Skip to main content

Advertisement

Log in

Is Molecular Tailored-Therapy Changing the Paradigm for CNS Metastases in Breast Cancer?

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the second most common tumour spreading to the central nervous system (CNS). The prognosis of patients with CNS metastases depends on several parameters including the molecular assessment of the disease. Although loco-regional treatment remains the best approach, systemic therapies are acquiring a role leading to remarkable long-lasting responses. The efficacy of these compounds diverges between tumours with different molecular assessments. Promising agents under investigation are drugs targeting the HER2 pathways such as tucatinib, neratinib, pyrotinib, trastuzumab deruxtecan. In addition, there are several promising agents under investigation for patients with triple-negative brain metastases (third-generation taxane, etirinotecan, sacituzumab, immune-checkpoint inhibitors) and hormone receptor-positive brain metastases (CDK 4/5, phosphoinositide-3-kinase-mammalian target of rapamycin [PI3K/mTOR] inhibitors). Also, the systemic treatment of leptomeningeal metastases, which represents a very negative prognostic site of metastases, is likely to change as several compounds are under investigation, some with interesting preliminary results. Here we performed a comprehensive review focusing on the current management of CNS metastases according to molecular subtypes, site of metastases (leptomeningeal vs brain), and systemic treatments under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valiente M, Ahluwalia MS, Boire A, et al. The evolving landscape of brain metastasis. Trends Cancer. 2018;4(3):176–96. https://doi.org/10.1016/j.trecan.2018.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  3. Boire A, Brastianos PK, Garzia L, Valiente M. Brain metastasis. Nat Rev Cancer. 2020;20(1):4–11. https://doi.org/10.1038/s41568-019-0220-y.

    Article  CAS  PubMed  Google Scholar 

  4. Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the management of brain metastases. Nat Rev Clin Oncol. 2020;17(5):279–99. https://doi.org/10.1038/s41571-019-0320-3.

    Article  PubMed  Google Scholar 

  5. DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–51. https://doi.org/10.3322/caac.21583.

    Article  Google Scholar 

  6. Darlix A, Louvel G, Fraisse J, et al. Impact of breast cancer molecular subtypes on the incidence, kinetics and prognosis of central nervous system metastases in a large multicentre real-life cohort. Br J Cancer. 2019;121(12):991–1000. https://doi.org/10.1038/s41416-019-0619-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prat A, Guarneri V, Paré L, et al. A multivariable prognostic score to guide systemic therapy in early-stage HER2-positive breast cancer: a retrospective study with an external evaluation. Lancet Oncol. 2020;21(11):1455–64. https://doi.org/10.1016/s1470-2045(20)30450-2.

    Article  CAS  PubMed  Google Scholar 

  8. Slimane K, Andre F, Delaloge S, et al. Risk factors for brain relapse in patients with metastatic breast cancer. Ann Oncol. 2004;15(11):1640–4. https://doi.org/10.1093/annonc/mdh432.

    Article  CAS  PubMed  Google Scholar 

  9. Kennecke H, Yerushalmi R, Woods R, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–7. https://doi.org/10.1200/jco.2009.25.9820.

    Article  PubMed  Google Scholar 

  10. Evans AJ, James JJ, Cornford EJ, et al. Brain metastases from breast cancer: identification of a high-risk group. Clin Oncol (R Coll Radiol). 2004;16(5):345–9. https://doi.org/10.1016/j.clon.2004.03.012.

    Article  CAS  Google Scholar 

  11. Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer. 2008;113(10):2638–45. https://doi.org/10.1002/cncr.23930.

    Article  PubMed  Google Scholar 

  12. Chow L, Suen D, Ma KK, Kwong A. Identifying risk factors for brain metastasis in breast cancer patients: implication for a vigorous surveillance program. Asian J Surg. 2015;38(4):220–3. https://doi.org/10.1016/j.asjsur.2015.03.003.

    Article  PubMed  Google Scholar 

  13. Pestalozzi BC, Zahrieh D, Price KN, et al. Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol. 2006;17(6):935–44. https://doi.org/10.1093/annonc/mdl064.

    Article  CAS  PubMed  Google Scholar 

  14. Ryberg M, Nielsen D, Osterlind K, Andersen PK, Skovsgaard T, Dombernowsky P. Predictors of central nervous system metastasis in patients with metastatic breast cancer. A competing risk analysis of 579 patients treated with epirubicin-based chemotherapy. Breast Cancer Res Treat. 2005;91(3):217–25. https://doi.org/10.1007/s10549-005-0323-x.

    Article  PubMed  Google Scholar 

  15. Gucalp A, Traina TA, Eisner JR, et al. Male breast cancer: a disease distinct from female breast cancer. Breast Cancer Res Treat. 2019;173(1):37–48. https://doi.org/10.1007/s10549-018-4921-9.

    Article  PubMed  Google Scholar 

  16. Custódio-Santos T, Videira M, Brito MA. Brain metastasization of breast cancer. Biochim Biophys Acta Rev Cancer. 2017;1868(1):132–47. https://doi.org/10.1016/j.bbcan.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  17. Sperduto PW, Kased N, Roberge D, et al. Effect of tumour subtype on survival and the graded prognostic assessment for patients with breast cancer and brain metastases. Int J Radiat Oncol Biol Phys. 2012;82(5):2111–7. https://doi.org/10.1016/j.ijrobp.2011.02.027.

    Article  PubMed  Google Scholar 

  18. Dawood S, Broglio K, Esteva FJ, et al. Defining prognosis for women with breast cancer and CNS metastases by HER2 status. Ann Oncol. 2008;19(7):1242–8. https://doi.org/10.1093/annonc/mdn036.

    Article  CAS  PubMed  Google Scholar 

  19. Altundag K, Bondy ML, Mirza NQ, et al. Clinicopathologic characteristics and prognostic factors in 420 metastatic breast cancer patients with central nervous system metastasis. Cancer. 2007;110(12):2640–7. https://doi.org/10.1002/cncr.23088.

    Article  CAS  PubMed  Google Scholar 

  20. Bailleux C, Eberst L, Bachelot T. Treatment strategies for breast cancer brain metastases. Br J Cancer. 2021;124(1):142–55. https://doi.org/10.1038/s41416-020-01175-y.

    Article  PubMed  Google Scholar 

  21. Sperduto PW, Mesko S, Li J, et al. Survival in patients with brain metastases: summary report on the updated diagnosis-specific graded prognostic assessment and definition of the eligibility quotient. J Clin Oncol. 2020;38(32):3773–84. https://doi.org/10.1200/jco.20.01255.

    Article  CAS  PubMed  Google Scholar 

  22. Vogelbaum MA, Suh JH. Resectable brain metastases. J Clin Oncol. 2006;24(8):1289–94. https://doi.org/10.1200/jco.2005.04.6235.

    Article  PubMed  Google Scholar 

  23. Sundaresan N, Sachdev VP, DiGiacinto GV, Hughes JE. Reoperation for brain metastases. J Clin Oncol. 1988;6(10):1625–9. https://doi.org/10.1200/jco.1988.6.10.1625.

    Article  CAS  PubMed  Google Scholar 

  24. Patchell RA. The management of brain metastases. Cancer Treat Rev. 2003;29(6):533–40. https://doi.org/10.1016/s0305-7372(03)00105-1.

    Article  PubMed  Google Scholar 

  25. Kaal EC, Niël CG, Vecht CJ. Therapeutic management of brain metastasis. Lancet Neurol. 2005;4(5):289–98. https://doi.org/10.1016/s1474-4422(05)70072-7.

    Article  PubMed  Google Scholar 

  26. Soffietti R, Kocher M, Abacioglu UM, et al. A European Organisation for Research and Treatment of Cancer Phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumours after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol. 2013;31(1):65–72. https://doi.org/10.1200/jco.2011.41.0639.

    Article  PubMed  Google Scholar 

  27. Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9. https://doi.org/10.1001/jama.280.17.1485.

    Article  CAS  PubMed  Google Scholar 

  28. Brown PD, Ballman KV, Cerhan JH, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1049–60. https://doi.org/10.1016/s1470-2045(17)30441-2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15(4):387–95. https://doi.org/10.1016/s1470-2045(14)70061-0.

    Article  PubMed  Google Scholar 

  30. Yamamoto M, Serizawa T, Higuchi Y, et al. A multi-institutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901 study update): irradiation-related complications and long-term maintenance of Mini-Mental State Examination Scores. Int J Radiat Oncol Biol Phys. 2017;99(1):31–40. https://doi.org/10.1016/j.ijrobp.2017.04.037.

    Article  PubMed  Google Scholar 

  31. Yamamoto M, Higuchi Y, Sato Y, Aiyama H, Kasuya H, Barfod BE. Stereotactic radiosurgery for patients with 10 or more brain metastases. Prog Neurol Surg. 2019;34:110–24. https://doi.org/10.1159/000493056.

    Article  PubMed  Google Scholar 

  32. Wick W, Gorlia T, Bady P, et al. Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res. 2016;22(19):4797–806. https://doi.org/10.1158/1078-0432.Ccr-15-3153.

    Article  CAS  PubMed  Google Scholar 

  33. Suh JH. Stereotactic radiosurgery for the management of brain metastases. N Engl J Med. 2010;362(12):1119–27. https://doi.org/10.1056/NEJMct0806951.

    Article  CAS  PubMed  Google Scholar 

  34. Lin X, DeAngelis LM. Treatment of brain metastases. J Clin Oncol. 2015;33(30):3475–84. https://doi.org/10.1200/jco.2015.60.9503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patel KR, Burri SH, Asher AL, et al. Comparing preoperative with postoperative stereotactic radiosurgery for resectable brain metastases: a multi-institutional analysis. Neurosurgery. 2016;79(2):279–85. https://doi.org/10.1227/neu.0000000000001096.

    Article  PubMed  Google Scholar 

  36. Franceschi E, Bartolotti M, Poggi R, Di Battista M, Palleschi D, Brandes AA. The role of systemic and targeted therapies in brain metastases. Expert Rev Anticancer Ther. 2014;14(1):93–103. https://doi.org/10.1586/14737140.2014.856760.

    Article  CAS  PubMed  Google Scholar 

  37. Tosoni A, Ermani M, Brandes AA. The pathogenesis and treatment of brain metastases: a comprehensive review. Crit Rev Oncol Hematol. 2004;52(3):199–215. https://doi.org/10.1016/j.critrevonc.2004.08.006.

    Article  PubMed  Google Scholar 

  38. Berghoff AS, Liao Y, Karreman MA, et al. Identification and characterization of cancer cells that initiate metastases to the brain and other organs. Mol Cancer Res. 2020. https://doi.org/10.1158/1541-7786.Mcr-20-0863.

    Article  PubMed  Google Scholar 

  39. Bonneh-Barkay D, Wiley CA. Brain extracellular matrix in neurodegeneration. Brain Pathol. 2009;19(4):573–85. https://doi.org/10.1111/j.1750-3639.2008.00195.x.

    Article  CAS  PubMed  Google Scholar 

  40. Neman J, Termini J, Wilczynski S, et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci USA. 2014;111(3):984–9. https://doi.org/10.1073/pnas.1322098111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sevenich L, Bowman RL, Mason SD, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol. 2014;16(9):876–88. https://doi.org/10.1038/ncb3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brastianos PK, Carter SL, Santagata S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5(11):1164–77. https://doi.org/10.1158/2159-8290.Cd-15-0369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu Z, Li Z, Ma Z, Curtis C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumours and metastases. Nat Genet. 2020;52(7):701–8. https://doi.org/10.1038/s41588-020-0628-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Priedigkeit N, Hartmaier RJ, Chen Y, et al. Intrinsic subtype switching and acquired ERBB2/HER2 amplifications and mutations in breast cancer brain metastases. JAMA Oncol. 2017;3(5):666–71. https://doi.org/10.1001/jamaoncol.2016.5630.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sperduto PW, Mesko S, Li J, et al. Estrogen/progesterone receptor and HER2 discordance between primary tumour and brain metastases in breast cancer and its effect on treatment and survival. Neuro Oncol. 2020;22(9):1359–67. https://doi.org/10.1093/neuonc/noaa025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas: parallels at non-CNS sites. Front Oncol. 2015;5:153. https://doi.org/10.3389/fonc.2015.00153.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vitkovic L, Maeda S, Sternberg E. Anti-inflammatory cytokines: expression and action in the brain. NeuroImmunoModulation. 2001;9(6):295–312. https://doi.org/10.1159/000059387.

    Article  CAS  PubMed  Google Scholar 

  48. Carson MJ, Sutcliffe JG, Campbell IL. Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. J Neurosci Res. 1999;55(1):127–34. https://doi.org/10.1002/(sici)1097-4547(19990101)55:1%3c127::Aid-jnr14%3e3.0.Co;2-2.

    Article  CAS  PubMed  Google Scholar 

  49. Aloisi F, Ria F, Penna G, Adorini L. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol. 1998;160(10):4671–80.

    Article  CAS  PubMed  Google Scholar 

  50. De Simone R, Giampaolo A, Giometto B, et al. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol. 1995;54(2):175–87. https://doi.org/10.1097/00005072-199503000-00004.

    Article  PubMed  Google Scholar 

  51. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–9. https://doi.org/10.1084/jem.20142290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41. https://doi.org/10.1038/nature14432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases-translation to new therapies. Nat Rev Clin Oncol. 2011;8(6):344–56. https://doi.org/10.1038/nrclinonc.2011.58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. https://doi.org/10.1038/s41568-019-0205-x.

    Article  CAS  PubMed  Google Scholar 

  55. Pitz MW, Desai A, Grossman SA, Blakeley JO. Tissue concentration of systemically administered antineoplastic agents in human brain tumours. J Neurooncol. 2011;104(3):629–38. https://doi.org/10.1007/s11060-011-0564-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumours. Clin Cancer Res. 2002;8(4):1008–13.

    CAS  PubMed  Google Scholar 

  57. Lewis Phillips GD, Nishimura MC, Lacap JA, et al. Trastuzumab uptake and its relation to efficacy in an animal model of HER2-positive breast cancer brain metastasis. Breast Cancer Res Treat. 2017;164(3):581–91. https://doi.org/10.1007/s10549-017-4279-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kabraji S, Ni J, Lin NU, Xie S, Winer EP, Zhao JJ. Drug resistance in HER2-positive breast cancer brain metastases: blame the barrier or the brain? Clin Cancer Res. 2018;24(8):1795–804. https://doi.org/10.1158/1078-0432.Ccr-17-3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fine RL, Chen J, Balmaceda C, et al. Randomized study of paclitaxel and tamoxifen deposition into human brain tumours: implications for the treatment of metastatic brain tumours. Clin Cancer Res. 2006;12(19):5770–6. https://doi.org/10.1158/1078-0432.Ccr-05-2356.

    Article  CAS  PubMed  Google Scholar 

  60. Dijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87(5):586–92. https://doi.org/10.1038/clpt.2010.12.

    Article  CAS  PubMed  Google Scholar 

  61. von Minckwitz G, Huang CS, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617–28. https://doi.org/10.1056/NEJMoa1814017.

    Article  Google Scholar 

  62. Pestalozzi BC, Holmes E, de Azambuja E, et al. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: a retrospective substudy of the HERA trial (BIG 1–01). Lancet Oncol. 2013;14(3):244–8. https://doi.org/10.1016/s1470-2045(13)70017-2.

    Article  CAS  PubMed  Google Scholar 

  63. Tosoni A, Franceschi E, Esposti RD, Brandes AA. Trastuzumab in CNS progressive metastatic breast cancer. Future Oncol. 2007;3(4):367–9. https://doi.org/10.2217/14796694.3.4.367.

    Article  CAS  PubMed  Google Scholar 

  64. Rostami R, Mittal S, Rostami P, Tavassoli F, Jabbari B. Brain metastasis in breast cancer: a comprehensive literature review. J Neurooncol. 2016;127(3):407–14. https://doi.org/10.1007/s11060-016-2075-3.

    Article  CAS  PubMed  Google Scholar 

  65. Park YH, Park MJ, Ji SH, et al. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients. Br J Cancer. 2009;100(6):894–900. https://doi.org/10.1038/sj.bjc.6604941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Swain SM, Baselga J, Kim SB, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34. https://doi.org/10.1056/NEJMoa1413513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Swain SM, Baselga J, Miles D, et al. Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA. Ann Oncol. 2014;25(6):1116–21. https://doi.org/10.1093/annonc/mdu133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin NU, Kumthekar P, Sahebjam S, et al. Abstract P1-18-03: Pertuzumab (P) plus high-dose trastuzumab (H) for the treatment of central nervous system (CNS) progression after radiotherapy (RT) in patients (pts) with HER2-positive metastatic breast cancer (MBC): primary efficacy analysis results from the phase II PATRICIA study. Cancer Res. 2020. https://doi.org/10.1158/1538-7445.Sabcs19-p1-18-03.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krop IE, Lin NU, Blackwell K, et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann Oncol. 2015;26(1):113–9. https://doi.org/10.1093/annonc/mdu486.

    Article  CAS  PubMed  Google Scholar 

  71. Bartsch R, Berghoff AS, Vogl U, et al. Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clin Exp Metastasis. 2015;32(7):729–37. https://doi.org/10.1007/s10585-015-9740-3.

    Article  CAS  PubMed  Google Scholar 

  72. Jacot W, Pons E, Frenel JS, et al. Efficacy and safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive breast cancer with brain metastases. Breast Cancer Res Treat. 2016;157(2):307–18. https://doi.org/10.1007/s10549-016-3828-6.

    Article  CAS  PubMed  Google Scholar 

  73. Brandes AA, Franceschi E, Tosoni A, Degli Esposti R. Trastuzumab and lapatinib beyond trastuzumab progression for metastatic breast cancer: strategies and pitfalls. Expert Rev Anticancer Ther. 2010;10(2):179–84. https://doi.org/10.1586/era.09.156.

    Article  CAS  PubMed  Google Scholar 

  74. Lin NU, Diéras V, Paul D, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res. 2009;15(4):1452–9. https://doi.org/10.1158/1078-0432.Ccr-08-1080.

    Article  CAS  PubMed  Google Scholar 

  75. Metro G, Foglietta J, Russillo M, et al. Clinical outcome of patients with brain metastases from HER2-positive breast cancer treated with lapatinib and capecitabine. Ann Oncol. 2011;22(3):625–30. https://doi.org/10.1093/annonc/mdq434.

    Article  CAS  PubMed  Google Scholar 

  76. Sutherland S, Ashley S, Miles D, et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases—the UK experience. Br J Cancer. 2010;102(6):995–1002. https://doi.org/10.1038/sj.bjc.6605586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bachelot T, Romieu G, Campone M, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 2013;14(1):64–71. https://doi.org/10.1016/s1470-2045(12)70432-1.

    Article  CAS  PubMed  Google Scholar 

  78. Pivot X, Manikhas A, Żurawski B, et al. CEREBEL (EGF111438): a phase III, randomized, open-label study of lapatinib plus capecitabine versus trastuzumab plus capecitabine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2015;33(14):1564–73. https://doi.org/10.1200/jco.2014.57.1794.

    Article  CAS  PubMed  Google Scholar 

  79. Murthy RK, Loi S, Okines A, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 2020;382(7):597–609. https://doi.org/10.1056/NEJMoa1914609.

    Article  CAS  PubMed  Google Scholar 

  80. Freedman RA, Gelman RS, Anders CK, et al. TBCRC 022: a phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2019;37(13):1081–9. https://doi.org/10.1200/jco.18.01511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saura C, Oliveira M, Feng YH, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase III NALA trial. J Clin Oncol. 2020;38(27):3138–49. https://doi.org/10.1200/jco.20.00147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Macpherson IR, Spiliopoulou P, Rafii S, et al. A phase I/II study of epertinib plus trastuzumab with or without chemotherapy in patients with HER2-positive metastatic breast cancer. Breast Cancer Res. 2019;22(1):1. https://doi.org/10.1186/s13058-019-1178-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Modi S, Saura C, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–21. https://doi.org/10.1056/NEJMoa1914510.

    Article  CAS  PubMed  Google Scholar 

  84. Kobus T, Zervantonakis IK, Zhang Y, McDannold NJ. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood–brain barrier disruption. J Control Release. 2016;238:281–8. https://doi.org/10.1016/j.jconrel.2016.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patil R, Ljubimov AV, Gangalum PR, et al. MRI virtual biopsy and treatment of brain metastatic tumours with targeted nanobioconjugates: nanoclinic in the brain. ACS Nano. 2015;9(5):5594–608. https://doi.org/10.1021/acsnano.5b01872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rusz O, Kószó R, Dobi Á, et al. Clinical benefit of fulvestrant monotherapy in the multimodal treatment of hormone receptor and HER2 positive advanced breast cancer: a case series. Onco Targets Ther. 2018;11:5459–63. https://doi.org/10.2147/ott.S170736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pors H, von Eyben FE, Sørensen OS, Larsen M. Longterm remission of multiple brain metastases with tamoxifen. J Neurooncol. 1991;10(2):173–7. https://doi.org/10.1007/bf00146879.

    Article  CAS  PubMed  Google Scholar 

  88. Martín LMN, Fernández AO, Sánchez CAR, Martín IR, Hernández JJC. Durable clinical benefit with exemestane in leptomeningeal metastasis of breast cancer. Clin Transl Oncol. 2005;7(8):358–60. https://doi.org/10.1007/bf02716553.

    Article  Google Scholar 

  89. Madhup R, Kirti S, Bhatt ML, Srivastava PK, Srivastava M, Kumar S. Letrozole for brain and scalp metastases from breast cancer–a case report. Breast. 2006;15(3):440–2. https://doi.org/10.1016/j.breast.2005.07.006.

    Article  CAS  PubMed  Google Scholar 

  90. Tolaney SM, Sahebjam S, Le Rhun E, et al. A phase II study of abemaciclib in patients with brain metastases secondary to hormone receptor-positive breast cancer. Clin Cancer Res. 2020;26(20):5310–9. https://doi.org/10.1158/1078-0432.Ccr-20-1764.

    Article  CAS  PubMed  Google Scholar 

  91. Rivera E, Meyers C, Groves M, et al. Phase I study of capecitabine in combination with temozolomide in the treatment of patients with brain metastases from breast carcinoma. Cancer. 2006;107(6):1348–54. https://doi.org/10.1002/cncr.22127.

    Article  CAS  PubMed  Google Scholar 

  92. Matsuoka H, Tsurutani J, Tanizaki J, et al. Regression of brain metastases from breast cancer with eribulin: a case report. BMC Res Notes. 2013;6:541. https://doi.org/10.1186/1756-0500-6-541.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lin NU, Gelman RS, Younger WJ, et al. Phase II trial of carboplatin (C) and bevacizumab (BEV) in patients (pts) with breast cancer brain metastases (BCBM). J Clin Oncol. 2013;31(15_suppl):513–513. https://doi.org/10.1200/jco.2013.31.15_suppl.513.

    Article  Google Scholar 

  94. Labidi SI, Bachelot T, Ray-Coquard I, et al. Bevacizumab and paclitaxel for breast cancer patients with central nervous system metastases: a case series. Clin Breast Cancer. 2009;9(2):118–21. https://doi.org/10.3816/CBC.2009.n.021.

    Article  CAS  PubMed  Google Scholar 

  95. Franciosi V, Cocconi G, Michiara M, et al. Front-line chemotherapy with cisplatin and etoposide for patients with brain metastases from breast carcinoma, nonsmall cell lung carcinoma, or malignant melanoma: a prospective study. Cancer. 1999;85(7):1599–605.

    Article  CAS  Google Scholar 

  96. Christodoulou C, Bafaloukos D, Linardou H, et al. Temozolomide (TMZ) combined with cisplatin (CDDP) in patients with brain metastases from solid tumours: a Hellenic Cooperative Oncology Group (HeCOG) Phase II study. J Neurooncol. 2005;71(1):61–5. https://doi.org/10.1007/s11060-004-9176-0.

    Article  CAS  PubMed  Google Scholar 

  97. Boogerd W, Dalesio O, Bais EM, van der Sande JJ. Response of brain metastases from breast cancer to systemic chemotherapy. Cancer. 1992;69(4):972–80. https://doi.org/10.1002/1097-0142(19920215)69:4%3c972::aid-cncr2820690423%3e3.0.co;2-p.

    Article  CAS  PubMed  Google Scholar 

  98. Tosoni A, Franceschi E, Ermani M, et al. Temozolomide three weeks on and one week off as first line therapy for patients with recurrent or progressive low grade gliomas. J Neurooncol. 2008;89(2):179–85. https://doi.org/10.1007/s11060-008-9600-y.

    Article  CAS  PubMed  Google Scholar 

  99. Kumthekar P, Tang SC, Brenner AJ, et al. ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin Cancer Res. 2020;26(12):2789–99. https://doi.org/10.1158/1078-0432.Ccr-19-3258.

    Article  CAS  PubMed  Google Scholar 

  100. Cortés J, Rugo HS, Awada A, et al. Prolonged survival in patients with breast cancer and a history of brain metastases: results of a preplanned subgroup analysis from the randomized phase III BEACON trial. Breast Cancer Res Treat. 2017;165(2):329–41. https://doi.org/10.1007/s10549-017-4304-7.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nunno VD, Nuvola G, Mosca M, et al. Clinical efficacy of immune checkpoint inhibitors in patients with brain metastases. Immunotherapy. 2021;13(5):419–32. https://doi.org/10.2217/imt-2020-0208.

    Article  CAS  PubMed  Google Scholar 

  102. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21. https://doi.org/10.1056/NEJMoa1809615.

    Article  CAS  PubMed  Google Scholar 

  103. Robson ME, Tung N, Conte P, et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30(4):558–66. https://doi.org/10.1093/annonc/mdz012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63. https://doi.org/10.1056/NEJMoa1802905.

    Article  CAS  PubMed  Google Scholar 

  105. Diéras V, Han HS, Kaufman B, et al. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(10):1269–82. https://doi.org/10.1016/s1470-2045(20)30447-2.

    Article  CAS  PubMed  Google Scholar 

  106. Mehta MP, Wang D, Wang F, et al. Veliparib in combination with whole brain radiation therapy in patients with brain metastases: results of a phase 1 study. J Neurooncol. 2015;122(2):409–17. https://doi.org/10.1007/s11060-015-1733-1.

    Article  CAS  PubMed  Google Scholar 

  107. Franzoi MA, Hortobagyi GN. Leptomeningeal carcinomatosis in patients with breast cancer. Crit Rev Oncol Hematol. 2019;135:85–94. https://doi.org/10.1016/j.critrevonc.2019.01.020.

    Article  PubMed  Google Scholar 

  108. Griguolo G, Pouderoux S, Dieci MV, et al. Clinicopathological and treatment-associated prognostic factors in patients with breast cancer leptomeningeal metastases in relation to tumour biology. Oncologist. 2018;23(11):1289–99. https://doi.org/10.1634/theoncologist.2018-0200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Le Rhun E, Rudà R, Devos P, et al. Diagnosis and treatment patterns for patients with leptomeningeal metastasis from solid tumours across Europe. J Neurooncol. 2017;133(2):419–27. https://doi.org/10.1007/s11060-017-2452-6.

    Article  CAS  PubMed  Google Scholar 

  110. Niwińska A, Pogoda K, Michalski W, Kunkiel M, Jagiełło-Gruszfeld A. Determinants of prolonged survival for breast cancer patient groups with leptomeningeal metastasis (LM). J Neurooncol. 2018;138(1):191–8. https://doi.org/10.1007/s11060-018-2790-z.

    Article  PubMed  Google Scholar 

  111. Nayak L, DeAngelis LM, Brandes AA, et al. The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the response assessment in neuro-oncology (RANO) criteria. Neuro Oncol. 2017;19(5):625–35. https://doi.org/10.1093/neuonc/nox029.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Le Rhun E, Weller M, Brandsma D, et al. EANO-ESMO clinical practice guidelines for diagnosis, treatment and follow-up of patients with leptomeningeal metastasis from solid tumours. Ann Oncol. 2017;28(suppl_4):iv84–99. https://doi.org/10.1093/annonc/mdx221.

    Article  PubMed  Google Scholar 

  113. Chamberlain M, Junck L, Brandsma D, et al. Leptomeningeal metastases: a RANO proposal for response criteria. Neuro Oncol. 2017;19(4):484–92. https://doi.org/10.1093/neuonc/now183.

    Article  PubMed  Google Scholar 

  114. Le Rhun E, Devos P, Boulanger T, et al. The RANO leptomeningeal metastasis group proposal to assess response to treatment: lack of feasibility and clinical utility and a revised proposal. Neuro Oncol. 2019;21(5):648–58. https://doi.org/10.1093/neuonc/noz024.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Oechsle K, Lange-Brock V, Kruell A, Bokemeyer C, de Wit M. Prognostic factors and treatment options in patients with leptomeningeal metastases of different primary tumours: a retrospective analysis. J Cancer Res Clin Oncol. 2010;136(11):1729–35. https://doi.org/10.1007/s00432-010-0831-x.

    Article  PubMed  Google Scholar 

  116. Wolf A, Donahue B, Silverman JS, Chachoua A, Lee JK, Kondziolka D. Stereotactic radiosurgery for focal leptomeningeal disease in patients with brain metastases. J Neurooncol. 2017;134(1):139–43. https://doi.org/10.1007/s11060-017-2497-6.

    Article  PubMed  Google Scholar 

  117. Gani C, Müller AC, Eckert F, et al. Outcome after whole brain radiotherapy alone in intracranial leptomeningeal carcinomatosis from solid tumours. Strahlenther Onkol. 2012;188(2):148–53. https://doi.org/10.1007/s00066-011-0025-8.

    Article  CAS  PubMed  Google Scholar 

  118. Devecka M, Duma MN, Wilkens JJ, et al. Craniospinal irradiation(CSI) in patients with leptomeningeal metastases: risk-benefit-profile and development of a prognostic score for decision making in the palliative setting. BMC Cancer. 2020;20(1):501. https://doi.org/10.1186/s12885-020-06984-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. El Shafie RA, Böhm K, Weber D, et al. Outcome and prognostic factors following palliative craniospinal irradiation for leptomeningeal carcinomatosis. Cancer Manag Res. 2019;11:789–801. https://doi.org/10.2147/cmar.S182154.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Boogerd W, van den Bent MJ, Koehler PJ, et al. The relevance of intraventricular chemotherapy for leptomeningeal metastasis in breast cancer: a randomised study. Eur J Cancer. 2004;40(18):2726–33. https://doi.org/10.1016/j.ejca.2004.08.012.

    Article  CAS  PubMed  Google Scholar 

  121. Glantz MJ, Jaeckle KA, Chamberlain MC, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumours. Clin Cancer Res. 1999;5(11):3394–402.

    CAS  PubMed  Google Scholar 

  122. Grossman SA, Finkelstein DM, Ruckdeschel JC, Trump DL, Moynihan T, Ettinger DS. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. Eastern Cooperative Oncology Group. J Clin Oncol. 1993;11(3):561–9. https://doi.org/10.1200/jco.1993.11.3.561.

    Article  CAS  PubMed  Google Scholar 

  123. Hitchins RN, Bell DR, Woods RL, Levi JA. A prospective randomized trial of single-agent versus combination chemotherapy in meningeal carcinomatosis. J Clin Oncol. 1987;5(10):1655–62. https://doi.org/10.1200/jco.1987.5.10.1655.

    Article  CAS  PubMed  Google Scholar 

  124. Le Rhun E, Taillibert S, Boulanger T, Zairi F, Bonneterre J, Chamberlain MC. Prolonged response and restoration of functional independence with bevacizumab plus vinorelbine as third-line treatment for breast cancer-related leptomeningeal metastases. Case Rep Oncol. 2015;8(1):72–7. https://doi.org/10.1159/000375293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bonneau C, Paintaud G, Trédan O, et al. Phase I feasibility study for intrathecal administration of trastuzumab in patients with HER2 positive breast carcinomatous meningitis. Eur J Cancer. 2018;95:75–84. https://doi.org/10.1016/j.ejca.2018.02.032.

    Article  CAS  PubMed  Google Scholar 

  126. Figura NB, Rizk VT, Mohammadi H, et al. Clinical outcomes of breast leptomeningeal disease treated with intrathecal trastuzumab, intrathecal chemotherapy, or whole brain radiation therapy. Breast Cancer Res Treat. 2019;175(3):781–8. https://doi.org/10.1007/s10549-019-05170-7.

    Article  CAS  PubMed  Google Scholar 

  127. Zagouri F, Zoumpourlis P, Le Rhun E, et al. Intrathecal administration of anti-HER2 treatment for the treatment of meningeal carcinomatosis in breast cancer: a metanalysis with meta-regression. Cancer Treat Rev. 2020;88: 102046. https://doi.org/10.1016/j.ctrv.2020.102046.

    Article  CAS  PubMed  Google Scholar 

  128. Ricciardi GRR, Russo A, Franchina T, et al. Efficacy of T-DM1 for leptomeningeal and brain metastases in a HER2 positive metastatic breast cancer patient: new directions for systemic therapy—a case report and literature review. BMC Cancer. 2018;18(1):97. https://doi.org/10.1186/s12885-018-3994-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Morikawa A, de Stanchina E, Pentsova E, et al. Phase I study of intermittent high-dose lapatinib alternating with capecitabine for HER2-positive breast cancer patients with central nervous system metastases. Clin Cancer Res. 2019;25(13):3784–92. https://doi.org/10.1158/1078-0432.Ccr-18-3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Freedman RA, Gelman RS, Wefel JS, et al. Translational Breast Cancer Research Consortium (TBCRC) 022: a phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2016;34(9):945–52. https://doi.org/10.1200/jco.2015.63.0343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ma F, Ouyang Q, Li W, et al. Pyrotinib or lapatinib combined with capecitabine in HER2-positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: a randomized. Phase II study. J Clin Oncol. 2019;37(29):2610–9. https://doi.org/10.1200/jco.19.00108.

    Article  CAS  PubMed  Google Scholar 

  132. Gallardo A, Lerma E, Escuin D, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106(8):1367–73. https://doi.org/10.1038/bjc.2012.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Nunno.

Ethics declarations

Funding

No source of funding.

Conflicts of interest/Competing interest

All authors (VDN, EF, AT, AM, SM, MDB, LG, IM, RL, SB, AAB) declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

Conceptualisation: VDN and EF; data curation: AT, LG, MDB, IM; investigation: all authors, methodology: all authors; supervision: RL, SB, AAB; validation: RL, AAB; writing original draft: VDN, AM, SM; Writing review and editing: VDN, AT, LG, IM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Nunno, V., Franceschi, E., Tosoni, A. et al. Is Molecular Tailored-Therapy Changing the Paradigm for CNS Metastases in Breast Cancer?. Clin Drug Investig 41, 757–773 (2021). https://doi.org/10.1007/s40261-021-01070-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-021-01070-1