Skip to main content
Log in

Prediction of Morphine Clearance in the Paediatric Population

How Accurate are the Available Pharmacokinetic Models?

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The pharmacokinetics of morphine in paediatrics have been widely studied using different approaches and modelling techniques. In this review, we explore advantages and disadvantages of the different data analysis techniques that have been applied, with specific focus on the accuracy of morphine clearance predictions by reported paediatric pharmacokinetic models. Twenty paediatric studies reported a wide range in morphine clearance values using traditional, rather descriptive methods. Clearance values were expressed per kilogram bodyweight, while maturation in clearance was described by comparing mean clearance per kilogram bodyweight between age-stratified subgroups. Population modelling allows for the analysis of sparse data, thereby limiting the burden to individual patients. Using this technique, continuous maturation profiles can be obtained on the basis of either fixed allometric scaling or comprehensive covariate analysis. While the models based on fixed allometric scaling resulted in complex maturation functions, all three paediatric population models for morphine yielded quite similar clearance predictions. The largest difference in clearance predictions between these three population models occurred in the first months of life, particularly in preterm neonates. Morphine clearance predictions by a physiologically based pharmacokinetic model were based on many continuous equations describing changes in underlying physiological processes across the full paediatric age range, and resulted in similar clearance predictions as well. However, preterm neonates could not be integrated in this model. In conclusion, the value of paediatric pharmacokinetic models is mostly dependent on clearance predictions and population concentration predictions, rather than on the individual description of data. For most pharmacokinetic models, however, the assessment of model performance was very limited and the accuracy of morphine clearance predictions as well as population concentration predictions was confirmed by formal evaluation and validation procedures for only one model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Coffman BL, Rios GR, King CD, Tephly TR. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25:1–4.

    PubMed  CAS  Google Scholar 

  2. Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, et al. Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos. 2003;31:1125–33.

    Article  PubMed  CAS  Google Scholar 

  3. Morrish GA, Foster DJR, Somogyi AA. Differential in vitro inhibition of M3G and M6G formation from morphine by (R)- and (S)-methadone and structurally related opioids. Br J Clin Pharmacol. 2006;61:326–35.

    Article  PubMed  CAS  Google Scholar 

  4. Osborne R, Thompson P, Joel S, Trew D, Patel N, Slevin M. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol. 1992;34:130–8.

    Article  PubMed  CAS  Google Scholar 

  5. Buck ML. Pharmacokinetic changes during extracorporeal membrane oxygenation: implications for drug therapy of neonates. Clin Pharmacokinet. 2003;42:403–17.

    Article  PubMed  CAS  Google Scholar 

  6. Bhatt-Meht V, Annich G. Sedative clearance during extracorporeal membrane oxygenation. Perfusion. 2005;20:309–15.

    Article  PubMed  Google Scholar 

  7. Roka A, Melinda KT, Vasarhelyi B, Machay T, Azzopardi D, Szabo M. Elevated morphine concentrations in neonates treated with morphine and prolonged hypothermia for hypoxic ischemic encephalopathy. Pediatrics. 2008;121:e844–9.

    Article  PubMed  Google Scholar 

  8. Lynn AM, Nespeca MK, Bratton SL, Shen DD. Intravenous morphine in postoperative infants: intermittent bolus dosing versus targeted continuous infusions. Pain. 2000;88:89–95.

    Article  PubMed  CAS  Google Scholar 

  9. Scott CS, Riggs KW, Ling EW, Fitzgerald CE, Hill ML, Grunau RV, et al. Morphine pharmacokinetics and pain assessment in premature newborns. J Pediatr. 1999;135:423–9.

    Article  PubMed  CAS  Google Scholar 

  10. Lynn A, Nespeca MK, Bratton SL, Strauss SG, Shen DD. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg. 1998;86:958–63.

    PubMed  CAS  Google Scholar 

  11. Dagan O, Klein J, Bohn D, Barker G, Koren G. Morphine pharmacokinetics in children following cardiac surgery: effects of disease and inotropic support. J Cardiothorac Vasc Anesth. 1993;7:396–8.

    Article  PubMed  CAS  Google Scholar 

  12. Dampier CD, Setty BN, Logan J, Ioli JG, Dean R. Intravenous morphine pharmacokinetics in pediatric patients with sickle cell disease. J Pediatr. 1995;126:461–7.

    Article  PubMed  CAS  Google Scholar 

  13. Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47:231–43.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24:25–36.

    Article  PubMed  CAS  Google Scholar 

  15. Mahmood I. Theoretical versus empirical allometry: facts behind theories and application to pharmacokinetics. J Pharm Sci. 2010;99:2927–33.

    PubMed  CAS  Google Scholar 

  16. Dodds PS, Rothman DH, Weitz JS. Re-examination of the “3/4-law” of metabolism. J Theor Biol. 2001;209:9–27.

    Article  PubMed  CAS  Google Scholar 

  17. Agutter PS, Wheatley DN. Metabolic scaling: consensus or controversy? Theor Biol Med Model. 2004;1:13.

    Article  PubMed  Google Scholar 

  18. Bokma F. Evidence against universal metabolic allometry. Funct Ecol. 2004;18:184–7.

    Article  Google Scholar 

  19. Glazier DS. Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev. 2005;80:611–62.

    Article  PubMed  Google Scholar 

  20. White CR, Cassey P, Blackburn TM. Allometric exponents do not support a universal metabolic allometry. Ecology. 2007;88:315–23.

    Article  PubMed  Google Scholar 

  21. Kolokotrones T, Van S, Deeds EJ, Fontana W. Curvature in metabolic scaling. Nature. 2010;464:753–6.

    Article  PubMed  CAS  Google Scholar 

  22. Mahmood I. Prediction of drug clearance in children from adults: a comparison of several allometric methods. Br J Clin Pharmacol. 2006;61:545–57.

    Article  PubMed  CAS  Google Scholar 

  23. Mahmood I. Prediction of drug clearance in children: impact of allometric exponents, body weight, and age. Ther Drug Monit. 2007;29:271–8.

    Article  PubMed  Google Scholar 

  24. De Cock RF, Piana C, Krekels EH, Danhof M, Allegaert K, Knibbe CA. The role of population PK–PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67:5–16.

    Article  PubMed  Google Scholar 

  25. Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NH. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92:208–17.

    Article  PubMed  CAS  Google Scholar 

  26. Van Dijk M, Bouwmeester NJ, Duivenvoorden HJ, Koot HM, Tibboel D, Passchier J, et al. Efficacy of continuous versus intermittent morphine administration after major surgery in 0–3-year-old infants; a double-blind randomized controlled trial. Pain. 2002;98:305–13.

    Article  PubMed  Google Scholar 

  27. Krekels EH, van Hasselt JG, Tibboel D, Danhof M, Knibbe CA. Systematic evaluation of the descriptive and predictive performance of paediatric morphine population models. Pharm Res. 2011;28:797–811.

    Article  PubMed  CAS  Google Scholar 

  28. Anand KJ, Anderson BJ, Holford NH, Hall RW, Young T, Shephard B, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101:680–9.

    Article  PubMed  CAS  Google Scholar 

  29. Mahmood I. Evaluation of a morphine maturation model for the prediction of morphine clearance in children: how accurate is the predictive performance of the model? Br J Clin Pharmacol. 2011;71:88–94.

    Article  PubMed  Google Scholar 

  30. Knibbe CA, Krekels EH, van den Anker JN, DeJongh J, Santen GW, van Dijk M, et al. Morphine glucuronidation in preterm neonates, infants and children younger than 3 years. Clin Pharmacokinet. 2009;48:371–85.

    Article  PubMed  CAS  Google Scholar 

  31. Simons SH, van Dijk M, Van Lingen RA, Roofthooft D, Duivenvoorden HJ, Jongeneel N, et al. Routine morphine infusion in preterm newborns who received ventilatory support: a randomized controlled trial. JAMA. 2003;290:2419–27.

    Article  PubMed  CAS  Google Scholar 

  32. Krekels EH, DeJongh J, Van Lingen RA, Van der Marel CD, Choonara I, Lynn AM, et al. Predictive performance of a recently developed population pharmacokinetic model for morphine and its metabolites in new datasets of (preterm) neonates, infants and children. Clin Pharmacokinet. 2011;50:51–63.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45:931–56.

    Article  PubMed  CAS  Google Scholar 

  34. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45:1013–34.

    Article  PubMed  CAS  Google Scholar 

  35. Fagerholm U. Prediction of human pharmacokinetics: evaluation of methods for prediction of hepatic metabolic clearance. J Pharm Pharmacol. 2007;59:803–28.

    Article  PubMed  CAS  Google Scholar 

  36. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704.

    Article  PubMed  CAS  Google Scholar 

  37. Krekels EH, Panoilia E, Neely M, Tibboel D, Capparelli E, Danhof M, et al. Maturation of glucuronidation; a system specific property [poster]. PAGE 20th meeting; 2011 Jun 7–10; Athens.

  38. De Cock RFW, Allegaert K, Sherwin CMT, de Hoog M, van den Anker JN, Danhof M, et al. Maturation of GFR in preterm and term neonates reflected by clearance of different antibiotics [abstract no. 2096]. PAGE 20th meeting; 2011 Jun 7–10; Athens.

  39. Knibbe CA, Danhof M. Individualized dosing regimens in children based on population PKPD modelling: are we ready for it? Int J Pharm. 2011;415:9–14.

    Article  PubMed  CAS  Google Scholar 

  40. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet. 2002;41:959–98.

    Article  PubMed  CAS  Google Scholar 

  41. Knibbe CA, Krekels EH, Danhof M. Advances in paediatric pharmacokinetics. Expert Opin Drug Metab Toxicol. 2011;7:1–8.

    Article  PubMed  CAS  Google Scholar 

  42. Hartley R, Green M, Quinn M, Levene MI. Pharmacokinetics of morphine infusion in premature neonates. Arch Dis Child. 1993;69:55–8.

    Article  PubMed  CAS  Google Scholar 

  43. Saarenmaa E, Neuvonen PJ, Rosenberg P, Fellman V. Morphine clearance and effects in newborn infants in relation to gestational age. Clin Pharmacol Ther. 2000;68:160–6.

    Article  PubMed  CAS  Google Scholar 

  44. Barrett DA, Barker DP, Rutter N, Pawula M, Shaw PN. Morphine, morphine-6-glucuronide and morphine-3-glucuronide pharmacokinetics in newborn infants receiving diamorphine infusions. Br J Clin Pharmacol. 1996;41:531–7.

    Article  PubMed  CAS  Google Scholar 

  45. Chay PC, Duffy BJ, Walker JS. Pharmacokinetic-pharmacodynamic relationships of morphine in neonates. Clin Pharmacol Ther. 1992;51:334–42.

    Article  PubMed  CAS  Google Scholar 

  46. Mikkelsen S, Feilberg VL, Christensen CB, Lundstrom KE. Morphine pharmacokinetics in premature and mature newborn infants. Acta Paediatr. 1994;83:1025–8.

    Article  PubMed  CAS  Google Scholar 

  47. Barrett DA, Elias-Jones AC, Rutter N, Shaw PN, Davis SS. Morphine kinetics after diamorphine infusion in premature neonates. Br J Clin Pharmacol. 1991;32:31–7.

    Article  PubMed  CAS  Google Scholar 

  48. Pokela ML, Olkkola KT, Seppala T, Koivisto M. Age-related morphine kinetics in infants. Dev Pharmacol Ther. 1993;20:26–34.

    PubMed  CAS  Google Scholar 

  49. Choonara I, Lawrence A, Michalkiewicz A, Bowhay A, Ratcliffe J. Morphine metabolism in neonates and infants. Br J Clin Pharmacol. 1992;34:434–7.

    Article  PubMed  CAS  Google Scholar 

  50. Haberkern CM, Lynn AM, Geiduschek JM, Nespeca MK, Jacobson LE, Bratton SL, et al. Epidural and intravenous bolus morphine for postoperative analgesia in infants. Can J Anaesth. 1996;43:1203–10.

    Article  PubMed  CAS  Google Scholar 

  51. McRorie TI, Lynn AM, Nespeca MK, Opheim KE, Slattery JT. The maturation of morphine clearance and metabolism. Am J Dis Child. 1992;146:972–6.

    PubMed  CAS  Google Scholar 

  52. Hain RD, Hardcastle A, Pinkerton CR, Aherne GW. Morphine and morphine-6-glucuronide in the plasma and cerebrospinal fluid of children. Br J Clin Pharmacol. 1999;48:37–42.

    Article  PubMed  CAS  Google Scholar 

  53. Mashayekhi SO, Ghandforoush-Sattari M, Routledge PA, Hain RD. Pharmacokinetic and pharmacodynamic study of morphine and morphine 6-glucuronide after oral and intravenous administration of morphine in children with cancer. Biopharm Drug Dispos. 2009;30:99–106.

    Article  PubMed  CAS  Google Scholar 

  54. Kopecky EA, Jacobson S, Joshi P, Koren G. Systemic exposure to morphine and the risk of acute chest syndrome in sickle cell disease. Clin Pharmacol Ther. 2004;75:140–6.

    Article  PubMed  CAS  Google Scholar 

  55. Robieux IC, Kellner JD, Coppes MJ, Shaw D, Brown E, Good C, et al. Analgesia in children with sickle cell crisis: comparison of intermittent opioids vs. continuous intravenous infusion of morphine and placebo-controlled study of oxygen inhalation. Pediatr Hematol Oncol. 1992;9:317–26.

    Article  PubMed  CAS  Google Scholar 

  56. Van Lingen RA. Pain assessment and analgesia in the newborn: an integrated approach [thesis]. Rotterdam: Erasmus University; 2000.

    Google Scholar 

  57. Van der Marel CD, Peters JW, Bouwmeester NJ, Jacqz-Aigrain E, van den Anker JN, Tibboel D. Rectal acetaminophen does not reduce morphine consumption after major surgery in young infants. Br J Anaesth. 2007;98:372–9.

    Article  PubMed  Google Scholar 

  58. Peters JW, Anderson BJ, Simons SH, Uges DR, Tibboel D. Morphine pharmacokinetics during venoarterial extracorporeal membrane oxygenation in neonates. Intensive Care Med. 2005;31:257–63.

    Article  PubMed  Google Scholar 

  59. Peters JW, Anderson BJ, Simons SH, Uges DR, Tibboel D. Morphine metabolite pharmacokinetics during venoarterial extra corporeal membrane oxygenation in neonates. Clin Pharmacokinet. 2006;45:705–14.

    Article  PubMed  CAS  Google Scholar 

  60. Hanekamp MN. Short and long term studies in neonates treated with extracorporeal membrane oxygenation (ECMO) [thesis]. Rotterdam: Erasmus University; 2005.

    Google Scholar 

  61. Vandenberghe H, Mac LS, Chinyanga H, Endrenyi L, Soldin S. Pharmacokinetics of intravenous morphine in balanced anesthesia: studies in children. Drug Metab Rev. 1983;14:887–903.

    Article  PubMed  CAS  Google Scholar 

  62. Dahlstrom B, Bolme P, Feychting H, Noack G, Paalzow L. Morphine kinetics in children. Clin Pharmacol Ther. 1979;26:354–65.

    PubMed  CAS  Google Scholar 

  63. Olkkola KT, Maunuksela EL, Korpela R, Rosenberg PH. Kinetics and dynamics of postoperative intravenous morphine in children. Clin Pharmacol Ther. 1988;44:128–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed within the framework of Top Institute Pharma project number D2-104. The work of C.A.J. Knibbe is supported by the Innovational Research Incentives Scheme (Veni Grant, July 2006) of the Dutch Organization for Scientific Research NWO.

Conflict of interest

All authors declare no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherijne A. J. Knibbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekels, E.H.J., Tibboel, D., Danhof, M. et al. Prediction of Morphine Clearance in the Paediatric Population. Clin Pharmacokinet 51, 695–709 (2012). https://doi.org/10.1007/s40262-012-0006-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0006-9

Keywords

Navigation