Skip to main content
Log in

Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer’s pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic–pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Freedman NM, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30(1):46–53.

    Article  PubMed  Google Scholar 

  2. Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015;56(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  3. Kamasak ME, Bouman CA, Morris ED, Sauer K. Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans Med Imaging. 2005;24(5):636–50.

    Article  CAS  PubMed  Google Scholar 

  4. Lin Y, Haldar J, Li Q, Conti P, Leahy R. Sparsity constrained mixture modeling for the estimation of kinetic parameters in dynamic PET. IEEE Trans Med Imaging. 2013;33(1):173–85.

    PubMed  PubMed Central  Google Scholar 

  5. Janssen MH, Aerts HJ, Ollers MC, Bosmans G, Lee JA, Buijsen J, et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys. 2009;73(2):456–65.

    Article  PubMed  Google Scholar 

  6. Wang G, Qi J. Generalized algorithms for direct reconstruction of parametric images from dynamic PET data. IEEE Trans Med Imaging. 2009;28(11):1717–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics. 2013;3(10):802–15.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45(10):1653–9.

    PubMed  Google Scholar 

  9. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.

    Article  CAS  PubMed  Google Scholar 

  10. Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, et al. “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab. 1998;18(5):500–9.

    Article  CAS  PubMed  Google Scholar 

  11. Galldiks N, Stoffels G, Ruge MI, Rapp M, Sabel M, Reifenberger G, et al. Role of O-(2-18F-fluoroethyl)-l-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013;54(12):2046–54.

    Article  CAS  PubMed  Google Scholar 

  12. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012;39(6):1021–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013;31(8):1426–38.

    Article  PubMed  Google Scholar 

  14. Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol. 2010;96(3):302–7.

    Article  PubMed  Google Scholar 

  15. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging. 2014;34(10):1–33.

    Google Scholar 

  16. Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging. 2010;37(11):2165–87.

    Article  PubMed  Google Scholar 

  17. Besag J. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Stat Methodol. 1974;36(2):192–236.

    Google Scholar 

  18. Stanford DC, Raftery AE. Approximate Bayes factors for image segmentation: the Pseudolikelihood Information Criterion (PLIC). IEEE T Pattern Anal. 2002;24(11):1517–20.

    Article  Google Scholar 

  19. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Stat Methodol. 1977;39(1):1–38.

    Google Scholar 

  20. Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal. 2005;49(4):1020–38.

    Article  Google Scholar 

  21. Kolesnikov A, Trichina E, Kauranne T. Estimating the number of clusters in a numerical data set via quantization error modeling. Pattern Recognit. 2015;48(3):941–52.

    Article  Google Scholar 

  22. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol. 2001;63(2):411–23.

    Article  Google Scholar 

  23. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59.

    Article  PubMed  Google Scholar 

  24. Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40(6):064301.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tohka J, Reilhac A. A Monte Carlo study of deconvolution algorithms for partial volume correction in quantitative PET. IEEE Nuclear Science Symposium Conference Record; 2006. p. 3339–45.

  26. Modat M, Cash DM, Daga P, Winston GP, Duncan JS, Ourselin S. Global image registration using a symmetric block-matching approach. J Med Imaging. 2014;1(2):024003.

    Article  Google Scholar 

  27. Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed. 2011;104(3):e158–77.

    Article  PubMed  Google Scholar 

  28. Parisot S, Darlix A, Baumann C, Zouaoui S, Yordanova Y, Blonski M, et al. A probabilistic atlas of diffuse WHO Grade II glioma locations in the brain. PLoS One. 2016;11(1):e0144200.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8(3):275–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. J. Woodley for help with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Concordet.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Peggy Gandia, Cyril Jaudet, Etienne Chatelut and Didier Concordet declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandia, P., Jaudet, C., Chatelut, E. et al. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?. Clin Pharmacokinet 56, 101–106 (2017). https://doi.org/10.1007/s40262-016-0437-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0437-9

Keywords

Navigation