Skip to main content
Log in

Nano–Bio Interactions: Exploring the Biological Behavior and the Fate of Lipid-Based Gene Delivery Systems

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Gene therapy for many diseases is rapidly becoming a reality, as demonstrated by the recent approval of various nucleic acid-based therapeutics. Non-viral systems such as lipid-based carriers, lipid nanoparticles (LNPs), for delivering different payloads including small interfering RNA, plasmid DNA, and messenger RNA have been particularly extensively explored and developed for clinical uses. One of the most important issues in LNP development is delivery to extrahepatic tissues. To achieve this, various lipids and lipid-like materials are being examined and screened. Several LNP formulations that target extrahepatic tissues, such as the spleen and the lungs have been developed by adjusting the lipid compositions of LNPs. However, mechanistic details of how the characteristics of LNPs affect delivery efficiency remains unclear. The purpose of this review is to provide an overview of LNP-based nucleic acid delivery focusing on LNP components and their structures, as well as discussing biological factors, such as biomolecular corona and cellular responses related to the delivery efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Dijk EL, et al. The third revolution in sequencing technology. Trends Genet. 2018;34(9):666–81.

    Article  PubMed  Google Scholar 

  2. Li K, et al. Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets. 2020;21(1):3–17.

    Article  PubMed  Google Scholar 

  3. Sun YV, Hu YJ. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet. 2016;93:147–90.

    Article  CAS  PubMed  Google Scholar 

  4. Joshi A, et al. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol. 2021;18(5):313–30.

    Article  PubMed  Google Scholar 

  5. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wang M, et al. Transformative network modeling of multi-omics data reveals detailed circuits, key regulators, and potential therapeutics for Alzheimer’s disease. Neuron. 2021;109(2):257-272.e14.

    Article  CAS  PubMed  Google Scholar 

  7. Baysoy A, et al. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023;24:1–19.

    Article  Google Scholar 

  8. SL G et al. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018; 20(5).

  9. Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017;28(11):988–1003.

    Article  CAS  PubMed  Google Scholar 

  10. Dunbar CE, et al. Gene therapy comes of age. Science. 2018;359(6372):eaan4672.

    Article  PubMed  Google Scholar 

  11. Gillmore JD, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385(6):493–502.

    Article  CAS  PubMed  Google Scholar 

  12. Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol. 2020;10:1387.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ma L. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines. 2019;7(2):37.

    Article  Google Scholar 

  14. Shigematsu H, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17(9):1152–61.

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Teo SP. Review of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J Pharm Pract. 2021;35:8971900211009650.

    Google Scholar 

  17. Chiriboga CA. Nusinersen for the treatment of spinal muscular atrophy. Expert Rev Neurother. 2017;17(10):955–62.

    Article  CAS  PubMed  Google Scholar 

  18. Raal FJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006.

    Article  CAS  PubMed  Google Scholar 

  19. Hoy SM. Patisiran: first global approval. Drugs. 2018;78(15):1625–31.

    Article  CAS  PubMed  Google Scholar 

  20. Cullis PR. Hope MJ, Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 2017;25(7):1467.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  21. Eygeris Y, et al. Chemistry of lipid nanoparticles for rna delivery. Acc Chem Res. 2022;55(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  22. Khalil IA, et al. Lipid nanoparticles for cell-specific in vivo targeted delivery of nucleic acids. Biol Pharm Bull. 2020;43(4):584–95.

    Article  CAS  PubMed  Google Scholar 

  23. Li M, et al. The nano delivery systems and applications of mRNA. Eur J Med Chem. 2022;227: 113910.

    Article  CAS  PubMed  Google Scholar 

  24. Tenchov R, et al. Lipid nanoparticles-from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15:16982.

    Article  CAS  PubMed  Google Scholar 

  25. Herrera VL, et al. Nucleic acid nanomedicines in Phase II/III clinical trials: translation of nucleic acid therapies for reprogramming cells. Nanomedicine (Lond). 2018;13(16):2083–98.

    Article  CAS  PubMed  Google Scholar 

  26. Loughrey D, Dahlman JE. Non-liver mRNA delivery. Acc Chem Res. 2021;55:13.

    Article  PubMed  Google Scholar 

  27. Nakamura T, et al. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev. 2022;188: 114417.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng Q, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  29. LoPresti ST, et al. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilities targeted mRNA delivery to the spleen and lungs. J Control Rel. 2022;345:819.

    Article  CAS  Google Scholar 

  30. Liu S, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater. 2021;20:5.

    Article  ADS  CAS  Google Scholar 

  31. Dahlman JE, et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc Natl Acad Sci USA. 2017;114(8):2060–5.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  32. Paunovska K, et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 2018;18(3):2148–57.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  33. Sago CD, et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc Natl Acad Sci USA. 2018;115(42):E9944-e9952.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cui L, et al. Mechanistic studies of an automated lipid nanoparticle reveal critical pharmaceutical properties associated with enhanced mRNA functional delivery in vitro and in vivo. Small. 2022;18(9): e2105832.

    Article  PubMed  Google Scholar 

  35. Young RE, et al. Lipid nanoparticle composition drives mRNA delivery to the placenta. bioRxiv. 2022;20:534.

    Google Scholar 

  36. Kimura S, Harashima H. On the mechanism of tissue-selective gene delivery by lipid nanoparticles. J Control Rel. 2023;362:797.

    Article  CAS  Google Scholar 

  37. Akinc A, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fenton OS, et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv Mater. 2017;29(33):1606944.

    Article  Google Scholar 

  39. Kimura S, et al. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J Control Rel. 2021;330:753–64.

    Article  CAS  Google Scholar 

  40. Algarni A, et al. In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression. Biomater Sci. 2022;10:2940.

    Article  CAS  PubMed  Google Scholar 

  41. Di J, et al. Biodistribution and non-linear gene expression of mRNA LNPs Affected by delivery route and particle size. Pharm Res. 2022;39(1):105–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Gilleron J, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31(7):638–46.

    Article  CAS  PubMed  Google Scholar 

  43. Gaurav S, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013;31(7):653.

    Article  Google Scholar 

  44. Wang H, et al. The Niemann-pick C1 inhibitor NP3.47 enhances gene silencing potency of lipid nanoparticles containing siRNA. Mol Ther. 2016;24(12):2100–8.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  45. Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16(3):266–76.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Delehedde C, et al. Intracellular routing and recognition of lipid-based mRNA nanoparticles. Pharmaceutics. 2021;13(7):945.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lokugamage MP, et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv Mater. 2020;32(1): e1904905.

    Article  PubMed  Google Scholar 

  48. Siddarth P, et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 2017;17(9):5711.

    Article  Google Scholar 

  49. Paunovska K, et al. Increased PIP3 activity blocks nanoparticle mRNA delivery. Sci Adv. 2020;6(30):eaba5672.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  50. Hatit MZC, et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat Nanotechnol. 2022;17:310.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  51. Dobrowolski C, et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat Nanotechnol. 2022;17:871.

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Zhang Y, et al. Lipids and lipid derivatives for RNA delivery. Chem Rev. 2021;121(20):12181–277.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  53. Kulkarni JA, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16:630.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Weng Y, et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv. 2020;40: 107534.

    Article  CAS  PubMed  Google Scholar 

  55. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23:1–16.

    Article  Google Scholar 

  56. Jayaraman M, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 2012;51(34):8529–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sato Y, et al. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J Control Rel. 2019;295:140–52.

    Article  CAS  Google Scholar 

  58. Dong Y, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci USA. 2014;111(11):3955–60.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  59. Hassett KJ, et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucl Acids. 2019;15:1–11.

    Article  CAS  Google Scholar 

  60. Kulkarni JA, et al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine. 2017;13(4):1377–87.

    Article  CAS  PubMed  Google Scholar 

  61. Carrasco MJ, et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun Biol. 2021;4(1):956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kaczmarek JC, et al. Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials. 2021;275: 120966.

    Article  CAS  PubMed  Google Scholar 

  63. Kauffman KJ, et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015;15(11):7300–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Leuschner F, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29(11):1005–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Speicher T, et al. Knockdown and knockout of β1-integrin in hepatocytes impairs liver regeneration through inhibition of growth factor signalling. Nat Commun. 2014;5:3862.

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Love KT, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA. 2010;107(5):1864–9.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  67. Sun D, Lu ZR. Structure and function of cationic and ionizable lipids for nucleic acid delivery. Pharm Res. 2023;107:1–20.

    Google Scholar 

  68. Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable cationic and ionizable cationic lipids: a roadmap for safer pharmaceutical excipients. Small. 2023;19(17): e2206968.

    Article  PubMed  Google Scholar 

  69. Whitehead KA, et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun. 2014;5:4277.

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Fenton OS, et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv Mater. 2016;28(15):2939–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Qiu M, et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc Natl Acad Sci USA. 2021;118(10):e2020401118.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sabnis S, et al. A Novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26(6):1509–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Akita H. Development of an SS-cleavable pH-activated lipid-like material (ssPalm) as a nucleic acid delivery device. Biol Pharm Bull. 2020;43(11):1617–25.

    Article  CAS  PubMed  Google Scholar 

  74. Zhu Y, et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nat Commun. 2022;13(1):4282.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  75. Chander N, et al. Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues. Mol Ther Methods Clin Dev. 2023;30:235–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Sato Y, et al. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J Control Rel. 2012;163(3):267–76.

    Article  CAS  Google Scholar 

  77. Kimura S, et al. Spleen selective enhancement of transfection activities of plasmid DNA driven by octaarginine and an ionizable lipid and its implications for cancer immunization. J Control Rel. 2019;313:70.

    Article  CAS  Google Scholar 

  78. Lokugamage MP, et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv Mater (Deerfield Beach, Fla). 2020;32(1):1904905.

    Article  CAS  Google Scholar 

  79. Sasaki K, et al. mRNA-loaded lipid nanoparticles targeting dendritic cells for cancer immunotherapy. Pharmaceutics. 2022;14(8):1572.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Zhang R, et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater Sci. 2021;9(4):1449–63.

    Article  MathSciNet  PubMed Central  CAS  PubMed  Google Scholar 

  81. Tanaka H, et al. Development of lipid-like materials for RNA delivery based on intracellular environment-responsive membrane destabilization and spontaneous collapse. Adv Drug Deliv Rev. 2020;154–155:210–26.

    Article  PubMed  Google Scholar 

  82. Shimosakai R, et al. mRNA-loaded lipid nanoparticles targeting immune cells in the spleen for use as cancer vaccines. Pharmaceuticals (Basel). 2022;15(8):1017.

    Article  CAS  PubMed  Google Scholar 

  83. Tenchov R, Sasso JM, Zhou QA. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug Chem. 2023;34(6):941–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Yang Q, et al. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm. 2014;11(4):1250–8.

    Article  CAS  PubMed  Google Scholar 

  85. Li M, et al. Brush conformation of polyethylene glycol determines the stealth effect of nanocarriers in the low protein adsorption regime. Nano Lett. 2021;21(4):1591–8.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  86. Ja K, et al. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019;11(45):21733.

    Article  Google Scholar 

  87. Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev. 2011;63(3):152–60.

    Article  CAS  PubMed  Google Scholar 

  88. Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36(6):892–9.

    Article  CAS  PubMed  Google Scholar 

  89. Mui BL, et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol Ther Nucl Acids. 2013;2: e139.

    Article  CAS  Google Scholar 

  90. Hoang Thi TT, et al. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel). 2020;12(2):298.

    Article  PubMed  Google Scholar 

  91. Liu M, et al. A preliminary study of the innate immune memory of Kupffer cells induced by PEGylated nanoemulsions. J Control Rel. 2022;343:657–71.

    Article  CAS  Google Scholar 

  92. Kierstead PH, et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J Control Rel. 2015;213:1–9.

    Article  CAS  Google Scholar 

  93. Alberg I, et al. Polymeric nanoparticles with neglectable protein corona. Small. 2020;16(18): e1907574.

    Article  PubMed  Google Scholar 

  94. Suzuki T, et al. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int J Pharm. 2020;588: 119792.

    Article  CAS  PubMed  Google Scholar 

  95. Krause MR, Regen SL. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts. Acc Chem Res. 2014;47(12):3512–21.

    Article  CAS  PubMed  Google Scholar 

  96. Arakane K, Hayashi K. Influence of phospholipids purity and polyols on the temperature dependence of the permeability of liposomes. 日本化粧品技術者会誌. 1991;25(3):171.

  97. Wang X, Quinn PJ. Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine. Biochim Biophys Acta. 2002;1564(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  98. Kimei H, et al. Alkyl chain length dependency in hydrolysis of liposomal phosphatidylcholine by dialkylphosphate. Chem Pharm Bull. 1995;43(10):1751.

    Article  Google Scholar 

  99. Eygeris Y, et al. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 2020;20(6):4543–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Patel S, et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat Commun. 2020;11(1):983.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  101. Paunovska K, et al. Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano. 2018;12(8):8341–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Kalina P, et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv Mater (Deerfield Beach, Fla). 2019;31(14):1807748.

    Article  Google Scholar 

  103. Álvarez-Benedicto E, et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci. 2022;10(2):549–59.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Kulkarni JA, et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano. 2018;12(5):4787–95.

    Article  CAS  PubMed  Google Scholar 

  105. Li Z, et al. Acidification-induced structure evolution of lipid nanoparticles correlates with their in vitro gene transfections. ACS Nano. 2023;17:979–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Kulkarni JA, et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale. 2019;11(18):9023–31.

    Article  CAS  PubMed  Google Scholar 

  107. Ramezanpour M, et al. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. Nanoscale. 2019;11(30):14141–6.

    Article  CAS  PubMed  Google Scholar 

  108. Yanez Arteta M, et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc Natl Acad Sci USA. 2018;115(15):E3351-e3360.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Sebastiani F, et al. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano. 2021;15(4):6709–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Ermilova I, Swenson J. DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Phys Chem Chem Phys. 2020;22(48):28256–68.

    Article  CAS  PubMed  Google Scholar 

  111. Geng L, et al. Influence of lipid composition of messenger RNA-loaded lipid nanoparticles on the protein expression via intratracheal administration in mice. Int J Pharm. 2023;637: 122896.

    Article  CAS  PubMed  Google Scholar 

  112. Medjmedj A, et al. In cellulo and in vivo comparison of cholesterol, beta-sitosterol and dioleylphosphatidylethanolamine for lipid nanoparticle formulation of mRNA. Nanomaterials (Basel). 2022;12(14):2446.

    Article  CAS  PubMed  Google Scholar 

  113. Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  114. Caracciolo G, et al. Lipid composition: a “key factor” for the rational manipulation of the liposome-protein corona by liposome design. RSC Adv. 2015;5(8):5967–75.

    Article  ADS  CAS  Google Scholar 

  115. Lokugamage MP, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Engl. 2021;5(9):1059–68.

    Article  CAS  Google Scholar 

  116. Kim J, et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano. 2022;16(9):14792–806.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Melamed JR, et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci Adv. 2023;9(4):eade1444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Münter R, et al. Studying how administration route and dose regulates antibody generation against LNPs for mRNA delivery with single-particle resolution. Mol Ther Methods Clin Dev. 2023;29:450–9.

    Article  PubMed Central  PubMed  Google Scholar 

  119. Francia V, et al. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug Chem. 2020;31:2046.

    Article  CAS  PubMed  Google Scholar 

  120. Palmieri V, Caracciolo G. Tuning the immune system by nanoparticle-biomolecular corona. Nanoscale Adv. 2022;4(16):3300–8.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  121. Monopoli MP, et al. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–86.

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Schottler S, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016;11(4):372–7.

    Article  ADS  PubMed  Google Scholar 

  123. Papini E, Tavano R, Mancin F. Opsonins and dysopsonins of nanoparticles: facts, concepts, and methodological guidelines. Front Immunol. 2020;11: 567365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Giulimondi F, et al. Opsonin-deficient nucleoproteic corona endows unPEGylated liposomes with stealth properties in vivo. ACS Nano. 2022;16(2):2088–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Salvati A, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137–43.

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Tonigold M, et al. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat Nanotechnol. 2018;13(9):862–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Albert C, et al. Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications. Nat Commun. 2022;13(1):5998.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  128. Sivaram AJ, et al. Recent advances in the generation of antibody-nanomaterial conjugates. Adv Healthc Mater. 2018;7(1):1700607.

    Article  Google Scholar 

  129. Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci USA. 2021;118(52):e2109256118.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Qiu M, et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA. 2022;119(8):e2116271119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Melamed JR, et al. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release. 2022;341:206–14.

    Article  CAS  PubMed  Google Scholar 

  132. Kowalski PS, et al. Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery. Adv Mater. 2018;30:e1801151.

    Article  Google Scholar 

  133. Digiacomo L, et al. An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles. Nanoscale. 2017;9(44):17254–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Cai R, et al. Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism. Proc Natl Acad Sci USA. 2022;119(23): e2200363119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Sago CD, et al. Modifying a commonly expressed endocytic receptor retargets nanoparticles in vivo. Nano Lett. 2018;18(12):7590–600.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  136. Patel S, et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 2017;17(9):5711–8.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  137. Lokugamage MP, et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv Mater. 2020;32(1):1904905.

    Article  CAS  Google Scholar 

  138. Radmand A, et al. The transcriptional response to lung-targeting lipid nanoparticles in vivo. Nano Lett. 2023;23:993.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  139. Hatit MZC, et al. Nanoparticle stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat Chem. 2023;15(4):508–15.

    Article  CAS  PubMed  Google Scholar 

  140. Davidsson M, et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc Natl Acad Sci USA. 2019;116(52):27053–62.

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  141. Deverman BE, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Goertsen D, et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci. 2022;25(1):106–15.

    Article  CAS  PubMed  Google Scholar 

  143. Ravindra Kumar S, et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat Methods. 2020;17(5):541–50.

    Article  CAS  PubMed  Google Scholar 

  144. Rhym LH, et al. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat Biomed Eng. 2023;7:901.

    Article  CAS  PubMed  Google Scholar 

  145. Kimura S, Harashima H. Non-invasive gene delivery across the blood-brain barrier: present and future perspectives. Neural Regen Res. 2022;17(4):785–7.

    Article  CAS  PubMed  Google Scholar 

  146. Kim J, et al. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J Control Rel. 2021;337:105.

    Article  CAS  Google Scholar 

  147. Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horiz. 2019;4(2):365–77.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Milton Feather for his helpful advice in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seigo Kimura or Hideyoshi Harashima.

Ethics declarations

Funding

No funding was received for this review.

Conflict of interest

The authors declare no competing financial interest.

Ethics approval

Not applicable.

Patient consent to participate/publish

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Seigo Kimura: writing—original draft. Hideyoshi Harashima: supervision. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, S., Harashima, H. Nano–Bio Interactions: Exploring the Biological Behavior and the Fate of Lipid-Based Gene Delivery Systems. BioDrugs 38, 259–273 (2024). https://doi.org/10.1007/s40259-024-00647-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-024-00647-4

Navigation