.org/10.1002/mus.22103.

    Article  PubMed  Google Scholar 

  12. Willcox N, Leite MI, Kadota Y, et al. Autoimmunizing mechanisms in thymoma and thymus. Ann N Y Acad Sci. 2008;1132:163–73. https://doi.org/10.1196/annals.1405.021.

    Article  CAS  PubMed  Google Scholar 

  13. Witthayaweerasak J, Rattanalert N, Aui-Aree N. Prognostic factors for conversion to generalization in ocular myasthenia gravis. Medicine (Baltimore). 2021;100(19): e25899. https://doi.org/10.1097/MD.0000000000025899.

    Article  PubMed  Google Scholar 

  14. Monsul NT, Patwa HS, Knorr AM, Lesser RL, Goldstein JM. The effect of prednisone on the progression from ocular to generalized myasthenia gravis. J Neurol Sci. 2004;217(2):131–3. https://doi.org/10.1016/j.jns.2003.08.017.

    Article  CAS  PubMed  Google Scholar 

  15. Benatar M. A systematic review of diagnostic studies in myasthenia gravis. Neuromuscul Disord. 2006;16(7):459–67. https://doi.org/10.1016/j.nmd.2006.05.006.

    Article  PubMed  Google Scholar 

  16. Estephan EP, Baima JPS, Zambon AA. Myasthenia gravis in clinical practice. Arq Neuro-Psiquiatr. 2022;80(5 Suppl 1):257–65. https://doi.org/10.1590/0004-282X-ANP-2022-S105.

    Article  Google Scholar 

  17. Melzer N, Ruck T, Fuhr P, et al. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the Guidelines of the German Neurological Society. J Neurol. 2015;262(7):1479–94. https://doi.org/10.1007/s00415-015-7753-z.

    Article  Google Scholar 

  18. Tanovska N, Novotni G, Sazdova-Burneska S, et al. Myasthenia gravis and associated diseases. Open Access Maced J Med Sci. 2018;6(3):472–8. https://doi.org/10.3889/oamjms.2018.110.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mantegazza R, Antozzi C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther Adv Neurol Disord. 2018;11:1756285617749134. https://doi.org/10.1177/1756285617749134.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29(12):608–15. https://doi.org/10.1016/j.it.2008.08.004.

    Article  CAS  PubMed  Google Scholar 

  21. Alabdali M, Barnett C, Katzberg H, Breiner A, Bril V. Intravenous immunoglobulin as treatment for myasthenia gravis: current evidence and outcomes. Expert Rev Clin Immunol. 2014;10(12):1659–65. https://doi.org/10.1586/1744666X.2014.971757.

    Article  CAS  PubMed  Google Scholar 

  22. Alcantara M, Sarpong E, Barnett C, Katzberg H, Bril V. Chronic immunoglobulin maintenance therapy in myasthenia gravis. Eur J Neurol. 2021;28(2):639–46. https://doi.org/10.1111/ene.14547.

    Article  CAS  PubMed  Google Scholar 

  23. Gajdos P, Chevret S, Toyka KV. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev. 2012;12(12):CD002277. https://doi.org/10.1002/14651858.CD002277.pub4.

    Article  PubMed  Google Scholar 

  24. Qureshi AI, Suri MF. Plasma exchange for treatment of myasthenia gravis: pathophysiologic basis and clinical experience. Ther Apher. 2000;4:280–6.

    Article  CAS  PubMed  Google Scholar 

  25. Guptill JT, Juel VC, Massey JM, Anderson AC, Chopra M, Yi JS, Esfandiari E, Buchanan T, Smith B, Atherfold P, et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity. 2016;49:472–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yeh JH, Wang SH, Chien PJ, Shih CM, Chiu HC. Changes in serum cytokine levels during plasmapheresis in patients with myasthenia gravis. Eur J Neurol. 2009;16:1318–22.

    Article  PubMed  Google Scholar 

  27. Menon D, Barnett C, Bril V. Novel treatments in myasthenia gravis. Front Neurol. 2020;11:538. https://doi.org/10.3389/fneur.2020.00538.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baggi F, Antozzi C, Toscani C, Cordiglieri C. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades? Arch Immunol Ther Exp (Warsz). 2012;60(1):19–30. https://doi.org/10.1007/s00005-011-0158-6.

    Article  CAS  PubMed  Google Scholar 

  29. Simpson JA. Myasthenia gravis–validation of a hypothesis. Scott Med J. 1977;22(3):201–10. https://doi.org/10.1177/003693307702200305.

    Article  CAS  PubMed  Google Scholar 

  30. Nastuk WL, Plescia OJ, Osserman KE. Changes in serum complement activity in patients with myasthenia gravis. Proc Soc Exp Biol Med. 1960;105:177–84. https://doi.org/10.3181/00379727-105-26050.

    Article  CAS  PubMed  Google Scholar 

  31. Losen M, Martinez-Martinez P, Molenaar PC, et al. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors–Recommendations for methods and experimental designs. Exp Neurol. 2015;270:18–28. https://doi.org/10.1016/j.expneurol.2015.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tuzun E, Berrih-Aknin S, Brenner T, et al. Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization. Exp Neurol. 2015;270:11–7. https://doi.org/10.1016/j.expneurol.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  33. Christadoss P, Poussin M, Deng C. Animal models of myasthenia gravis. Clin Immunol. 2000;94(2):75–87. https://doi.org/10.1006/clim.1999.4807.

    Article  CAS  PubMed  Google Scholar 

  34. Ulusoy C, Çavuş F, Yılmaz V, Tüzün E. Immunization with recombinantly expressed LRP4 induces experimental autoimmune myasthenia gravis in C57BL/6 mice. Immunol Invest. 2017;46(5):490–9. https://doi.org/10.1080/08820139.2017.1299754.

    Article  CAS  PubMed  Google Scholar 

  35. Huda R, Tüzün E, Christadoss P. Complement C2 siRNA mediated therapy of myasthenia gravis in mice. J Autoimmun. 2013;42:94–104. https://doi.org/10.1016/j.jaut.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  36. Mori S, Kubo S, Akiyoshi T, et al. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Am J Pathol. 2012;180(2):798–810. https://doi.org/10.1016/j.ajpath.2011.10.031.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Qi H, Tüzün E, et al. Mannose-binding lectin pathway is not involved in myasthenia gravis pathogenesis. J Neuroimmunol. 2009;208(1–2):40–5. https://doi.org/10.1016/j.jneuroim.2008.12.013.

    Article  CAS  PubMed  Google Scholar 

  38. Christadoss P. C5 gene influences the development of murine myasthenia gravis. J Immunol. 1988;140(8):2589–92.

    Article  CAS  PubMed  Google Scholar 

  39. Lennon VA, Lambert EH. Monoclonal autoantibodies to acetylcholine receptors: evidence for a dominant idiotype and requirement of complement for pathogenicity. Ann N Y Acad Sci. 1981;377:77–96. https://doi.org/10.1111/j.1749-6632.1981.tb33725.x.

    Article  CAS  PubMed  Google Scholar 

  40. Sahashi K, Engel AG, Linstrom JM, Lambert EH, Lennon VA. Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. J Neuropathol Exp Neurol. 1978;37(2):212–23. https://doi.org/10.1097/00005072-197803000-00008.

    Article  CAS  PubMed  Google Scholar 

  41. Morgan BP. Regulation of the complement membrane attack pathway. Crit Rev Immunol. 1999;19(3):173–98.

    Article  CAS  PubMed  Google Scholar 

  42. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–64. https://doi.org/10.1038/nbt1344.

    Article  CAS  PubMed  Google Scholar 

  43. Thomas TC, Rollins SA, Rother RP, et al. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol Immunol. 1996;33(17–18):1389–401. https://doi.org/10.1016/s0161-5890(96)00078-8.

    Article  CAS  PubMed  Google Scholar 

  44. Martin PL, Bugelski PJ. Concordance of preclinical and clinical pharmacology and toxicology of monoclonal antibodies and fusion proteins: soluble targets. Br J Pharmacol. 2012;166(3):806–22. https://doi.org/10.1111/j.1476-5381.2011.01812.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soltys J, Kusner LL, Young A, et al. Novel complement inhibitor limits severity of experimentally induced myasthenia gravis. Ann Neurol. 2009;65(1):67–75. https://doi.org/10.1002/ana.21536.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou Y, Gong B, Lin F, Rother RP, Medof ME, Kaminski HJ. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol. 2007;179(12):8562–7. https://doi.org/10.4049/jimmunol.179.12.8562.

    Article  CAS  PubMed  Google Scholar 

  47. Dhillon S. Eculizumab: a review in generalized myasthenia gravis. Drugs. 2018;78(3):367–76. https://doi.org/10.1007/s40265-018-0875-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Food and Drug Administration. FDA Background Package For Meeting of Drug Safety and Risk Management Advisory Committee (DSaRM) - Soliris (eculizumab). 2014. https://wayback.archive-it.org/7993/20170405213759/https:/www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DrugSafetyandRiskManagementAdvisoryCommittee/UCM423030.pdf. Accessed 27 Nov 2023.

  49. Howard Jr JF, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalized myasthenia gravis (REGAIN): a phase 3, randomized, double-blind, placebo-controlled, multicenter study [published correction appears in Lancet Neurol. 2017 Dec;16(12):954]. Lancet Neurol. 2017;16(12):976–986. https://doi.org/10.1016/S1474-4422(17)30369-1.

  50. Muppidi S, Utsugisawa K, Benatar M, et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. 2019;60(1):14–24. https://doi.org/10.1002/mus.26447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Katyal N, Narula N, Govindarajan R. Clinical experience with eculizumab in treatment-refractory acetylcholine receptor antibody-positive generalized myasthenia gravis. J Neuromuscul Dis. 2021;8(2):287–94. https://doi.org/10.3233/JND-200584.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Murai H, Suzuki S, Hasebe M, Fukamizu Y, Rodrigues E, Utsugisawa K. Safety and effectiveness of eculizumab in Japanese patients with generalized myasthenia gravis: interim analysis of post-marketing surveillance. Ther Adv Neurol Disord. 2021;14:17562864211001996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nelke C, Schroeter CB, Stascheit F, et al. Eculizumab versus rituximab in generalised myasthenia gravis. J Neurol Neurosurg Psychiatry. 2022;93(5):548–54. https://doi.org/10.1136/jnnp-2021-328665.

    Article  PubMed  Google Scholar 

  54. Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood. 2019;133(6):530–539. https://doi.org/10.1182/blood-2018-09-876136.

  55. Sheridan D, Yu ZX, Zhang Y, et al. Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action. PLoS ONE. 2018;13(4): e0195909. https://doi.org/10.1371/journal.pone.0195909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. FDA. Summary of Product Characteristics of Ultomiris. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761108s023lbl.pdf.

  57. McKeage K. Ravulizumab: first global approval. Drugs. 2019;79(3):347–52. https://doi.org/10.1007/s40265-019-01068-2.

    Article  CAS  PubMed  Google Scholar 

  58. Vu T, Meisel A, Mantegazza R, et al. Summary of research: terminal complement inhibitor ravulizumab in generalized myasthenia gravis. Neurol Ther Adv Online Publ. 2023. https://doi.org/10.1007/s40120-023-00514-4.

    Article  Google Scholar 

  59. Meisel A, Annane D, Vu T, et al. Long-term efficacy and safety of ravulizumab in adults with anti-acetylcholine receptor antibody-positive generalized myasthenia gravis: results from the phase 3 CHAMPION MG open-label extension. J Neurol. 2023;270(8):3862–75. https://doi.org/10.1007/s00415-023-11699-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heo YA. Efgartigimod: first approval [published correction appears in Drugs. 2022 Apr;82(5):611]. Drugs. 2022;82(3):341–348. https://doi.org/10.1007/s40265-022-01678-3.

  61. Liu L, Garcia AM, Santoro H, et al. Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol. 2007;178(8):5390–8. https://doi.org/10.4049/jimmunol.178.8.5390.

    Article  CAS  PubMed  Google Scholar 

  62. Dos Santos JBR, Gomes RM, da Silva MRR. Abdeg technology for the treatment of myasthenia gravis: efgartigimod drug experience. Expert Rev Clin Immunol. 2022;18(9):879–88. https://doi.org/10.1080/1744666X.2022.2106972.

    Article  PubMed  Google Scholar 

  63. Smith B, Kiessling A, Lledo-Garcia R, et al. Generation and characterization of a high affinity anti-human FcRn antibody, rozanolixizumab, and the effects of different molecular formats on the reduction of plasma IgG concentration. mAbs. 2018;10(7):1111–1130. https://doi.org/10.1080/19420862.2018.1505464.

  64. Ulrichts P, Guglietta A, Dreier T, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018;128(10):4372–86. https://doi.org/10.1172/JCI97911.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nixon AE, Chen J, Sexton DJ, et al. Fully human monoclonal antibody inhibitors of the neonatal fc receptor reduce circulating IgG in non-human primates. Front Immunol. 2015;6:176. https://doi.org/10.3389/fimmu.2015.00176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huijbers MG, Plomp JJ, van Es IE, et al. Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis. Exp Neurol. 2019;317:133–43. https://doi.org/10.1016/j.expneurol.2019.03.001.

    Article  CAS  PubMed  Google Scholar 

  67. Howard JF Jr, Bril V, Vu T, et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526–36. https://doi.org/10.1016/S1474-4422(21)00159-9.

    Article  CAS  PubMed  Google Scholar 

  68. Katyal N, Halldorsdottir K, Govindarajan R, et al. Safety and outcomes with efgartigimod use for acetylcholine receptor-positive generalized myasthenia gravis in clinical practice. Muscle Nerve. 2023;68(5):762–6. https://doi.org/10.1002/mus.27974.

    Article  CAS  PubMed  Google Scholar 

  69. Finney HM, Griffiths Lawson AD, Graham Shaw S, Smith BJ, Tyson KL, Kevorkian L. Anti-FcRn Antibodies. 2014. https://patentimages.storage.googleapis.com/65/a7/0b/ffa1fbbe15794b/WO2014019727A1.pdf.

  70. Lledo-Garcia R, Dixon K, Shock A, Oliver R. Pharmacokinetic-pharmacodynamic modelling of the anti-FcRn monoclonal antibody rozanolixizumab: translation from preclinical stages to the clinic. CPT Pharmacometr Syst Pharmacol. 2022;11(1):116–28. https://doi.org/10.1002/psp4.12739.

    Article  CAS  Google Scholar 

  71. Bril V, Drużdż A, Grosskreutz J, et al. Safety and efficacy of rozanolixizumab in patients with generalized myasthenia gravis (MycarinG): a randomized, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurol. 2023;22(5):383–94. https://doi.org/10.1016/S1474-4422(23)00077-7.

    Article  CAS  PubMed  Google Scholar 

  72. Tang GQ, Tang Y, Dhamnaskar K, et al. Corrigendum: Zilucoplan, a macrocyclic peptide inhibitor of human complement component 5, uses a dual mode of action to prevent terminal complement pathway activation. Front Immunol. 2023;14:1282155. https://doi.org/10.3389/fimmu.2023.1282155.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ricardo A, Arata M, DeMarco S, et al. Preclinical evaluation of RA101495, a potent cyclic peptide inhibitor of C5 for the treatment of paroxysmal nocturnal hemoglobinuria [abstract]. Blood. 2015;126:939. https://doi.org/10.1182/blood.V126.23.939.939.

    Article  Google Scholar 

  74. Julien S, Vadysirisack D, Sayegh C, et al. Prevention of anti-HMGCR immune-mediated necrotising myopathy by C5 complement inhibition in a humanised mouse model. Biomedicines. 2022;10(8):2036. https://doi.org/10.3390/biomedicines10082036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mantegazza R, Vanoli F, Frangiamore R, Cavalcante P. Complement inhibition for the treatment of myasthenia gravis. ImmunoTarg Ther. 2020;9:317–31. https://doi.org/10.2147/ITT.S261414.

    Article  CAS  Google Scholar 

  76. Howard JF Jr, Bresch S, Genge A, et al. Safety and efficacy of zilucoplan in patients with generalized myasthenia gravis (RAISE): a randomized, double-blind, placebo-controlled, phase 3 study. Lancet Neurol. 2023;22(5):395–406. https://doi.org/10.1016/S1474-4422(23)00080-7.

    Article  CAS  PubMed  Google Scholar 

  77. Zhu LN, Hou HM, Wang S, et al. FcRn inhibitors: a novel option for the treatment of myasthenia gravis. Neural Regen Res. 2023;18(8):1637–44. https://doi.org/10.4103/1673-5374.363824.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Granit V, Benatar M, Kurtoglu M, et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 2023;22(7):578–90. https://doi.org/10.1016/S1474-4422(23)00194-1.

    Article  CAS  PubMed  Google Scholar 

  79. Oh S, Mao X, Manfredo-Vieira S, et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol. 2023;41(9):1229–38. https://doi.org/10.1038/s41587-022-01637-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang EJ, Wu MH, Wang TJ, Huang TJ, Li YR, Lee CY. Myasthenia gravis: novel findings and perspectives on traditional to regenerative therapeutic interventions. Aging Dis. 2023;14(4):1070–92. https://doi.org/10.14336/AD.2022.1215.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kusner LL, Yucius K, Sengupta M, et al. Investigational RNAi therapeutic targeting C5 is efficacious in pre-clinical models of myasthenia gravis. Mol Ther Methods Clin Dev. 2019;13:484–92. https://doi.org/10.1016/j.omtm.2019.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zimmermann TS, Karsten V, Chan A, et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther. 2017;25(1):71–8. https://doi.org/10.1016/j.ymthe.2016.10.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang J, Jia G, Liu Q, et al. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis. Immunology. 2015;144(1):56–67. https://doi.org/10.1111/imm.12347.

    Article  CAS  PubMed  Google Scholar 

  84. Angelini C, Martignago S, Bisciglia M. New treatments for myasthenia: a focus on antisense oligonucleotides. Drug Des Devel Ther. 2013;7:13–7. https://doi.org/10.2147/DDDT.S25716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sossa Melo CL, Peña AM, Salazar LA, et al. Autologous hematopoietic stem cell transplantation in a patient with refractory seropositive myasthenia gravis: a case report. Neuromuscul Disord. 2019;29(2):142–5. https://doi.org/10.1016/j.nmd.2018.11.008.

    Article  PubMed  Google Scholar 

  86. Bryant A, Atkins H, Pringle CE, et al. Myasthenia gravis treated with autologous hematopoietic stem cell transplantation. JAMA Neurol. 2016;73(6):652–8. https://doi.org/10.1001/jamaneurol.2016.0113.

    Article  PubMed  Google Scholar 

  87. Jaretzki A, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23. https://doi.org/10.1212/wnl.55.1.16.

    Article  PubMed  Google Scholar 

  88. Wolfe GI, Herbelin L, Nations SP, Foster B, Bryan WW, Barohn RJ. Myasthenia gravis activities of daily living profile. Neurology. 1999;52(7):1487–9. https://doi.org/10.1212/wnl.52.7.1487.

    Article  CAS  PubMed  Google Scholar 

  89. Barohn RJ, McIntire D, Herbelin L, Wolfe GI, Nations S, Bryan WW. Reliability testing of the quantitative myasthenia gravis score. Ann N Y Acad Sci. 1998;841:769–72. https://doi.org/10.1111/j.1749-6632.1998.tb11015.x.

    Article  CAS  PubMed  Google Scholar 

  90. Sadjadi R, Conaway M, Cutter G, Sanders DB, Burns TM; MG Composite MG-QOL15 Study Group. Psychometric evaluation of the myasthenia gravis composite using Rasch analysis. Muscle Nerve. 2012;45(6):820–825. https://doi.org/10.1002/mus.23260.

  91. Burns TM, Sadjadi R, Utsugisawa K, et al. International clinimetric evaluation of the MG-QOL15, resulting in slight revision and subsequent validation of the MG-QOL15r. Muscle Nerve. 2016;54(6):1015–22. https://doi.org/10.1002/mus.

    Article  PubMed  Google Scholar 

  92. Kiessling P, Lledo-Garcia R, Watanabe S, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study [published correction appears in Sci Transl Med. 2017 Dec 6;9(419):]. Sci Transl Med. 2017;9(414):eaan1208. https://doi.org/10.1126/scitranslmed.aan1208.

  93. Brandsema JF, Ginsberg M, Hoshino H, et al. A phase 3, open-label, multicenter study to evaluate eculizumab in adolescents with refractory myasthenia gravis. [abstract]. 2023 AAN Annual Meeting. https://www.ean.org/research/resources/neurology-updates/detail/eculizumab-efficacy-in-adolescents-with-myasthenia-gravis.

  94. Howard JF Jr, Barohn RJ, Cutter GR, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve. 2013;48(1):76–84. https://doi.org/10.1002/mus.23839.

    Article  CAS  PubMed  Google Scholar 

  95. Bril V, Benatar M, Andersen H, et al. Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia gravis: a phase 2 randomized control trial. Neurology. 2021;96(6):e853–65. https://doi.org/10.1212/WNL.0000000000011108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Howard JF Jr, Nowak RJ, Wolfe GI, et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol. 2020;77(5):582–92. https://doi.org/10.1001/jamaneurol.2019.5125.

    Article  PubMed  Google Scholar 

  97. Yan C, Duan RS, Yang H, et al. Therapeutic effects of batoclimab in chinese patients with generalized myasthenia gravis: a double-blinded, randomized, placebo-controlled phase II study. Neurol Ther. 2022;11(2):815–34. https://doi.org/10.1007/s40120-022-00345-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Trifirò.

Ethics declarations

Funding

This article received no external funding.

Competing interests

GT has served in the last 3 years on advisory boards/seminars funded by Sanofi, Eli Lilly, AstraZeneca, Abbvie, Novo Nordisk, Gilead, and Amgen; he is also a scientific coordinator of the academic spin-off “INSPIRE srl”, which has received funding for conducting observational studies from several pharmaceutical companies. None of these listed activities is related to the topic of the article. SC, BB, EB, MC, PM, and ADL have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

SC: literature search, writing, draft revision; BB: literature search, writing, draft revision; MC: literature search, writing, draft revision; EB: literature search, writing, draft revision; PM: literature search, writing, draft revision; GT: conceptualization, draft revision; ADL: conceptualization, draft revision. All authors have read and approved the final submitted manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisafulli, S., Boccanegra, B., Carollo, M. et al. Myasthenia Gravis Treatment: From Old Drugs to Innovative Therapies with a Glimpse into the Future. CNS Drugs 38, 15–32 (2024). https://doi.org/10.1007/s40263-023-01059-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-01059-8

Navigation