Skip to main content
Log in

Future of Cholesteryl Ester Transfer Protein (CETP) Inhibitors: A Pharmacological Perspective

  • Current Opinion
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

In almost 30 years since the introduction of HMG-CoA reductase inhibitors (statins), no other class of lipid modulators has entered the market. Elevation of high-density lipoprotein-cholesterol (HDL-C) via inhibiting cholesteryl ester transfer protein (CETP) is an attractive strategy for reducing the risk of cardiovascular events in high-risk patients. Transfer of triglyceride and cholesteryl ester (CE) between lipoproteins is mediated by CETP; thus inhibition of this pathway can increase the concentration of HDL-C. Torcetrapib was the first CETP inhibitor evaluated in phase III clinical trials. Because of off-target effects, torcetrapib raised blood pressure and increased the concentration of serum aldosterone, leading to higher cardiovascular events and mortality. Torcetrapib showed positive effects on cardiovascular risk especially in patients with a greater increase in HDL-C and apolipoprotein A-1 (apoA-1) levels. The phase III clinical trial of dalcetrapib, the second CETP inhibitor that has entered clinical development, was terminated because of ineffectiveness. Dalcetrapib is a CETP modulator that elevated HDL-C levels but did not reduce the concentration of low-density lipoprotein cholesterol (LDL-C). Both heterotypic and homotypic CE transfer between lipoproteins are mediated by some CETP inhibitors, including torcetrapib, anacetrapib, and evacetrapib, while dalcetrapib only affects the heterotypic CE transfer. Dalcetrapib has a chemical structure that is distinct from other CETP inhibitors, with a smaller molecular weight and a lack of trifluoride moieties. Moreover, dalcetrapib is a pro-drug that must be hydrolyzed to a pharmacologically active thiol form. Two other CETP inhibitors, anacetrapib and evacetrapib, are currently undergoing evaluation in phase III clinical trials. Both molecules have shown beneficial effects by increasing HDL-C and decreasing LDL-C concentration. The success of anacetrapib and evacetrapib remains to be confirmed upon the completion of phase III clinical trials in 2017 and 2015, respectively. Generally, the concentration of HDL-C has been considered a biomarker for the activity of CETP inhibitors. However, it is not clear whether a fundamental relationship exists between HDL-C levels and the risk of coronary artery diseases. The most crucial role for HDL is cholesterol efflux capacity in which HDL can reverse transport cholesterol from foam cells in atherosclerotic plaques. In view of the heterogeneity in HDL particle size, charge, and composition, the mere concentration of HDL-C may not be a good surrogate marker for HDL functionality. Recent clinical studies have reported that increased HDL functionality inversely correlates with the development of atherosclerotic plaque. Future development of CETP inhibitors may therefore benefit from the use of biomarkers of HDL functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham study. Am J Med. 1977;62(5):707–14.

    Article  PubMed  CAS  Google Scholar 

  2. Castelli WP, Garrison RJ, Wilson PW, et al. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 1986;256(20):2835–8.

    Article  PubMed  CAS  Google Scholar 

  3. Corti MC, Guralnik JM, Salive ME, et al. HDL cholesterol predicts coronary heart disease mortality in older persons. JAMA. 1995;274(7):539–44.

    Article  PubMed  CAS  Google Scholar 

  4. Gordon DJ, Probstfield JL, Garrison RJ, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989;79(1):8–15.

    Article  PubMed  CAS  Google Scholar 

  5. Kuvin JT, Alsheikh-Ali AA, Karas RH. High-density lipoprotein cholesterol-raising strategies. J Cardiovasc Pharmacol. 2006;47(2):196–204.

    Article  PubMed  CAS  Google Scholar 

  6. Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.

    Article  PubMed  CAS  Google Scholar 

  7. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93.

    Article  PubMed  CAS  Google Scholar 

  8. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999;341(6):410–8.

    Article  PubMed  CAS  Google Scholar 

  9. Shepherd J. Fibrates and statins in the treatment of hyperlipidaemia: an appraisal of their efficacy and safety. Eur Heart J. 1995;16(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  10. Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis. 2010;210(2):353–61.

    Article  PubMed  CAS  Google Scholar 

  11. Singh IM, Shishehbor MH, Ansell BJ. High-density lipoprotein as a therapeutic target: a systematic review. JAMA. 2007;298(7):786–98.

    Article  PubMed  CAS  Google Scholar 

  12. Lagrost L, Gambert P, Dangremont V, et al. Role of cholesteryl ester transfer protein (CETP) in the HDL conversion process as evidenced by using anti-CETP monoclonal antibodies. J Lipid Res. 1990;31(9):1569–75.

    PubMed  CAS  Google Scholar 

  13. Okamoto H, Yonemori F, Wakitani K, et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature. 2000;406(6792):203–7.

    Article  PubMed  CAS  Google Scholar 

  14. Clark RW, Ruggeri RB, Cunningham D, et al. Description of the torcetrapib series of cholesteryl ester transfer protein inhibitors, including mechanism of action. J Lipid Res. 2006;47(3):537–52.

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz GG, Olsson AG, Ballantyne CM, et al. Rationale and design of the dal-OUTCOMES trial: efficacy and safety of dalcetrapib in patients with recent acute coronary syndrome. Am Heart J. 2009;158(6):896–901, e3.

    Google Scholar 

  16. Krishna R, Anderson MS, Bergman AJ, et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies. Lancet. 2007;370(9603):1907–14.

    Article  PubMed  CAS  Google Scholar 

  17. Cao G, Beyer TP, Zhang Y, et al. Evacetrapib is a novel, potent, and selective inhibitor of cholesteryl ester transfer protein that elevates HDL cholesterol without inducing aldosterone or increasing blood pressure. J Lipid Res. 2011;52(12):2169–76.

    Article  PubMed  CAS  Google Scholar 

  18. Weber O, Willmann S, Bischoff H, et al. Prediction of a potentially effective dose in humans for BAY 60–5521, a potent inhibitor of cholesteryl ester transfer protein (CETP) by allometric species scaling and combined pharmacodynamic and physiologically-based pharmacokinetic modelling. Br J Clin Pharmacol. 2012;73(2):219–31.

    Article  PubMed  CAS  Google Scholar 

  19. Sarich TC, Connelly MA, Schranz DB, et al. A Phase 0 study of the inhibition of cholesteryl ester transfer protein activity by JNJ-28545595 in plasma from normolipidemic and dyslipidemic humans. Int J Clin Pharmacol Ther. 2012;50(8):584–94.

    Google Scholar 

  20. Tall AR, Yvan-Charvet L, Wang N. The failure of torcetrapib: was it the molecule or the mechanism? Arterioscler Thromb Vasc Biol. 2007;27(2):257–60.

    Article  PubMed  CAS  Google Scholar 

  21. Sweetlove M. Phase III trial of dalcetrapib: discontinued due to lack of efficacy. Pharm Med. 2012;26(4):253–6.

    Article  Google Scholar 

  22. Shinkai H. Cholesteryl ester transfer-protein modulator and inhibitors and their potential for the treatment of cardiovascular diseases. Vasc Health Risk Manag. 2012;8:323–31.

    Article  PubMed  CAS  Google Scholar 

  23. Masson D, Jiang XC, Lagrost L, et al. The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J Lipid Res. 2009;50(Suppl):S201–6.

    PubMed  Google Scholar 

  24. Barter PJ, Rye KA. Cholesteryl ester transfer protein (CETP) inhibition as a strategy to reduce cardiovascular risk. J Lipid Res. 2012;53(9):1755–66.

    Google Scholar 

  25. Boekholdt SM, Kuivenhoven JA, Hovingh GK, et al. CETP gene variation: relation to lipid parameters and cardiovascular risk. Curr Opin Lipidol. 2004;15(4):393–8.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article  PubMed  CAS  Google Scholar 

  27. Brown ML, Inazu A, Hesler CB, et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature. 1989;342(6248):448–51.

    Article  PubMed  CAS  Google Scholar 

  28. Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990;323(18):1234–8.

    Article  PubMed  CAS  Google Scholar 

  29. Boekholdt SM, Thompson JF. Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res. 2003;44(6):1080–93.

    Article  PubMed  CAS  Google Scholar 

  30. Ridker PM, Pare G, Parker AN, et al. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18245 initially healthy women from the Women’s Genome Health Study. Circ Cardiovasc Genet. 2009;2(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  31. Wolk R, Chen D, Clark RW, et al. Pharmacokinetic, pharmacodynamic, and safety profile of a new cholesteryl ester transfer protein inhibitor in healthy human subjects. Clin Pharmacol Ther. 2009;86(4):430–7.

    Article  PubMed  CAS  Google Scholar 

  32. Dalvie D, Chen W, Zhang C, et al. Pharmacokinetics, metabolism, and excretion of torcetrapib, a cholesteryl ester transfer protein inhibitor, in humans. Drug Metab Dispos. 2008;36(11):2185–98.

    Article  PubMed  CAS  Google Scholar 

  33. Prakash C, Chen W, Rossulek M, et al. Metabolism, pharmacokinetics, and excretion of a cholesteryl ester transfer protein inhibitor, torcetrapib, in rats, monkeys, and mice: characterization of unusual and novel metabolites by high-resolution liquid chromatography-tandem mass spectrometry and 1H nuclear magnetic resonance. Drug Metab Dispos. 2008;36(10):2064–79.

    Article  PubMed  CAS  Google Scholar 

  34. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356(13):1304–16.

    Article  PubMed  CAS  Google Scholar 

  35. Kastelein JJ, van Leuven SI, Burgess L, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007;356(16):1620–30.

    Article  PubMed  CAS  Google Scholar 

  36. Bots ML, Visseren FL, Evans GW, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007;370(9582):153–60.

    Article  PubMed  CAS  Google Scholar 

  37. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  PubMed  CAS  Google Scholar 

  38. Rader DJ. Illuminating HDL—is it still a viable therapeutic target? N Engl J Med. 2007;357(21):2180–3.

    Article  PubMed  CAS  Google Scholar 

  39. Hewing B, Fisher EA. Rationale for cholesteryl ester transfer protein inhibition. Curr Opin Lipidol. 2012;23(4):372–6.

    Google Scholar 

  40. Bentley D, Young AM, Rowell L, et al. Evidence of a drug–drug interaction linked to inhibition of ester hydrolysis by orlistat. J Cardiovasc Pharmacol. 2012;60(4):390–6.

    Google Scholar 

  41. Vergeer M, Stroes ES. The pharmacology and off-target effects of some cholesterol ester transfer protein inhibitors. Am J Cardiol. 2009;104(10 Suppl):32E–8E.

    Article  PubMed  CAS  Google Scholar 

  42. Derks M, Anzures-Cabrera J, Turnbull L, et al. Safety, tolerability and pharmacokinetics of dalcetrapib following single and multiple ascending doses in healthy subjects: a randomized, double-blind, placebo-controlled, phase I study. Clin Drug Investig. 2011;31(5):325–35.

    Article  PubMed  CAS  Google Scholar 

  43. Niesor EJ, Magg C, Ogawa N, et al. Modulating cholesteryl ester transfer protein activity maintains efficient pre-beta-HDL formation and increases reverse cholesterol transport. J Lipid Res. 2010;51(12):3443–54.

    Article  PubMed  Google Scholar 

  44. Kuhlmann O, Heinig K. Dalcetrapib pharmacokinetics and metabolism in the cynomolgus monkey. Xenobiotica. 2011;41(5):430–6.

    Article  PubMed  CAS  Google Scholar 

  45. Derks M, Kawamura H, Abt M, et al. Effects of food intake on the pharmacokinetic properties of dalcetrapib: findings from three phase I, single-dose crossover studies in healthy volunteers. Clin Ther. 2011;33(6):754–65.

    Article  PubMed  CAS  Google Scholar 

  46. Xiao D, Shi D, Yang D, et al. Carboxylesterase-2 is a highly sensitive target of the antiobesity agent orlistat with profound implications in the activation of anticancer prodrugs. Biochem Pharmacol. 2013;85(3):439–47.

    Article  PubMed  CAS  Google Scholar 

  47. Derks M, Abt M, Phelan M, et al. Coadministration of dalcetrapib with pravastatin, rosuvastatin, or simvastatin: no clinically relevant drug–drug interactions. J Clin Pharmacol. 2010;50(10):1188–201.

    Article  PubMed  CAS  Google Scholar 

  48. Derks M, Abt M, Parr G, et al. No clinically relevant drug–drug interactions when dalcetrapib is co-administered with atorvastatin. Expert Opin Investig Drugs. 2010;19(10):1135–45.

    Article  PubMed  CAS  Google Scholar 

  49. Derks M, Abt M, Phelan M. Lack of clinically relevant drug–drug interactions when dalcetrapib is co-administered with ezetimibe. Br J Clin Pharmacol. 2010;70(6):825–33.

    Article  PubMed  CAS  Google Scholar 

  50. Young A, Anzures-Cabrera J, Derks M. No clinically relevant drug-drug interactions when dalcetrapib is co-administered with a monophasic oral contraceptive (Microgynon(R) 30). Int J Clin Pharmacol Ther. 2012;50(4):248–56.

    PubMed  CAS  Google Scholar 

  51. Baldo PA, Anzures-Cabrera J, Bentley D. In vivo evaluation of drug-drug interactions linked to UGT inhibition: the effect of probenecid on dalcetrapib pharmacokinetics. Int J Clin Pharmacol Ther. 2013;51(3):215–8.

    Google Scholar 

  52. Luscher TF, Taddei S, Kaski JC, et al. Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J. 2012;33(7):857–65.

    Article  PubMed  Google Scholar 

  53. Fayad ZA, Mani V, Woodward M, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378(9802):1547–59.

    Article  PubMed  CAS  Google Scholar 

  54. Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Google Scholar 

  55. Krishna R, Garg A, Panebianco D, et al. Single-dose pharmacokinetics and pharmacodynamics of anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Br J Clin Pharmacol. 2009;68(4):535–45.

    Article  PubMed  CAS  Google Scholar 

  56. Krishna R, Bergman AJ, Jin B, et al. Multiple-dose pharmacodynamics and pharmacokinetics of anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Clin Pharmacol Ther. 2008;84(6):679–83.

    Article  PubMed  CAS  Google Scholar 

  57. Tan EY, Hartmann G, Chen Q, et al. Pharmacokinetics, metabolism, and excretion of anacetrapib, a novel inhibitor of the cholesteryl ester transfer protein, in rats and rhesus monkeys. Drug Metab Dispos. 2010;38(3):459–73.

    Article  PubMed  CAS  Google Scholar 

  58. Kumar S, Tan EY, Hartmann G, et al. Metabolism and excretion of anacetrapib, a novel inhibitor of the cholesteryl ester transfer protein, in humans. Drug Metab Dispos. 2010;38(3):474–83.

    Article  PubMed  CAS  Google Scholar 

  59. Krishna R, Garg A, Jin B, et al. Assessment of a pharmacokinetic and pharmacodynamic interaction between simvastatin and anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Br J Clin Pharmacol. 2009;67(5):520–6.

    Article  PubMed  CAS  Google Scholar 

  60. Krishna R, Stypinski D, Ali M, et al. Lack of an effect of anacetrapib on the pharmacokinetics of digoxin in healthy subjects. Biopharm Drug Dispos. 2011;32(9):525–9.

    Article  PubMed  CAS  Google Scholar 

  61. Krishna R, Stypinski D, Ali M, et al. Lack of a meaningful effect of anacetrapib on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol. 2012;74(1):116–24.

    Article  PubMed  CAS  Google Scholar 

  62. Krishna R, Bergman AJ, Jin B, et al. Assessment of the CYP3A-mediated drug interaction potential of anacetrapib, a potent cholesteryl ester transfer protein (CETP) inhibitor, in healthy volunteers. J Clin Pharmacol. 2009;49(1):80–7.

    Article  PubMed  CAS  Google Scholar 

  63. Yvan-Charvet L, Kling J, Pagler T, et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler Thromb Vasc Biol. 2010;30(7):1430–8.

    Article  PubMed  CAS  Google Scholar 

  64. Cannon CP, Shah S, Dansky HM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363(25):2406–15.

    Article  PubMed  CAS  Google Scholar 

  65. Krauss RM, Wojnooski K, Orr J, et al. Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib. J Lipid Res. 2012;53(3):540–7.

    Article  PubMed  CAS  Google Scholar 

  66. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation. 1997;95(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  67. Fernandez MC, Escribano A, Mateo AI, et al. Design, synthesis and structure-activity-relationship of 1,5-tetrahydronaphthyridines as CETP inhibitors. Bioorg Med Chem Lett. 2012;22(9):3056–62.

    Article  PubMed  CAS  Google Scholar 

  68. Nicholls SJ, Brewer HB, Kastelein JJ, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA. 2011;306(19):2099–109.

    Article  PubMed  CAS  Google Scholar 

  69. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.

    Google Scholar 

  70. Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis. 1988;8(6):737–41.

    Article  PubMed  CAS  Google Scholar 

  71. Franceschini G, Sirtori CR, Capurso A 2nd, et al. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest. 1980;66(5):892–900.

    Article  PubMed  CAS  Google Scholar 

  72. Calabresi L, Baldassarre D, Castelnuovo S, et al. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation. 2009;120(7):628–35.

    PubMed  CAS  Google Scholar 

  73. Frikke-Schmidt R, Nordestgaard BG, Stene MC, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299(21):2524–32.

    Article  PubMed  CAS  Google Scholar 

  74. Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med. 2008;263(3):256–73.

    Article  PubMed  CAS  Google Scholar 

  75. Linsel-Nitschke P, Jansen H, Aherrarhou Z, et al. Macrophage cholesterol efflux correlates with lipoprotein subclass distribution and risk of obstructive coronary artery disease in patients undergoing coronary angiography. Lipids Health Dis. 2009;8:14.

    Article  PubMed  Google Scholar 

  76. Mikkola TS, Anthony MS, Clarkson TB, et al. Serum cholesterol efflux potential is an independent predictor of coronary artery atherosclerosis. Atherosclerosis. 2003;170(1):31–8.

    Article  PubMed  CAS  Google Scholar 

  77. Low H, Hoang A, Sviridov D. Cholesterol efflux assay. J Vis Exp. 2012;61:e3810.

    PubMed  Google Scholar 

  78. Daniil G, Phedonos AA, Holleboom AG, et al. Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders. Clin Chim Acta. 2011;412(13–14):1213–20.

    Article  PubMed  CAS  Google Scholar 

  79. Bhattacharyya T, Nicholls SJ, Topol EJ, et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299(11):1265–76.

    Article  PubMed  CAS  Google Scholar 

  80. Barter PJ, Nicholls S, Rye KA, et al. Antiinflammatory properties of HDL. Circ Res. 2004;95(8):764–72.

    Article  PubMed  CAS  Google Scholar 

  81. Krukemyer JJ, Talbert RL. Lovastatin: a new cholesterol-lowering agent. Pharmacotherapy. 1987;7(6):198–210.

    PubMed  CAS  Google Scholar 

  82. Zhao XQ, Morse JS, Dowdy AA, et al. Safety and tolerability of simvastatin plus niacin in patients with coronary artery disease and low high-density lipoprotein cholesterol. The HDL Atherosclerosis Treatment Study. Am J Cardiol. 2004;93:307–12.

    Google Scholar 

Download references

Acknowledgments

Support from Grant # R15 GM101599 from the National Institutes of Health is gratefully acknowledged. The authors (Mohammadpour AH and Akhlaghi F) declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Akhlaghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadpour, A.H., Akhlaghi, F. Future of Cholesteryl Ester Transfer Protein (CETP) Inhibitors: A Pharmacological Perspective. Clin Pharmacokinet 52, 615–626 (2013). https://doi.org/10.1007/s40262-013-0071-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0071-8

Keywords

Navigation