Skip to main content
Log in

The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The nociceptin opioid peptide (NOP) receptor and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are the fourth members of the opioid receptor and opioid peptide families. Although they have considerable sequence homology to the other family members, they are not considered opioid per se because they do not have pharmacological profiles similar to the other family members. The number of NOP receptors in the brain is higher than the other family members, and NOP receptors can be found throughout the brain. Because of the widespread distribution of NOP receptors, N/OFQ and other peptide and small molecule agonists and antagonists have extensive CNS activities. Originally thought to be anti-opioid, NOP receptor agonists block some opioid activities, potentiate others, and modulate other activities not affected by traditional opiates. Because the effect of receptor activation can be dependent upon site of administration, state of the animal, and other variables, the study of NOP receptors has been fraught with contradictions and inconsistencies. In this article, the actions and controversies pertaining to NOP receptor activation and inhibition are discussed with respect to CNS disorders including pain (acute, chronic, and migraine), drug abuse, anxiety and depression. In addition, progress towards clinical use of NOP receptor-directed compounds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC. ORL1, a novel member of the opioid receptor family Cloning, functional expression and localization. FEBS Lett. 1994;341(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett. 1994;347(2–3):284–8.

    Article  CAS  PubMed  Google Scholar 

  3. Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger BA, Eppler CM, Uhl GR. cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett. 1994;348(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  4. Pan YX, Cheng J, Xu J, Rossi G, Jacobson E, Ryan-Moro J, Brooks AI, Dean GE, Standifer KM, Pasternak GW. Cloning and functional characterization through antisense mapping of a k3-related opioid receptor. Mol Pharmacol. 1995;47:1180–8.

    CAS  PubMed  Google Scholar 

  5. Fukuda K, Kato S, Mori K, Nishi M, Takeshima H, Iwabe N, Miyata T, Houtani T, Sugimoto T. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett. 1994;343(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  6. Lachowicz JE, Shen Y, Monsma FJ Jr, Sibley DR. Molecular cloning of a novel G protein-coupled receptor related to the opiate receptor family. J Neurochem. 1995;64(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  7. Cox BM, Christie MJ, Devi L, Toll L, Traynor JR. Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br J Pharmacol. 2015;172(2):317–23.

    Article  CAS  PubMed  Google Scholar 

  8. Toll L, Bruchas MR, Calo G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev. 2016;68(2):419–57.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thompson AA, Liu W, Chun E, Katritch V, Wu H, et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature. 2012;485(7398):395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012;485(7398):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature. 2012;485(7398):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu H, Wacker D, Mileni M, Katritch V, Han GW, et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature. 2012;485(7398):327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377(6549):532–5.

    Article  CAS  PubMed  Google Scholar 

  14. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995;270(5237):792–4.

    Article  CAS  PubMed  Google Scholar 

  15. Gintzler AR, Adapa ID, Toll L, Medina VM, Wang L. Modulation of enkephalin release by nociceptin (orphanin FQ). Eur J Pharmacol. 1997;325(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  16. Mollereau C, Simons MJ, Soularue P, Liners F, Vassart G, Meunier JC, Parmentier M. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci USA. 1996;93(16):8666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neal CR Jr., Akil H, Watson SJ Jr. Expression of orphanin FQ and the opioid receptor-like (ORL1) receptor in the developing human and rat brain. J Chem Neuroanat. 2001;22(4):219–49.

  18. Neal CR Jr., Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol. 1999. 406(4):503–47.

  19. Bridge KE, Wainwright A, Reilly K, Oliver KR. Autoradiographic localization of (125)i[Tyr(14)] nociceptin/orphanin FQ binding sites in macaque primate CNS. Neuroscience. 2003;118(2):513–23.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Sommer C. Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: implications on pain processing. J Peripher Nerv Syst. 2006;11(3):232–40.

    Article  CAS  PubMed  Google Scholar 

  21. Hou M, Uddman R, Tajti J, Edvinsson L. Nociceptin immunoreactivity and receptor mRNA in the human trigeminal ganglion. Brain Res. 2003;964(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  22. Fu X, Wang YQ, Wang J, Yu J, Wu GC. Changes in expression of nociceptin/orphanin FQ and its receptor in spinal dorsal horn during electroacupuncture treatment for peripheral inflammatory pain in rats. Peptides. 2007;28(6):1220–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ozawa A, Brunori G, Mercatelli D, Wu J, Cippitelli A, et al. Knock-In Mice with NOP-eGFP receptors identify receptor cellular and regional localization. J Neurosci. 2015;35(33):11682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ozawa A, Brunori G, Cippitelli A, Toll N, Schoch J, Kieffer BL, Toll L. Dissecting the spinal NOP receptor distribution under a chronic pain model using NOP-eGFP knock-in mice. Br J Pharmacol. 2018;175(13):2622–75.

    Article  Google Scholar 

  25. Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, et al. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci USA. 2000;97(9):4938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adapa ID, Toll L. Relationship between binding affinity and functional activity of nociceptin/orphanin FQ. Neuropeptides. 1997;31(5):403–8.

    Article  CAS  PubMed  Google Scholar 

  27. Driscoll JR, Wallace TL, Mansourian KA, Martin WJ, Margolis EB. Differential Modulation of Ventral Tegmental Area Circuits by the Nociceptin/Orphanin FQ System.eNeuro 3 August 2020, 7(5):ENEURO.0376-19.2020.

  28. Vanderah TW, Raffa RB, Lashbrook J, Burritt A, Hruby V, Porreca F. Orphanin-FQ/nociceptin: lack of anti nociceptive, hyperalgesic or allodynic effects in acute thermal or mechanical tests following intracerebroventricular or intrathecal administration to mice or rats. Eur J Pain. 1998;2(3):267–78.

    Article  CAS  PubMed  Google Scholar 

  29. Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK, Grandy DK. Orphanin FQ is a functional anti-opioid peptide. Neuroscience. 1996;75(2):333–7.

    Article  CAS  PubMed  Google Scholar 

  30. Mogil JS, Grisel JE, Zhangs G, Belknap JK, Grandy DK. Functional antagonism of mu-, delta- and kappa-opioid antinociception by orphanin FQ. Neurosci Lett. 1996;214:131–4.

    Article  CAS  PubMed  Google Scholar 

  31. Grisel JE, Mogil JS, Belknap JK, Grandy DK. Orphanin FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. NeuroReport. 1996;7(13):2125–9.

    Article  CAS  PubMed  Google Scholar 

  32. Tian JH, Xu W, Fang Y, Mogil JS, Grisel JE, Grandy DK, Han JS. Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia: antagonism in brain and potentiation in spinal cord of the rat. Br J Pharmacol. 1997;120(4):676–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu XJ, Hao JX, Wiesenfeld-Hallin Z. Nociceptin or antinociceptin: potent spinal antinociceptive effect of orphanin FQ/nociceptin in the rat. NeuroReport. 1996;7(13):2092–4.

    CAS  PubMed  Google Scholar 

  34. Calo G, Rizzi A, Rizzi D, Bigoni R, Guerrini R, et al. [Nphe1, Arg14, Lys15]nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol. 2002;136(2):303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawamoto H, Ozaki S, Itoh Y, Miyaji M, Arai S, Nakashima H, Kato T, Ohta H, Iwasawa Y. Discovery of the first potent and selective small molecule opioid receptor-like (ORL1) antagonist: 1-[(3R,4R)-1-cyclooctylmethyl-3- hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-2H-benzimidazol-2-one (J-113397). J Med Chem. 1999;42(25):5061–3.

    Article  CAS  PubMed  Google Scholar 

  36. Ozaki S, Kawamoto H, Itoh Y, Miyaji M, Azuma T, et al. In vitro and in vivo pharmacological characterization of J-113397, a potent and selective non-peptidyl ORL1 receptor antagonist. Eur J Pharmacol. 2000;402(1–2):45–53.

    Article  CAS  PubMed  Google Scholar 

  37. Rizzi A, Gavioli EC, Marzola G, Spagnolo B, Zucchini S, Ciccocioppo R, Trapella C, Regoli D, Calo G. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrah ydro-5H-benzocyclohepten-5-ol]: in vivo studies. J Pharmacol Exp Ther. 2007;321(3):968–74.

    Article  CAS  PubMed  Google Scholar 

  38. Zaratin PF, Petrone G, Sbacchi M, Garnier M, Fossati C, Petrillo P, Ronzoni S, Giardina GA, Scheideler MA. Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9- tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). J Pharmacol Exp Ther. 2004;308(2):454–61.

    Article  CAS  PubMed  Google Scholar 

  39. Yamada H, Nakamoto H, Suzuki Y, Ito T, Aisaka K. Pharmacological profiles of a novel opioid receptor-like1 (ORL(1)) receptor antagonist, JTC-801. Br J Pharmacol. 2002;135(2):323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mabuchi T, Matsumura S, Okuda-Ashitaka E, Kitano T, Kojima H, Nagano T, Minami T, Ito S. Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production. Eur J Neurosci. 2003;17(7):1384–92.

    Article  PubMed  Google Scholar 

  41. Dautzenberg FM, Wichmann J, Higelin J, Py-Lang G, Kratzeisen C, Malherbe P, Kilpatrick GJ, Jenck F. Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64–6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J Pharmacol Exp Ther. 2001;298(2):812–9.

    CAS  PubMed  Google Scholar 

  42. Byford AJ, Anderson A, Jones PS, Palin R, Houghton AK. The hypnotic, electroencephalographic, and antinociceptive properties of nonpeptide ORL1 receptor agonists after intravenous injection in rodents. Anesth Analg. 2007;104(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  43. Rizzi A, Cerlesi MC, Ruzza C, Malfacini D, Ferrari F, et al. Pharmacological characterization of cebranopadol a novel analgesic acting as mixed nociceptin/orphanin FQ and opioid receptor agonist. Pharmacol Res Perspect. 2016;4(4):e00247.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Neal CR Jr., Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ Jr. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol. 1999;412(4):563–605.

  45. Florin S, Meunier J, Costentin J. Autoradiographic localization of [3H]nociceptin binding sites in the rat brain. Brain Res. 2000;880(1–2):11–6.

    Article  CAS  PubMed  Google Scholar 

  46. Pan Z, Hirakawa N, Fields HL. A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron. 2000;26(2):515–22.

    Article  CAS  PubMed  Google Scholar 

  47. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–91.

    Article  CAS  PubMed  Google Scholar 

  48. Fang FG, Haws CM, Drasner K, Williamson A, Fields HL. Opioid peptides (DAGO-enkephalin, dynorphin A(1–13), BAM 22P) microinjected into the rat brainstem: comparison of their antinociceptive effect and their effect on neuronal firing in the rostral ventromedial medulla. Brain Res. 1989;501(1):116–28.

    Article  CAS  PubMed  Google Scholar 

  49. Pan ZZ, Tershner SA, Fields HL. Cellular mechanism for anti-analgesic action of agonists of the kappa-opioid receptor. Nature. 1997;389(6649):382–5.

    Article  CAS  PubMed  Google Scholar 

  50. Vaughan CW, Ingram SL, Connor MA, Christie MJ. How opioids inhibit GABA-mediated neurotransmission. Nature. 1997;390(6660):611–4.

    Article  CAS  PubMed  Google Scholar 

  51. Connor M, Christie MJ. Modulation of Ca2+ channel currents of acutely dissociated rat periaqueductal grey neurons. J Physiol. 1998;509(Pt 1):47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morgan MM, Grisel JE, Robbins CS, Grandy DK. Antinociception mediated by the periaqueductal gray is attenuated by orphanin FQ. NeuroReport. 1997;8(16):3431–4.

    Article  CAS  PubMed  Google Scholar 

  53. Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA. 2009;106(22):9075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bardoni R, Tawfik VL, Wang D, Francois A, Solorzano C, et al. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron. 2014;81(6):1312–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scherrer G, Imamachi N, Cao Y-Q, Contet C, Mennicken F, O’Donnell D, Kieffer BL, Basbaum AI. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell. 2009;137(6):1148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ. Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature. 2013;493(7434):669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79(4):618–39.

    Article  CAS  PubMed  Google Scholar 

  59. Ko MC, Woods JH, Fantegrossi WE, Galuska CM, Wichmann J, Prinssen EP. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology. 2009;34(9):2088–96.

    Article  CAS  PubMed  Google Scholar 

  60. Sukhtankar DD, Lee H, Rice KC, Ko MC. Differential effects of opioid-related ligands and NSAIDs in nonhuman primate models of acute and inflammatory pain. Psychopharmacology. 2014;231(7):1377–87.

    Article  CAS  PubMed  Google Scholar 

  61. Saccone PA, Zelenock KA, Lindsey AM, Sulima A, Rice KC, Prinssen EP, Wichmann J, Woods JH. Characterization of the discriminative stimulus effects of a NOP receptor agonist Ro 64–6198 in Rhesus Monkeys. J Pharmacol Exp Ther. 2016;357(1):17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cremeans CM, Gruley E, Kyle DJ, Ko MC. Roles of mu-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. J Pharmacol Exp Ther. 2012;343(1):72–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zacny JP, Hill JL, Black ML, Sadeghi P. Comparing the subjective, psychomotor and physiological effects of intravenous pentazocine and morphine in normal volunteers. J Pharmacol Exp Ther. 1998;286(3):1197–207.

    CAS  PubMed  Google Scholar 

  64. Peachey JE. Clinical observations of agonist-antagonist analgesic dependence. Drug Alcohol Depend. 1987;20(4):347–65.

    Article  CAS  PubMed  Google Scholar 

  65. Ciccocioppo R, Angeletti S, Sanna PP, Weiss F, Massi M. Effect of nociceptin/orphanin FQ on the rewarding properties of morphine. Eur J Pharmacol. 2000;404(1–2):153–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kotlinska J, Rafalski P, Biala G, Dylag T, Rolka K, Silberring J. Nociceptin inhibits acquisition of amphetamine-induced place preference and sensitization to stereotypy in rats. Eur J Pharmacol. 2003;474(2–3):233–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kotlinska J, Wichmann J, Legowska A, Rolka K, Silberring J. Orphanin FQ/nociceptin but not Ro 65–6570 inhibits the expression of cocaine-induced conditioned place preference. Behav Pharmacol. 2002;13(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  68. Sakoori K, Murphy NP. Central administration of nociceptin/orphanin FQ blocks the acquisition of conditioned place preference to morphine and cocaine, but not conditioned place aversion to naloxone in mice. Psychopharmacology. 2004;172(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao RJ, Woo RS, Jeong MS, Shin BS, Kim DG, Kim KW. Orphanin FQ/nociceptin blocks methamphetamine place preference in rats. NeuroReport. 2003;14(18):2383–5.

    Article  CAS  PubMed  Google Scholar 

  70. Toll L, Khroyan TV, Polgar WE, Jiang F, Olsen C, Zaveri NT. Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/mu-opioid receptor ligands: implications for therapeutic applications. J Pharmacol Exp Ther. 2009;331(3):954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L. The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy -6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther. 2011;336(3):952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khroyan TV, Polgar WE, Jiang F, Zaveri NT, Toll L. Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/mu-opioid receptor agonists. J Pharmacol Exp Ther. 2009;331(3):946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ding H, Czoty PW, Kiguchi N, Cami-Kobeci G, Sukhtankar DD, Nader MA, Husbands SM, Ko MC. A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proc Natl Acad Sci USA. 2016;113(37):E5511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, et al. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med. 2018;10(456):eaar3483.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kiguchi N, Ding H, Cami-Kobeci G, Sukhtankar DD, Czoty PW, et al. BU10038 as a safe opioid analgesic with fewer side-effects after systemic and intrathecal administration in primates. Br J Anaesth. 2019;122(6):e146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, et al. Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther. 2014;349(3):535–48.

    Article  PubMed  Google Scholar 

  77. Scholz A, Bothmer J, Kok M, Hoschen K, Daniels S. Cebranopadol: a novel, first-in-class, strong analgesic: results from a randomized phase IIa clinical trial in postoperative acute pain. Pain Phys. 2018;21(3):E193–206.

    Article  Google Scholar 

  78. Briscini L, Corradini L, Ongini E, Bertorelli R. Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol. 2002;447(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  79. Ma F, Xie H, Dong ZQ, Wang YQ, Wu GC. Expression of ORL1 mRNA in some brain nuclei in neuropathic pain rats. Brain Res. 2005;1043(1–2):214–7.

    Article  CAS  PubMed  Google Scholar 

  80. Rosen A, Lundeberg T, Bytner B, Nylander I. Central changes in nociceptin dynorphin B and Met-enkephalin-Arg-Phe in different models of nociception. Brain Res. 2000;857(1–2):212–8.

    Article  CAS  PubMed  Google Scholar 

  81. Sun RQ, Wang Y, Zhao CS, Chang JK, Han JS. Changes in brain content of nociceptin/orphanin FQ and endomorphin 2 in a rat model of neuropathic pain. Neurosci Lett. 2001;311(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  82. Hao JX, Xu IS, Wiesenfeld-Hallin Z, Xu XJ. Anti-hyperalgesic and anti-allodynic effects of intrathecal nociceptin/orphanin FQ in rats after spinal cord injury, peripheral nerve injury and inflammation. Pain. 1998;76(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  83. Obara I, Przewlocki R, Przewlocka B. Spinal and local peripheral antiallodynic activity of Ro64-6198 in neuropathic pain in the rat. Pain. 2005;116(1–2):17–25.

    Article  CAS  PubMed  Google Scholar 

  84. Targowska-Duda KM, Ozawa A, Bertels Z, Cippitelli A, Marcus JL, et al. NOP receptor agonist attenuates nitroglycerin-induced migraine-like symptoms in mice. Neuropharmacology. 2020;170:108029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ertsey C, Hantos M, Bozsik G, Tekes K. Plasma nociceptin levels are reduced in migraine without aura. Cephalalgia. 2005;25(4):261–6.

    Article  CAS  PubMed  Google Scholar 

  86. Berzetei-Gurske IP, Schwartz RW, Toll L. Determination of activity for nociceptin in the mouse vas deferens. Eur J Pharmacol. 1996;302:R1–2.

    Article  CAS  PubMed  Google Scholar 

  87. Calo G, Rizzi A, Bogoni G, Neugebauer V, Salvadori S, Guerrini R, Bianchi C, Regoli D. The mouse vas deferens: a pharmacological preparation sensitive to nociceptin. Eur J Pharmacol. 1996;311(1):R3-5.

    Article  CAS  PubMed  Google Scholar 

  88. Bartsch T, Akerman S, Goadsby PJ. The ORL-1 (NOP1) receptor ligand nociceptin/orphanin FQ (N/OFQ) inhibits neurogenic dural vasodilatation in the rat. Neuropharmacology. 2002;43(6):991–8.

    Article  CAS  PubMed  Google Scholar 

  89. Devine DP, Reinscheid RK, Monsma FJ Jr, Civelli O, Akil H. The novel neuropeptide orphanin FQ fails to produce conditioned place preference or aversion. Brain Res. 1996;727(1–2):225–9.

    Article  CAS  PubMed  Google Scholar 

  90. Lutfy K, Do T, Maidment NT. Orphanin FQ/nociceptin attenuates motor stimulation and changes in nucleus accumbens extracellular dopamine induced by cocaine in rats. Psychopharmacology. 2001;154(1):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Murphy NP, Maidment NT. Orphanin FQ/nociceptin modulation of mesolimbic dopamine transmission determined by microdialysis. J Neurochem. 1999;73(1):179–86.

    Article  CAS  PubMed  Google Scholar 

  92. Vazquez-DeRose J, Stauber G, Khroyan TV, Xie XS, Zaveri NT, Toll L. Retrodialysis of N/OFQ into the nucleus accumbens shell blocks cocaine-induced increases in extracellular dopamine and locomotor activity. Eur J Pharmacol. 2013;699(1–3):200–6.

    Article  CAS  PubMed  Google Scholar 

  93. Shoblock JR, Wichmann J, Maidment NT. The effect of a systemically active ORL-1 agonist, Ro 64–6198, on the acquisition, expression, extinction, and reinstatement of morphine conditioned place preference. Neuropharmacology. 2005;49(4):439–46.

    Article  CAS  PubMed  Google Scholar 

  94. Rutten K, De Vry J, Bruckmann W, Tzschentke TM. Pharmacological blockade or genetic knockout of the NOP receptor potentiates the rewarding effect of morphine in rats. Drug Alcohol Depend. 2011;114(2–3):253–6.

    CAS  PubMed  Google Scholar 

  95. Sakoori K, Murphy NP. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology. 2008;33(4):877–91.

    Article  CAS  PubMed  Google Scholar 

  96. Walker JR, Spina M, Terenius L, Koob GF. Nociceptin fails to affect heroin self-administration in the rat. NeuroReport. 1998;9(10):2243–7.

    Article  CAS  PubMed  Google Scholar 

  97. Kuzmin A, Kreek MJ, Bakalkin G, Liljequist S. The nociceptin/orphanin FQ receptor agonist Ro 64–6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking. Neuropsychopharmacology. 2007;32(4):902–10.

    Article  CAS  PubMed  Google Scholar 

  98. Aziz AM, Brothers S, Sartor G, Holm L, Heilig M, Wahlestedt C, Thorsell A. The nociceptin/orphanin FQ receptor agonist SR-8993 as a candidate therapeutic for alcohol use disorders: validation in rat models. Psychopharmacology. 2016;233(19–20):3553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ciccocioppo R, Economidou D, Fedeli A, Angeletti S, Weiss F, Heilig M, Massi M. Attenuation of ethanol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats. Psychopharmacology. 2004;172(2):170–8.

    Article  CAS  PubMed  Google Scholar 

  100. Economidou D, Hansson AC, Weiss F, Terasmaa A, Sommer WH, et al. Dysregulation of nociceptin/orphanin FQ activity in the amygdala is linked to excessive alcohol drinking in the rat. Biol Psychiatry. 2008;64(3):211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. de Guglielmo G, Martin-Fardon R, Teshima K, Ciccocioppo R, Weiss F. MT-7716, a potent NOP receptor agonist, preferentially reduces ethanol seeking and reinforcement in post-dependent rats. Addict Biol. 2015;20(4):643–51.

    Article  PubMed  Google Scholar 

  102. Ciccocioppo R, Economidou D, Rimondini R, Sommer W, Massi M, Heilig M. Buprenorphine reduces alcohol drinking through activation of the nociceptin/orphanin FQ-NOP receptor system. Biol Psychiatry. 2007;61(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  103. Khroyan TV, Wu J, Polgar WE, Cami-Kobeci G, Fotaki N, Husbands SM, Toll L. BU08073 a buprenorphine analogue with partial agonist activity at mu-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Br J Pharmacol. 2015;172(2):668–80.

    Article  CAS  PubMed  Google Scholar 

  104. Cippitelli A, Barnes M, Zaveri NT, Toll L. Potent and selective NOP receptor activation reduces cocaine self-administration in rats by lowering hedonic set point. Addict Biol. 2019;25:e12844.

    PubMed  Google Scholar 

  105. Rorick-Kehn LM, Ciccocioppo R, Wong CJ, Witkin JM, Martinez-Grau MA, et al. A novel, orally bioavailable nociceptin receptor antagonist, LY2940094, reduces ethanol self-administration and ethanol seeking in animal models. Alcohol Clin Exp Res. 2016;40(5):945–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brunori G, Weger M, Schoch J, Targowska-Duda K, Barnes M, et al. NOP receptor antagonists decrease alcohol drinking in the dark in C57BL/6J Mice. Alcohol Clin Exp Res. 2019;43(10):2167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cippitelli A, Schoch J, Debevec G, Brunori G, Zaveri NT, Toll L. A key role for the N/OFQ-NOP receptor system in modulating nicotine taking in a model of nicotine and alcohol co-administration. Sci Rep. 2016;6:26594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Knight CP, Hauser SR, Waeiss RA, Molosh AI, Johnson PL, et al. The rewarding and anxiolytic properties of ethanol within the central nucleus of the amygdala: mediated by genetic background and nociceptin. J Pharmacol Exp Ther. 2020;374(3):366–75.

    Article  CAS  PubMed  Google Scholar 

  109. Kallupi M, Scuppa G, de Guglielmo G, Calo G, Weiss F, Statnick MA, Rorick-Kehn LM, Ciccocioppo R. Genetic deletion of the nociceptin/orphanin FQ receptor in the Rat confers resilience to the development of drug addiction. Neuropsychopharmacology. 2017;42(3):695–706.

    Article  CAS  PubMed  Google Scholar 

  110. Narendran R, Ciccocioppo R, Lopresti B, Paris J, Himes ML, Mason NS. Nociceptin receptors in alcohol use disorders: a positron emission tomography study using [(11)C]NOP-1A. Biol Psychiatry. 2018;84(10):708–14.

    Article  CAS  PubMed  Google Scholar 

  111. Narendran R, Tollefson S, Himes ML, Paris J, Lopresti B, Ciccocioppo R, Mason NS. Nociceptin receptors upregulated in cocaine use disorder: a positron emission tomography imaging study using [(11)C]NOP-1A. Am J Psychiatry. 2019;176(6):468–76.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Andero R, Brothers SP, Jovanovic T, Chen YT, Salah-Uddin H, et al. Amygdala-dependent fear is regulated by Oprl1 in mice and humans with PTSD. Sci Transl Med. 2013;5(188):188ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Narendran R, Tollefson S, Fasenmyer K, Paris J, Himes ML, Lopresti B, Ciccocioppo R, Mason NS. Decreased nociceptin receptors are related to resilience and recovery in College Women who have experienced sexual violence: therapeutic implications for posttraumatic stress disorder. Biol Psychiatry. 2019;85(12):1056–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li H, Scuppa G, Shen Q, Masi A, Nasuti C, Cannella N, Ciccocioppo R. NOP receptor agonist Ro 64–6198 decreases escalation of cocaine self-administration in rats genetically selected for alcohol preference. Front Psychiatry. 2019;10:176.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mamiya T, Noda Y, Nishi M, Takeshima H, Nabeshima T. Nociceptin system plays a role in the memory retention: involvement of naloxone benzoylhydrazone binding sites. NeuroReport. 1999;10(6):1171–5.

    Article  CAS  PubMed  Google Scholar 

  116. Manabe T, Noda Y, Mamiya T, Katagiri H, Houtani T, et al. Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors. Nature. 1998;394(6693):577–81.

    Article  CAS  PubMed  Google Scholar 

  117. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L. Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci. 1997;9(1):194–7.

    Article  CAS  PubMed  Google Scholar 

  118. Parker KE, Pedersen CE, Gomez AM, Spangler SM, Walicki MC, et al. A paranigral VTA nociceptin circuit that constrains motivation for reward. Cell. 2019;178(3):653-671 e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jenck F, Moreau JL, Martin JR, Kilpatrick GJ, Reinscheid RK, Monsma FJ Jr, Nothacker HP, Civelli O. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci USA. 1997;94(26):14854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hayashi S, Hirao A, Imai A, Nakamura H, Murata Y, Ohashi K, Nakata E. Novel non-peptide nociceptin/orphanin FQ receptor agonist, 1-[1-(1-Methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: design, synthesis, and structure-activity relationship of oral receptor occupancy in the brain for orally potent antianxiety drug. J Med Chem. 2009;52(3):610–25.

    Article  CAS  PubMed  Google Scholar 

  121. Lu SX, Higgins GA, Hodgson RA, Hyde LA, Del Vecchio RA, et al. The anxiolytic-like profile of the nociceptin receptor agonist, endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxami de (SCH 655842): comparison of efficacy and side effects across rodent species. Eur J Pharmacol. 2011;661(1–3):63–71.

    Article  CAS  PubMed  Google Scholar 

  122. Ross TM, Battista K, Bignan GC, Brenneman DE, Connolly PJ, et al. A selective small molecule NOP (ORL-1 receptor) partial agonist for the treatment of anxiety. Bioorg Med Chem Lett. 2015;25(3):602–6.

    Article  CAS  PubMed  Google Scholar 

  123. Fernandez F, Misilmeri MA, Felger JC, Devine DP. Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology. 2004;29(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  124. Green MK, Barbieri EV, Brown BD, Chen KW, Devine DP. Roles of the bed nucleus of stria terminalis and of the amygdala in N/OFQ-mediated anxiety and HPA axis activation. Neuropeptides. 2007;41(6):399–410.

    Article  CAS  PubMed  Google Scholar 

  125. Silva AI, Holanda VAD, Azevedo Neto JG, Silva Junior ED, Soares-Rachetti VP, Calo G, Ruzza C, Gavioli EC. Blockade of NOP receptor modulates anxiety-related behaviors in mice exposed to inescapable stress. Psychopharmacology. 2020;237(6):1633–42.

    Article  CAS  PubMed  Google Scholar 

  126. Higgins GA, Kew JN, Richards JG, Takeshima H, Jenck F, Adam G, Wichmann J, Kemp JA, Grottick AJ. A combined pharmacological and genetic approach to investigate the role of orphanin FQ in learning and memory. Eur J Neurosci. 2002;15(5):911–22.

    Article  CAS  PubMed  Google Scholar 

  127. Koster A, Montkowski A, Schulz S, Stube EM, Knaudt K, et al. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci USA. 1999;96(18):10444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gavioli EC, Rizzi A, Marzola G, Zucchini S, Regoli D, Calo G. Altered anxiety-related behavior in nociceptin/orphanin FQ receptor gene knockout mice. Peptides. 2007;28(6):1229–39.

    Article  CAS  PubMed  Google Scholar 

  129. Rizzi A, Molinari S, Marti M, Marzola G, Calo G. Nociceptin/orphanin FQ receptor knockout rats: in vitro and in vivo studies. Neuropharmacology. 2011;60(4):572–9.

    Article  CAS  PubMed  Google Scholar 

  130. Redrobe JP, Calo G, Regoli D, Quirion R. Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiedebergs Arch Pharmacol. 2002;365(2):164–7.

    Article  CAS  PubMed  Google Scholar 

  131. Gavioli EC, Vaughan CW, Marzola G, Guerrini R, Mitchell VA, et al. Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(6):547–53.

    Article  CAS  PubMed  Google Scholar 

  132. Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, et al. Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides. 2008;29(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  133. Holanda VAD, Pacifico S, Azevedo Neto J, Finetti L, Lobao-Soares B, Calo G, Gavioli EC, Ruzza C. Modulation of the NOP receptor signaling affects resilience to acute stress. J Psychopharmacol. 2019;33(12):1540–9.

    Article  CAS  PubMed  Google Scholar 

  134. Gavioli EC, Calo G. Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands. Naunyn Schmiedebergs Arch Pharmacol. 2006;372(5):319–30.

    Article  CAS  PubMed  Google Scholar 

  135. Holanda VAD, Oliveira MC, Da Silva Junior ED, Calo G, Ruzza C, Gavioli EC. Blockade of nociceptin/orphanin FQ signaling facilitates an active copying strategy due to acute and repeated stressful stimuli in mice. Neurobiol Stress. 2020;13:100255.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhang Y, Gandhi PR, Standifer KM. Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol Pain. 2012;8:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang Y, Simpson-Durand CD, Standifer KM. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. Br J Pharmacol. 2015;172(2):571–82.

    Article  CAS  PubMed  Google Scholar 

  138. Taylor RM, Jeong IH, May MD, Bergman EM, Capaldi VF, Moore NLT, Matson LM, Lowery-Gionta EG. Fear expression is reduced after acute and repeated nociceptin/orphanin FQ (NOP) receptor antagonism in rats: therapeutic implications for traumatic stress exposure. Psychopharmacology. 2020;237(10):2943–58.

    Article  CAS  PubMed  Google Scholar 

  139. Ciccocioppo R, Cippitelli A, Economidou D, Fedeli A, Massi M. Nociceptin/orphanin FQ acts as a functional antagonist of corticotropin-releasing factor to inhibit its anorectic effect. Physiol Behav. 2004;82(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  140. Ciccocioppo R, de Guglielmo G, Hansson AC, Ubaldi M, Kallupi M, Cruz MT, Oleata CS, Heilig M, Roberto M. Restraint stress alters nociceptin/orphanin FQ and CRF systems in the rat central amygdala: significance for anxiety-like behaviors. J Neurosci. 2014;34(2):363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Le Maitre E, Vilpoux C, Costentin J, Leroux-Nicollet I. Opioid receptor-like 1 (NOP) receptors in the rat dorsal raphe nucleus: evidence for localization on serotoninergic neurons and functional adaptation after 5,7-dihydroxytryptamine lesion. J Neurosci Res. 2005;81(4):488–96.

    Article  PubMed  Google Scholar 

  142. Le Maitre E, Dourmap N, Vilpoux C, Leborgne R, Janin F, Bonnet JJ, Costentin J, Leroux-Nicollet I. Acute and subchronic treatments with selective serotonin reuptake inhibitors increase Nociceptin/Orphanin FQ (NOP) receptor density in the rat dorsal raphe nucleus; interactions between nociceptin/NOP system and serotonin. Brain Res. 2013;1520:51–60.

    Article  PubMed  Google Scholar 

  143. Tao R, Ma Z, Thakkar MM, McCarley RW, Auerbach SB. Nociceptin/orphanin FQ decreases serotonin efflux in the rat brain but in contrast to a kappa-opioid has no antagonistic effect on mu-opioid-induced increases in serotonin efflux. Neuroscience. 2007;147(1):106–16.

    Article  CAS  PubMed  Google Scholar 

  144. Holanda VAD, Santos WB, Asth L, Guerrini R, Calo G, Ruzza C, Gavioli EC. NOP agonists prevent the antidepressant-like effects of nortriptyline and fluoxetine but not R-ketamine. Psychopharmacology. 2018;235(11):3093–102.

    Article  CAS  PubMed  Google Scholar 

  145. Lecci A, Giuliani S, Meini S, Maggi CA. Nociceptin and the micturition reflex. Peptides. 2000;21(7):1007–21.

    Article  CAS  PubMed  Google Scholar 

  146. Lazzeri M, Calo G, Spinelli M, Guerrini R, Beneforti P, Sandri S, Zanollo A, Regoli D, Turini D. Urodynamic and clinical evidence of acute inhibitory effects of intravesical nociceptin/orphanin FQ on detrusor overactivity in humans: a pilot study. J Urol. 2001;166(6):2237–40.

    Article  CAS  PubMed  Google Scholar 

  147. Lazzeri M, Calo G, Spinelli M, Guerrini R, Salvadori S, Beneforti P, Sandri S, Regoli D, Turini D. Urodynamic effects of intravesical nociceptin/orphanin FQ in neurogenic detrusor overactivity: a randomized, placebo-controlled, double-blind study. Urology. 2003;61(5):946–50.

    Article  PubMed  Google Scholar 

  148. Lazzeri M, Calo G, Spinelli M, Malaguti S, Guerrini R, Salvadori S, Beneforti P, Regoli D, Turini D. Daily intravesical instillation of 1 mg nociceptin/orphanin FQ for the control of neurogenic detrusor overactivity: a multicenter, placebo controlled, randomized exploratory study. J Urol. 2006;176(5):2098–102.

    Article  CAS  PubMed  Google Scholar 

  149. Angelico P, Barchielli M, Lazzeri M, Guerrini R, Calo G. Nociceptin/orphanin FQ and urinary bladder. Handb Exp Pharmacol. 2019;254:347–65.

    Article  CAS  PubMed  Google Scholar 

  150. Dooley CT, Spaeth CG, Berzetei-Gurske IP, Craymer K, Adapa ID, Brandt SR, Houghten RA, Toll L. Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORL1. J Pharmacol Exp Ther. 1997;283(2):735–41.

    CAS  PubMed  Google Scholar 

  151. Kantola I, Scheinin M, Gulbrandsen T, Meland N, Smerud KT. Safety, tolerability, and antihypertensive effect of SER100, an opiate Receptor-Like 1 (ORL-1) partial agonist, in patients with isolated systolic hypertension. Clin Pharmacol Drug Dev. 2017;6(6):584–91.

    Article  CAS  PubMed  Google Scholar 

  152. Suyama H, Kawamoto M, Gaus S, Yuge O. Effect of JTC-801 (nociceptin antagonist) on neuropathic pain in a rat model. Neurosci Lett. 2003;351(3):133–6.

    Article  CAS  PubMed  Google Scholar 

  153. Post A, Smart TS, Jackson K, Mann J, Mohs R, et al. Proof-of-concept study to assess the nociceptin receptor antagonist LY2940094 as a new treatment for alcohol dependence. Alcohol Clin Exp Res. 2016;40(9):1935–44.

    Article  CAS  PubMed  Google Scholar 

  154. Post A, Smart TS, Krikke-Workel J, Dawson GR, Harmer CJ, et al. A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacology. 2016;41(7):1803–12.

    Article  CAS  PubMed  Google Scholar 

  155. Woodcock A, McLeod RL, Sadeh J, Smith JA. The efficacy of a NOP1 agonist (SCH486757) in subacute cough. Lung. 2010;188(Suppl 1):S47-52.

    Article  CAS  PubMed  Google Scholar 

  156. Khroyan TV, Zhang J, Yang L, Zou B, Xie J, et al. Rodent motor and neuropsychological behavior measured in home cages using the integrated modular platform—SmartCage(TM). Clin Exp Pharmacol Physiol. 2012;39:614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, et al. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest. 2008;118(7):2471–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wei H, Shang L, Zhan CG, Zheng F. Effects of cebranopadol on cocaine-induced hyperactivity and cocaine pharmacokinetics in Rats. Sci Rep. 2020;10(1):9254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhou Z, Harris S, Kapil R, Cipriano A, He E, et al. (2020) Safety, tolerability, and efficacy of a novel, highly potent and selective partial agonist for nociceptin/orphanin-FQ peptide (NOP) receptors in patients with insomnia disorder. Sleep. 2020;43:A192.

    Article  Google Scholar 

  160. Christoph A, Eerdekens MH, Kok M, Volkers G, Freynhagen R. Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain. 2017;158(9):1813–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rizzi A, Nazzaro C, Marzola GG, Zucchini S, Trapella C, Guerrini R, Zeilhofer HU, Regoli D, Calo G. Endogenous nociceptin/orphanin FQ signalling produces opposite spinal antinociceptive and supraspinal pronociceptive effects in the mouse formalin test: pharmacological and genetic evidences. Pain. 2006;124(1–2):100–8.

    Article  CAS  PubMed  Google Scholar 

  162. Schiene K, Tzschentke TM, Schroder W, Christoph T. Mechanical hyperalgesia in rats with diabetic polyneuropathy is selectively inhibited by local peripheral nociceptin/orphanin FQ receptor and micro-opioid receptor agonism. Eur J Pharmacol. 2015;754:61–5.

    Article  CAS  PubMed  Google Scholar 

  163. Schiene K, Schroder W, Linz K, Frosch S, Tzschentke TM, Jansen U, Christoph T. Nociceptin/orphanin FQ opioid peptide (NOP) receptor and micro-opioid peptide (MOP) receptors both contribute to the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Eur J Pharmacol. 2018;832:90–5.

    Article  CAS  PubMed  Google Scholar 

  164. Khroyan TV, Polgar WE, Orduna J, Montenegro J, Jiang F, Zaveri NT, Toll L. Differential effects of nociceptin/orphanin FQ (NOP) receptor agonists in acute versus chronic pain: studies with bifunctional NOP/mu receptor agonists in the sciatic nerve ligation chronic pain model in mice. J Pharmacol Exp Ther. 2011;339(2):687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tzschentke TM, Linz K, Frosch S, Christoph T. Antihyperalgesic, antiallodynic, and antinociceptive effects of cebranopadol, a novel potent nociceptin/orphanin FQ and opioid receptor agonist, after peripheral and central administration in rodent models of neuropathic pain. Pain Pract. 2017;17(8):1032–41.

    Article  PubMed  Google Scholar 

  166. Sukhtankar DD, Lagorio CH, Ko MC. Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats. Eur J Pharmacol. 2014;745:182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wu Q, Liu L. ORL1 activation mediates a novel ORL1 receptor agonist SCH221510 analgesia in neuropathic pain in Rats. J Mol Neurosci. 2018;66(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  168. Kuzmin A, Sandin J, Terenius L, Ogren SO. Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of opioid receptor-like 1 receptor agonists and naloxone. J Pharmacol Exp Ther. 2003;304(1):310–8.

    Article  CAS  PubMed  Google Scholar 

  169. Zaveri NT, Marquez PV, Meyer ME, Hamid A, Lutfy K. The nociceptin receptor (NOP) agonist AT-312 blocks acquisition of morphine- and cocaine-induced conditioned place preference in Mice. Front Psychiatry. 2018;9:638.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zaveri NT, Marquez PV, Meyer ME, Polgar WE, Hamid A, Lutfy K. A novel and selective nociceptin receptor (NOP) agonist (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol (AT-312) decreases acquisition of ethanol-induced conditioned place preference in Mice. Alcohol Clin Exp Res. 2018;42(2):461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Toll.

Ethics declarations

Funding

Supported by NIH grant DA023281 to LT.

Conflict of Interest

Dr. Toll is a Founder and has stock in Phoenix PharmaLabs. The Drs. Cippitelli and Ozawa declare no conflict of interest.

Ethics Approval

All procedures used on animals were preapproved by the Institutional Animal Care and Use Committee.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Author Contributions

LT, AC, and AO participated in the writing of the manuscript. AC and AO conducted some of the experiments described in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toll, L., Cippitelli, A. & Ozawa, A. The NOP Receptor System in Neurological and Psychiatric Disorders: Discrepancies, Peculiarities and Clinical Progress in Developing Targeted Therapies. CNS Drugs 35, 591–607 (2021). https://doi.org/10.1007/s40263-021-00821-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-021-00821-0

Navigation