Skip to main content
Log in

Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Non-tuberculous mycobacteria (NTM) are an emerging group of pulmonary infectious pathogens of increasing importance to the management of patients with cystic fibrosis (CF). NTM include slow-growing mycobacteria such as Mycobacterium avium complex (MAC) and rapidly growing mycobacteria such as Mycobacterium abscessus. The incidence of NTM in the CF population is increasing and infection contributes to significant morbidity to the patient and costs to the health system. Treating M. abscessus requires the combination of multiple costly antibiotics for months, with potentially significant toxicity associated with treatment. Although international guidelines for the treatment of NTM infection in CF are available, there are a lack of robust pharmacokinetic studies in CF patients to inform dosing and drug choice. This paper aims to outline the pharmacokinetic and pharmacodynamic factors informing the optimal treatment of NTM infections in CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulitta JB, Jiao Y, Drescher SK, Oliver A, Louie A, Moya B, et al. Four decades of beta-lactam antibiotic pharmacokinetics in cystic fibrosis. Clin Pharmacokinet. 2019;58(2):143–56.

    Article  CAS  PubMed  Google Scholar 

  2. Rivosecchi RM, Samanta P, Demehin M, Nguyen MH. Pharmacokinetics of azole antifungals in cystic fibrosis. Mycopathologia. 2018;183(1):139–50.

    Article  CAS  PubMed  Google Scholar 

  3. Rey E, Treluyer JM, Pons G. Drug disposition in cystic fibrosis. Clin Pharmacokinet. 1998;35(4):313–29.

    Article  CAS  PubMed  Google Scholar 

  4. Prandota J. Clinical pharmacology of antibiotics and other drugs in cystic fibrosis. Drugs. 1988;35(5):542–78.

    Article  CAS  PubMed  Google Scholar 

  5. Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J, Jacobs WR Jr, et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J. 2019;476(14):1995–2016.

    Article  CAS  PubMed  Google Scholar 

  6. Adjemian J, Olivier KN, Prevots DR. Epidemiology of pulmonary nontuberculous Mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann Am Thorac Soc. 2018;15(7):817–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leung JM, Olivier KN. Nontuberculous mycobacteria: the changing epidemiology and treatment challenges in cystic fibrosis. Curr Opin Pulm Med. 2013;19(6):662–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, et al. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol. 2020;11:303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sherrard LJ, Tay GT, Butler CA, Wood ME, Yerkovich S, Ramsay KA, et al. Tropical Australia is a potential reservoir of non-tuberculous mycobacteria in cystic fibrosis. Eur Respir J. 2017;49(5):1700046.

    Article  PubMed  Google Scholar 

  10. Gardner AI, McClenaghan E, Saint G, McNamara PS, Brodlie M, Thomas MF. Epidemiology of nontuberculous mycobacteria infection in children and young people with cystic fibrosis: analysis of UK cystic fibrosis registry. Clin Infect Dis. 2019;68(5):731–7.

    Article  PubMed  Google Scholar 

  11. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71(Suppl 1):i1-22.

    Article  PubMed  Google Scholar 

  12. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ open respiratory research. 2017;4(1):e000242.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.

    Article  CAS  PubMed  Google Scholar 

  14. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax. 2016;71(1):88–90.

    Article  PubMed  Google Scholar 

  15. Koh WJ, Jeong BH, Jeon K, Kim SY, Park KU, Park HY, et al. Oral macrolide therapy following short-term combination antibiotic treatment for Mycobacterium massiliense lung disease. Chest. 2016;150(6):1211–21.

    Article  PubMed  Google Scholar 

  16. Koh WJ, Jeong BH, Kim SY, Jeon K, Park KU, Jhun BW, et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin Infect Dis. 2017;64(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  17. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72(Suppl 2):ii1–64.

    Article  PubMed  Google Scholar 

  18. Goutelle S, Bourguignon L, Maire P, Jelliffe RW, Neely MN. The case for using higher doses of first line anti-tuberculosis drugs to optimize efficacy. Curr Pharm Des. 2014;20(39):6191–206.

    Article  CAS  PubMed  Google Scholar 

  19. Sekaggya-Wiltshire C, Lamorde M, Kiragga AN, Dooley KE, Kamya MR, Kambugu A, et al. The utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-tuberculosis drugs. Tuberculosis (Edinburgh). 2018;108:77–82.

    Article  CAS  Google Scholar 

  20. Fernandez-Roblas R, Martin-de-Hijas NZ, Fernandez-Martinez AI, Garcia-Almeida D, Gadea I, Esteban J. In vitro activities of tigecycline and 10 other antimicrobials against nonpigmented rapidly growing mycobacteria. Antimicrob Agents Chemother. 2008;52(11):4184–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Ingen J, Egelund EF, Levin A, Totten SE, Boeree MJ, Mouton JW, et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med. 2012;186(6):559–65.

    Article  PubMed  CAS  Google Scholar 

  22. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline: executive summary. Clin Infect Dis. 2020;71(4):905–13.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schon T, Matuschek E, Mohamed S, Utukuri M, Heysell S, Alffenaar JW, et al. Standards for MIC testing that apply to the majority of bacterial pathogens should also be enforced for Mycobacterium tuberculosis complex. Clin Microbiol Infect. 2019;25(4):403–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, Somerset S. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy. Dig Liver Dis. 2014;46(10):865–74.

    Article  PubMed  Google Scholar 

  25. Molloy L, Nichols K. Infectious Diseases Pharmacotherapy for Children With Cystic Fibrosis. J Pediatric Health Care. 2015;29(6):565–78 (quiz 79–80).

    Article  Google Scholar 

  26. Oshikoya KA, Senbanjo IO. Pathophysiological changes that affect drug disposition in protein-energy malnourished children. Nutr Metab. 2009;6:50.

    Article  CAS  Google Scholar 

  27. Vinks AA, van Rossem RN, Mathot RA, Heijerman HG, Mouton JW. Pharmacokinetics of aztreonam in healthy subjects and patients with cystic fibrosis and evaluation of dose-exposure relationships using monte carlo simulation. Antimicrob Agents Chemother. 2007;51(9):3049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oshikoya KA, Senbanjo IO. Caution when treating tuberculosis in malnourished children. Arch Dis Child. 2018;103(12):1101–3.

    Article  PubMed  Google Scholar 

  29. Oshikoya KA, Sammons HM, Choonara I. A systematic review of pharmacokinetics studies in children with protein-energy malnutrition. Eur J Clin Pharmacol. 2010;66(10):1025–35.

    Article  CAS  PubMed  Google Scholar 

  30. Beringer P, Huynh KM, Kriengkauykiat J, Bi L, Hoem N, Louie S, et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. Antimicrob Agents Chemother. 2005;49(12):5013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beringer PM, Owens H, Nguyen A, Benitez D, Rao A, D’Argenio DZ. Pharmacokinetics of doxycycline in adults with cystic fibrosis. Antimicrob Agents Chemother. 2012;56(1):70–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Healy DP, Brodbeck MC, Clendening CE. Ciprofloxacin absorption is impaired in patients given enteral feedings orally and via gastrostomy and jejunostomy tubes. Antimicrob Agents Chemother. 1996;40(1):6–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Staufer K. Current treatment options for cystic fibrosis-related liver disease. Int J Mol Sci. 2020;21(22):8586.

    Article  CAS  PubMed Central  Google Scholar 

  34. Leeuwen L, Fitzgerald DA, Gaskin KJ. Liver disease in cystic fibrosis. Paediatr Respir Rev. 2014;15(1):69–74.

    PubMed  Google Scholar 

  35. Haack A, Aragao GG, Novaes MR. Pathophysiology of cystic fibrosis and drugs used in associated digestive tract diseases. World J Gastroenterol. 2013;19(46):8552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brater DC. Measurement of renal function during drug development. Br J Clin Pharmacol. 2002;54(1):87–95.

    Article  PubMed  Google Scholar 

  37. Souza-Menezes J, Morales MM. CFTR structure and function: is there a role in the kidney? Biophys Rev. 2009;1(1):3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prestidge C, Chilvers MA, Davidson AG, Cho E, McMahon V, White CT. Renal function in pediatric cystic fibrosis patients in the first decade of life. Pediatr Nephrol. 2011;26(4):605–12.

    Article  PubMed  Google Scholar 

  39. Zobell JT, Waters CD, Young DC, Stockmann C, Ampofo K, Sherwin CM, et al. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: II. cephalosporins and penicillins. Pediatric Pulmonol. 2013;48(2):107–22.

    Article  Google Scholar 

  40. Touw DJ. Clinical pharmacokinetics of antimicrobial drugs in cystic fibrosis. Pharm World Sci. 1998;20(4):149–60.

    Article  CAS  PubMed  Google Scholar 

  41. Reed MD, Stern RC, O’Brien CA, Yamashita TS, Myers CM, Blumer JL. Pharmacokinetics of imipenem and cilastatin in patients with cystic fibrosis. Antimicrob Agents Chemother. 1985;27(4):583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bulitta JB, Landersdorfer CB, Hüttner SJ, Drusano GL, Kinzig M, Holzgrabe U, et al. Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother. 2010;54(3):1275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hong LT, Liou TG, Deka R, King JB, Stevens V, Young DC. Pharmacokinetics of continuous infusion beta-lactams in the treatment of acute pulmonary exacerbations in adult patients with cystic fibrosis. Chest. 2018;154(5):1108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rogers JD, Meisinger MA, Ferber F, Calandra GB, Demetriades JL, Bland JA. Pharmacokinetics of imipenem and cilastatin in volunteers. Rev Infect Dis. 1985;7(Suppl 3):S435–46.

    Article  CAS  PubMed  Google Scholar 

  45. Balfour JA, Bryson HM, Brogden RN. Imipenem/cilastatin: an update of its antibacterial activity, pharmacokinetics and therapeutic efficacy in the treatment of serious infections. Drugs. 1996;51(1):99–136.

    Article  CAS  PubMed  Google Scholar 

  46. Primaxin(Imipenem/Cilastatin) [product Insert], Whitehouse Station: Merck and Co.; 2006.

  47. Rizk ML, Rhee EG, Jumes PA, Gotfried MH, Zhao T, Mangin E, et al. Intrapulmonary pharmacokinetics of relebactam, a novel beta-lactamase inhibitor, dosed in combination with imipenem-cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018;62(3):e01411-e1417.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lavollay M, Dubee V, Heym B, Herrmann JL, Gaillard JL, Gutmann L, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect. 2014;20(5):O297-300.

    Article  CAS  PubMed  Google Scholar 

  49. Brown-Elliott BA, Killingley J, Vasireddy S, Bridge L, Wallace RJ Jr. In vitro comparison of ertapenem, meropenem, and imipenem against isolates of rapidly growing mycobacteria and nocardia by use of broth microdilution and etest. J Clin Microbiol. 2016;54(6):1586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol. 2018;9:2179.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Story-Roller E, Maggioncalda EC, Cohen KA, Lamichhane G. Mycobacterium abscessus and beta-Lactams: emerging insights and potential opportunities. Front Microbiol. 2018;9:2273.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kaushik A, Ammerman NC, Lee J, Martins O, Kreiswirth BN, Lamichhane G, et al. In vitro activity of the new beta-lactamase inhibitors relebactam and vaborbactam in combination with beta-lactams against Mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother. 2019;63(3):e02623-e2718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clinical and Laboratory Standards Institute (CLSI). Performance standards for suscetibility testing of Mycobacteria, Nocardia spp., and other aerobic actinomycetes. Wayne: CLSI; 2018.

    Google Scholar 

  54. Carver PL, Nightingale CH, Quintiliani R. Pharmacokinetics and pharmacodynamics of total and unbound cefoxitin and cefotetan in healthy volunteers. J Antimicrob Chemother. 1989;23(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  55. Perea EJ, Garcia-Iglesias MC, Ayarra J, Loscertales J. Comparative concentrations of cefoxitin in human lungs and sera. Antimicrob Agents Chemother. 1983;23(2):323–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moine P, Mueller SW, Schoen JA, Rothchild KB, Fish DN. Pharmacokinetic and pharmacodynamic evaluation of a weight-based dosing regimen of cefoxitin for perioperative surgical prophylaxis in obese and morbidly obese patients. Antimicrob Agents Chemother. 2016;60(10):5885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferro BE, van Ingen J, Wattenberg M, van Soolingen D, Mouton JW. Time-kill kinetics of antibiotics active against rapidly growing mycobacteria. J Antimicrob Chemother. 2015;70(3):811–7.

    Article  CAS  PubMed  Google Scholar 

  58. Clinical and Laboratories Standards Institute. CLSI susceptibility of mycobacteria, noacardiae, and other aerobic actinomycetes: approved standard—second edition CLSI Document M24–A2. Wayne: CLSI; 2011.

    Google Scholar 

  59. Czaja CA, Levin A, Moridani M, Krank JL, Curran-Everett D, Anderson PL. Cefoxitin continuous infusion for lung infection caused by the Mycobacterium abscessus group. Antimicrob Agents Chemother. 2014;58(6):3570–1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Perks SJ, Lanskey C, Robinson N, Pain T, Franklin R. Systematic review of stability data pertaining to selected antibiotics used for extended infusions in outpatient parenteral antimicrobial therapy (OPAT) at standard room temperature and in warmer climates. Eur J Hosp Pharm. 2020;27(2):65–72.

    Article  PubMed  Google Scholar 

  61. Stiles ML, Tu YH, Allen LV Jr. Stability of cefazolin sodium, cefoxitin sodium, ceftazidime, and penicillin G sodium in portable pump reservoirs. Am J Hosp Pharm. 1989;46(7):1408–12.

    CAS  PubMed  Google Scholar 

  62. Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med. 2009;180(9):896–902.

    Article  CAS  PubMed  Google Scholar 

  63. Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis. 2017;17(1):558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Maselli DJ, Keyt H, Restrepo MI. Inhaled antibiotic therapy in chronic respiratory diseases. Int J Mol Sci. 2017;18(5):1062.

    Article  PubMed Central  CAS  Google Scholar 

  65. Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med. 2018;198(12):1559–69.

    Article  CAS  PubMed  Google Scholar 

  66. Olivier KN, Griffith DE, Eagle G, McGinnis JP 2nd, Micioni L, Liu K, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2017;195(6):814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khan O, Chaudary N. The use of amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des Dev Ther. 2020;14:2287–94.

    Article  CAS  Google Scholar 

  68. Zhang J, Leifer F, Rose S, Chun DY, Thaisz J, Herr T, et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol. 2018;9:915.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shirley M. Amikacin liposome inhalation suspension: a review in mycobacterium avium complex lung disease. Drugs. 2019;79(5):555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weers J, Metzheiser B, Taylor G, Warren S, Meers P, Perkins WR. A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv. 2009;22(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  71. Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, et al. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother. 2009;53(9):3847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ellender CM, Law DB, Thomson RM, Eather GW. Safety of IV amikacin in the treatment of pulmonary non-tuberculous mycobacterial disease. Respirology. 2016;21(2):357–62.

    Article  PubMed  Google Scholar 

  73. Sturkenboom MGG, Simbar N, Akkerman OW, Ghimire S, Bolhuis MS, Alffenaar JC. Amikacin dosing for MDR tuberculosis: a systematic review to establish or revise the current recommended dose for tuberculosis treatment. Clin Infect Dis. 2018;67(Suppl 3):S303–7.

    Article  CAS  PubMed  Google Scholar 

  74. Srivastava S, Modongo C, Siyambalapitiyage Dona CW, Pasipanodya JG, Deshpande D, Gumbo T. Amikacin optimal exposure targets in the hollow-fiber system model of tuberculosis. Antimicrob Agents Chemother. 2016;60(10):5922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caceres Guido P, Perez M, Halac A, Ferrari M, Ibarra M, Licciardone N, et al. Population pharmacokinetics of amikacin in patients with pediatric cystic fibrosis. Pediatr Pulmonol. 2019;54(11):1801–10.

    Article  PubMed  Google Scholar 

  76. Nolt VD, Pijut KD, Autry EB, Williams WC, Burgess DS, Burgess DR, et al. Amikacin target achievement in adult cystic fibrosis patients utilizing Monte Carlo simulation. Pediatr Pulmonol. 2019;54(1):33–9.

    Article  PubMed  Google Scholar 

  77. Ferro BE, Srivastava S, Deshpande D, Sherman CM, Pasipanodya JG, van Soolingen D, et al. Amikacin pharmacokinetics/pharmacodynamics in a novel hollow-fiber mycobacterium abscessus disease model. Antimicrob Agents Chemother. 2015;60(3):1242–8.

    Article  PubMed  CAS  Google Scholar 

  78. Ferro BE, Srivastava S, Deshpande D, Pasipanodya JG, van Soolingen D, Mouton JW, et al. Failure of the amikacin, cefoxitin, and clarithromycin combination regimen for treating pulmonary mycobacterium abscessus infection. Antimicrob Agents Chemother. 2016;60(10):6374–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peloquin CA, Berning SE, Nitta AT, Simone PM, Goble M, Huitt GA, et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis. 2004;38(11):1538–44.

    Article  CAS  PubMed  Google Scholar 

  80. Modongo C, Pasipanodya JG, Zetola NM, Williams SM, Sirugo G, Gumbo T. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2015;59(10):6337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nichols DP, Odem-Davis K, Cogen JD, Goss CH, Ren CL, Skalland M, et al. Pulmonary outcomes associated with long-term azithromycin therapy in cystic fibrosis. Am J Respir Crit Care Med. 2020;201(4):430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cooper MA, Nye K, Andrews JM, Wise R. The pharmacokinetics and inflammatory fluid penetration of orally administered azithromycin. J Antimicrob Chemother. 1990;26(4):533–8.

    Article  CAS  PubMed  Google Scholar 

  83. Wilms EB, Touw DJ, Heijerman HG, van der Ent CK. Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol. 2012;47(7):658–65.

    Article  PubMed  Google Scholar 

  84. Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit. 2006;28(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  85. Cipolli M, Cazzola G, Novelli A, Cassetta M, Fallani S, Mazzei T. Azithromycin concentrations in serum and bronchial secretions of patients with cystic fibrosis. Clin Drug Invest. 2001;21(5):353–60.

    Article  Google Scholar 

  86. Shimomura H, Andachi S, Aono T, Kigure A, Yamamoto Y, Miyajima A, et al. Serum concentrations of clarithromycin and rifampicin in pulmonary Mycobacterium avium complex disease: long-term changes due to drug interactions and their association with clinical outcomes. J Pharm Health Care Sci. 2015;1:32.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Deshpande D, Pasipanodya JG, Gumbo T. Azithromycin dose to maximize efficacy and suppress acquired drug resistance in pulmonary Mycobacterium avium disease. Antimicrob Agents Chemother. 2016;60(4):2157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186(9):917–25.

    Article  CAS  PubMed  Google Scholar 

  89. Richard M, Gutiérrez AV, Kremer L. Dissecting erm(41)-mediated macrolide-inducible resistance in Mycobacterium abscessus. Antimicrob Agents Chemother. 2020;64(2):e01879-e1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodvold KA. Clinical pharmacokinetics of clarithromycin. Clin Pharmacokinet. 1999;37(5):385–98.

    Article  CAS  PubMed  Google Scholar 

  91. Dalboge CS, Nielsen XC, Dalhoff K, Alffenaar JW, Duno M, Buchard A, et al. Pharmacokinetic variability of clarithromycin and differences in CYP3A4 activity in patients with cystic fibrosis. J Cyst Fibros. 2014;13(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  92. Schon T, Chryssanthou E. Minimum inhibitory concentration distributions for Mycobacterium avium complex-towards evidence-based susceptibility breakpoints. Int J Infect Dis. 2017;55:122–4.

    Article  PubMed  CAS  Google Scholar 

  93. Ryan K, Byrd TF. Mycobacterium abscessus: shapeshifter of the mycobacterial world. Front Microbiol. 2018;9:2642.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Guo Q, Chu H, Ye M, Zhang Z, Li B, Yang S, et al. The clarithromycin susceptibility genotype affects the treatment outcome of patients with Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2018;62(5):e02360-e2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li H, Tong L, Wang J, Liang Q, Zhang Y, Chu N, et al. An intensified regimen containing linezolid could improve treatment response in Mycobacterium abscessus lung disease. Biomed Res Int. 2019;2019:8631563.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017;55(6):1747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Keel RA, Schaeftlein A, Kloft C, Pope JS, Knauft RF, Muhlebach M, et al. Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis. Antimicrob Agents Chemother. 2011;55(7):3393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bosso JA, Flume PA, Gray SL. Linezolid pharmacokinetics in adult patients with cystic fibrosis. Antimicrob Agents Chemother. 2004;48(1):281–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Santos RP, Prestidge CB, Brown ME, Urbancyzk B, Murphey DK, Salvatore CM, et al. Pharmacokinetics and pharmacodynamics of linezolid in children with cystic fibrosis. Pediatr Pulmonol. 2009;44(2):148–54.

    Article  PubMed  Google Scholar 

  100. Nuermberger E. Evolving strategies for dose optimization of linezolid for treatment of tuberculosis. Int J Tuberc Lung Dis. 2016;20(12):48–51.

    Article  CAS  PubMed  Google Scholar 

  101. World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Contract No.: 2018 (WHO/CDS/TB/2018.5). Licence: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization; 2018.

    Google Scholar 

  102. Zhang Z, Lu J, Song Y, Pang Y. In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex. Diagn Microbiol Infect Dis. 2018;90(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  103. Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2020;42(1):83–92.

    Article  PubMed  Google Scholar 

  104. Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents. 2013;41(6):586–9.

    Article  CAS  PubMed  Google Scholar 

  105. Song T, Lee M, Jeon HS, Park Y, Dodd LE, Dartois V, et al. Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis. EBioMedicine. 2015;2(11):1627–33.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Shoen C, Benaroch D, Sklaney M, Cynamon M. In vitro activities of omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2019;63(5):e02522-e2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gotfried MH, Horn K, Garrity-Ryan L, Villano S, Tzanis E, Chitra S, et al. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy adult subjects. Antimicrob Agents Chemother. 2017;61(9):e01137-e1217.

    Article  Google Scholar 

  108. Wallace RJ Jr, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother. 2014;69(7):1945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.

    Article  CAS  PubMed  Google Scholar 

  110. Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7(11):1459–70.

    Article  CAS  PubMed  Google Scholar 

  111. Ferro BE, Srivastava S, Deshpande D, Pasipanodya JG, van Soolingen D, Mouton JW, et al. Tigecycline is highly efficacious against Mycobacterium abscessus pulmonary disease. Antimicrob Agents Chemother. 2016;60(5):2895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kwon YS, Levin A, Kasperbauer SH, Huitt GA, Daley CL. Efficacy and safety of tigecycline for Mycobacterium abscessus disease. Respir Med. 2019;158:89–91.

    Article  PubMed  Google Scholar 

  113. Pryjma M, Burian J, Thompson CJ. Rifabutin acts in synergy and is bactericidal with frontline Mycobacterium abscessus antibiotics clarithromycin and tigecycline, suggesting a potent treatment combination. Antimicrob Agents Chemother. 2018;62(8):e00283-e318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cheng A, Tsai YT, Chang SY, Sun HY, Wu UI, Sheng WH, et al. In vitro synergism of rifabutin with clarithromycin, imipenem and tigecycline against the Mycobacterium abscessus complex. Antimicrob Agents Chemother. 2019;63(4):e02234-e2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Naline E, Sanceaume M, Toty L, Bakdach H, Pays M, Advenier C. Penetration of minocycline into lung tissues. Br J Clin Pharmacol. 1991;32(3):402–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ruth MM, Sangen JJN, Pennings LJ, Schildkraut JA, Hoefsloot W, Magis-Escurra C, et al. Minocycline has no clear role in the treatment of Mycobacterium abscessus disease. Antimicrob Agents Chemother. 2018;62(10):e01208-e1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ruth MM, Magombedze G, Gumbo T, Bendet P, Sangen JJN, Zweijpfenning S, et al. Minocycline treatment for pulmonary Mycobacterium avium complex disease based on pharmacokinetics/pharmacodynamics and Bayesian framework mathematical models. J Antimicrob Chemother. 2019;74(7):1952–61.

    Article  CAS  PubMed  Google Scholar 

  118. Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.

    Article  CAS  PubMed  Google Scholar 

  119. Magis-Escurra C, Later-Nijland HM, Alffenaar JW, Broeders J, Burger DM, van Crevel R, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44(3):229–34.

    Article  CAS  PubMed  Google Scholar 

  120. Abulfathi AA, Decloedt EH, Svensson EM, Diacon AH, Donald P, Reuter H. Clinical pharmacokinetics and pharmacodynamics of rifampicin in human tuberculosis. Clin Pharmacokinet. 2019;58(9):1103–29.

    Article  CAS  PubMed  Google Scholar 

  121. Chen J, Raymond K. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006;5:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Naidoo A, Naidoo K, McIlleron H, Essack S, Padayatchi N. A review of moxifloxacin for the treatment of drug-susceptible tuberculosis. J Clin Pharmacol. 2017;57(11):1369–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jordan CL, Noah TL, Henry MM. Therapeutic challenges posed by critical drug-drug interactions in cystic fibrosis. Pediatr Pulmonol. 2016;51(S44):S61-s70.

    Article  PubMed  Google Scholar 

  124. Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69(5):1091–101.

    Article  CAS  PubMed  Google Scholar 

  125. Berge M, Guillemain R, Tregouet DA, Amrein C, Boussaud V, Chevalier P, et al. Effect of cytochrome P450 2C19 genotype on voriconazole exposure in cystic fibrosis lung transplant patients. Eur J Clin Pharmacol. 2011;67(3):253–60.

    Article  CAS  PubMed  Google Scholar 

  126. van Ingen J, Hoefsloot W, Mouton JW, Boeree MJ, van Soolingen D. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance. Int J Antimicrob Agents. 2013;42(1):80–2.

    Article  PubMed  CAS  Google Scholar 

  127. Aziz DB, Low JL, Wu ML, Gengenbacher M, Teo JWP, Dartois V, et al. Rifabutin is active against Mycobacterium abscessus Complex. Antimicrob Agents Chemother. 2017;61(6):e00155-e217.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jonsson S, Davidse A, Wilkins J, Van der Walt JS, Simonsson US, Karlsson MO, et al. Population pharmacokinetics of ethambutol in South African tuberculosis patients. Antimicrob Agents Chemother. 2011;55(9):4230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Varughese A, Brater DC, Benet LZ, Lee CS. Ethambutol kinetics in patients with impaired renal function. Am Rev Respir Dis. 1986;134(1):34–8.

    CAS  PubMed  Google Scholar 

  130. Hall RG 2nd, Swancutt MA, Meek C, Leff RD, Gumbo T. Ethambutol pharmacokinetic variability is linked to body mass in overweight, obese, and extremely obese people. Antimicrob Agents Chemother. 2012;56(3):1502–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kim HJ, Lee JS, Kwak N, Cho J, Lee CH, Han SK, et al. Role of ethambutol and rifampicin in the treatment of Mycobacterium avium complex pulmonary disease. BMC Pulm Med. 2019;19(1):212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Deshpande D, Srivastava S, Meek C, Leff R, Gumbo T. Ethambutol optimal clinical dose and susceptibility breakpoint identification by use of a novel pharmacokinetic-pharmacodynamic model of disseminated intracellular Mycobacterium avium. Antimicrob Agents Chemother. 2010;54(5):1728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kwon BS, Kim MN, Sung H, Koh Y, Kim WS, Song JW, et al. In vitro MIC values of rifampin and ethambutol and treatment outcome in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2018;62(10):e00491-e518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ferro BE, Meletiadis J, Wattenberg M, de Jong A, van Soolingen D, Mouton JW, et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016;60(2):1097–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Reddy VM, O’Sullivan JF, Gangadharam PR. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother. 1999;43(5):615–23.

    Article  CAS  PubMed  Google Scholar 

  136. van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56(12):6324–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Schwartz M, Fisher S, Story-Roller E, Lamichhane G, Parrish N. Activities of dual combinations of antibiotics against multidrug-resistant nontuberculous mycobacteria recovered from patients with cystic fibrosis. Microb Drug Resist. 2018;24(8):1191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Luo J, Yu X, Jiang G, Fu Y, Huo F, Ma Y, et al. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrobial Agents Chemotherapy. 2018;62(7):e00072-e118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Elborn JS, Ramsey BW, Boyle MP, Konstan MW, Huang X, Marigowda G, et al. Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis. Lancet Respir Med. 2016;4(8):617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vertex Pharmaceuticals Incorporated. KALYDECO (ivacaftor) product insert.

  142. Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Risk of clinically relevant pharmacokinetic-based drug-drug interactions with drugs approved by the U.S. food and drug administration between 2013 and 2016. Drug Metab Dispos. 2018;46(6):835–45.

    Article  CAS  PubMed  Google Scholar 

  143. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol. 2000;50(4):285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vertex Pharmaceuticals Incorporated. Orkambi (lumacaftor/ivacaftor) product information. Vertex Phaarmaceuticals Incorporated; 2018.

  145. Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381(19):1809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vertex Pharmaceuticals Incorporated. Investigator’s Brochure: Elexacaftor/Tezacaftor/Ivacaftor(VX-445/VX-661/VX-770). Vertex Pharmaceuticals Incorporated; 2019.

  147. Sangana RGH, Yu Chun D, Einolf H. Evaluation of clinical drug interaction potential of clofazimine using static and dynamic modelling approaches. Drug Metab Depos. 2018;46:26–32.

    Article  CAS  Google Scholar 

  148. Borowitz D, Lubarsky B, Wilschanski M, Munck A, Gelfond D, Bodewes F, et al. Nutritional status improved in cystic fibrosis patients with the G551D mutation after treatment with ivacaftor. Dig Dis Sci. 2016;61(1):198–207.

    Article  CAS  PubMed  Google Scholar 

  149. Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics and sputum penetration of azithromycin during once weekly dosing in cystic fibrosis patients. J Cyst Fibros. 2008;7(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  150. Baumann U, King M, App EM, Tai S, Konig A, Fischer JJ, et al. Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can Respir J. 2004;11(2):151–5.

    Article  PubMed  Google Scholar 

  151. Saralaya D, Peckham DG, Hulme B, Tobin CM, Denton M, Conway S, et al. Serum and sputum concentrations following the oral administration of linezolid in adult patients with cystic fibrosis. J Antimicrob Chemother. 2004;53(2):325–8.

    Article  CAS  PubMed  Google Scholar 

  152. Illamola SM, Huynh HQ, Liu X, Bhakta ZN, Sherwin CM, Liou TG, et al. Population pharmacokinetics of amikacin in adult patients with cystic fibrosis. Antimicrob Agents Chemother. 2018;62(10):e00877-e918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Byl B, Baran D, Jacobs F, Herschuelz A, Thys JP. Serum pharmacokinetics and sputum penetration of amikacin 30 mg/kg once daily and of ceftazidime 200 mg/kg/day as a continuous infusion in cystic fibrosis patients. J Antimicrob Chemother. 2001;48(2):325–7.

    Article  CAS  PubMed  Google Scholar 

  154. Grenier B, Autret E, Marchand S, Thompson R. Kinetic parameters of amikacin in cystic fibrosis children. Infection. 1987;15(4):295–9.

    Article  CAS  PubMed  Google Scholar 

  155. Bergan T, Michalsen H, Malmborg AS, Pedersen SS, Pressler T, Storrosten OT, et al. Pharmacokinetic evaluation of imipenem combined with cilastatin in cystic fibrosis. Chemotherapy. 1993;39(6):369–73.

    Article  CAS  PubMed  Google Scholar 

  156. Sanofi-Aventis. Rifampicin product insert. Paris: Sanofi-Aventis; 2017.

    Google Scholar 

  157. Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schon T, Jureen P, Giske CG, Chryssanthou E, Sturegard E, Werngren J, et al. Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother. 2009;64(4):786–93.

    Article  PubMed  CAS  Google Scholar 

  160. Dura Pharmaceuticals. Ethambutol package insert. San Diego: Dura Pharmaceuticals; 2001.

    Google Scholar 

  161. McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Burkhardt O, Borner K, Stass H, Beyer G, Allewelt M, Nord CE, et al. Single- and multiple-dose pharmacokinetics of oral moxifloxacin and clarithromycin, and concentrations in serum, saliva and faeces. Scand J Infect Dis. 2002;34(12):898–903.

    Article  CAS  PubMed  Google Scholar 

  163. Reed MD, Blumer JL. Azithromycin: a critical review of the first azilide antibiotic and its role in pediatric practice. Pediatr Infect Dis J. 1997;16(11):1069–83.

    Article  CAS  PubMed  Google Scholar 

  164. Deshpande D, Srivastava S, Meek C, Leff R, Hall GS, Gumbo T. Moxifloxacin pharmacokinetics/pharmacodynamics and optimal dose and susceptibility breakpoint identification for treatment of disseminated Mycobacterium avium infection. Antimicrob Agents Chemother. 2010;54(6):2534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Peloquin CA, Hadad DJ, Molino LP, Palaci M, Boom WH, Dietze R, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52(3):852–7.

    Article  CAS  PubMed  Google Scholar 

  166. Rodvold KA, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy. 2001;21(10 Pt 2):233s-s252.

    Article  CAS  PubMed  Google Scholar 

  167. Grayson L, editor. Kucers’ the use of antibiotics. 6th ed. London: Hodder Arnold; 2010.

    Google Scholar 

  168. van Ingen J, van der Laan T, Dekhuijzen R, Boeree M, van Soolingen D. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents. 2010;35(2):169–73.

    Article  PubMed  CAS  Google Scholar 

  169. Novartis Pharmaceutical Incorporated. Clofazimine (Lamprene) product information. New Jersey: Novartis Pharmaceutical Incorporated; 2016.

    Google Scholar 

  170. Swanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC, Dorasamy A, et al. Pharmacokinetics and pharmacodynamics of clofazimine in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2015;59(6):3042–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Clarke JT, Libke RD, Regamey C, Kirby WM. Comparative pharmacokinetics of amikacin and kanamycin. Clin Pharmacol Ther. 1974;15(6):610–6.

    Article  CAS  PubMed  Google Scholar 

  172. Chua KY, Bustamante A, Jelfs P, Chen SC, Sintchenko V. Antibiotic susceptibility of diverse Mycobacterium abscessus complex strains in New South Wales. Australia Pathology. 2015;47(7):678–82.

    CAS  PubMed  Google Scholar 

  173. Acocella G. Pharmacokinetics and metabolism of rifampin in humans. Rev Infect Dis. 1983;5(Suppl 3):S428–32.

    Article  CAS  PubMed  Google Scholar 

  174. Kucers’ the use of antibiotics. a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs. 7th ed. Boca Raton: CRC Press; 2018.

    Google Scholar 

  175. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother. 1999;43(3):568–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhu M, Burman WJ, Starke JR, Stambaugh JJ, Steiner P, Bulpitt AE, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis. 2004;8(11):1360–7.

    CAS  PubMed  Google Scholar 

  177. Jeong BH, Jeon K, Park HY, Moon SM, Kim SY, Lee SY, et al. Peak plasma concentration of azithromycin and treatment responses in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2016;60(10):6076–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Alffenaar JW, Kosterink JG, van Altena R, van der Werf TS, Uges DR, Proost JH. Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Ther Drug Monit. 2010;32(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  179. Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother. 2006;50(7):2455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Watanabe A, Anzai Y, Niitsuma K, Saito M, Yanase K, Nakamura M. Penetration of minocycline hydrochloride into lung tissue and sputum. Chemotherapy. 2001;47(1):1–9.

    Article  PubMed  Google Scholar 

  181. Pharmaceuticals T. Minocycline hydrochloride product insert. Cranford: Triax Pharmaceuticals; 2010.

    Google Scholar 

  182. Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72(2):338–53.

    Article  CAS  PubMed  Google Scholar 

  183. Nix DE, Adam RD, Auclair B, Krueger TS, Godo PG, Peloquin CA. Pharmacokinetics and relative bioavailability of clofazimine in relation to food, orange juice and antacid. Tuberculosis (Edinb). 2004;84(6):365–73.

    Article  PubMed  Google Scholar 

  184. White BP, Lomaestro B, Pai MP. Optimizing the initial amikacin dosage in adults. Antimicrob Agents Chemother. 2015;59(11):7094–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee H, Sohn YM, Ko JY, Lee SY, Jhun BW, Park HY, et al. Once-daily dosing of amikacin for treatment of Mycobacterium abscessus lung disease. Int J Tuberc Lung Dis. 2017;21(7):818–24.

    Article  CAS  PubMed  Google Scholar 

  186. Barbour A, Schmidt S, Ma B, Schiefelbein L, Rand KH, Burkhardt O, et al. Clinical pharmacokinetics and pharmacodynamics of tigecycline. Clin Pharmacokinet. 2009;48(9):575–84.

    Article  CAS  PubMed  Google Scholar 

  187. Vic P, Ategbo S, Turck D, Husson M, Tassin E, Loeuille G, Deschildre A, Druon D, Elian J, Arrouet-Lagandre C, Farriaux J. Tolerance, pharmacokinetics and efficacy of once daily amikacin for treatment of Pseudomonas aeruginosa pulmonary exacerbations in custic fibrosis patients. Eur J Paeds. 1996;155:948–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jason A. Roberts would like to acknowledge funding from the Australian National Health and Medical Research Council for a Centre of Research Excellence (APP1099452) and a Practitioner Fellowship (APP1117065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Roberts.

Ethics declarations

Author contributions

AB–conception of paper, extraction of data, interpretation of data, initial drafting of paper, review of paper and approval of final version of paper. DS–conception of paper, interpretation of data, review of paper and approval of final version of paper. CC– conception of paper, interpretation of data, review of paper and approval of final version of paper. SB–conception of paper, interpretation of data, review of paper and approval of final version of paper. RT–conception of paper, interpretation of data, review of paper and approval of final version of paper. JR–conception of paper, interpretation of data, initial drafting of paper, review of paper and approval of final version of paper.

Funding

This work was funded using internal departmental funds only.

Conflict of interest

Andrew Burke, Daniel Smith, Chris Coulter, Scott C. Bell, Rachel Thomson and Jason A. Roberts have no actual conflicts of interest with this work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, A., Smith, D., Coulter, C. et al. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis. Clin Pharmacokinet 60, 1081–1102 (2021). https://doi.org/10.1007/s40262-021-01010-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-021-01010-4

Navigation