Skip to main content
Log in

Optically Controlled Coercive Field of MAPbl3/P(VDF-TrFE) Ferroelectric Composite Films

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Ferroelectric polymers, such as poly(vinylidene fluoride-trifluoroethylene)[P(VDF-TrFE) or PVTF] have attracted growing interest in developing flexible devices because of their excellent ferroelectricity and piezoelectricity. High coercive field(E c) inherent to PVTF for switching its polarization, however, is not beneficial for practical memory or sensor device application. Different strategies, including irradiation and interface control, have been thus developed to reduce E c. Despite many efforts, a facile approach to tailoring intrinsic E c of PVTF has not been documented. In this work, an optically controlled E c was reported, which is achieved for the first time by introducing photosensitive MAPbI3 nanocrystals into PVTF matrix. When exposed to the irradiation of 532 nm laser light, a decreased E c of the composites can be achieved reversibly by increasing the light density. The decreased level of E c increases as the MAPbI3 content enhanced, and a 10.7% reduction of E c can be achieved in 15%(mass fraction) MAPbI3/PVTF samples. These results could be attributed to loading an internal stress on PVTF, which was generated by the photostriction of MAPbI3 nanocrystals. This explanation was further supported by in-situ XRD results under irradiation of 532 nm laser light. Our findings may offer the opportunity to optically modulate the ferroelectric properties of PVTF composites for optimized device performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang D., Ning W., Yang Y., Ye L., Jiang L. L., Zhang D. A., Wang X. X., Yan X., Long Y. Z., ACS Appl. Mater. Interfaces, 2021, 13(37), 44234

    Article  PubMed  Google Scholar 

  2. Yongjae C., Hyunmin C., Sungjae H., Donghee K., Yeonjin Y., Cheolmin P., Ji H., Seongil I., Nano Energy, 2021, 81, 105686

    Article  Google Scholar 

  3. Li Y. H., Zhao Z. H., Liu L., Zhou L. L., Liu D., Li S. X., Chen S. Y., Dai Y. J., Wang J., Wang Z. L., Adv. Energy Mater. 2021, 11(14), 2100050

    Article  CAS  Google Scholar 

  4. Sun Q. Q., Xia W. M., Liu Y., Ren P. G., Tian X., Hu T. L., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2020, 67(5), 975

    Article  PubMed  Google Scholar 

  5. Yang J., Chen Q. S., Xu F., Jiang H. X., Liu W. L., Zhang X. Q., Jiang Z. X., Zhu G. D., Adv. Electron. Mater., 2020, 6(10), 2000578

    Article  CAS  Google Scholar 

  6. Ico G., Myung A., Kim B. S., Myung N. V., Nam J., Nanoscale, 2018, 10(6), 2894

    Article  CAS  PubMed  Google Scholar 

  7. Lee H. J., Kim J., Kwon O., Lee H. J., Kwak J. H., Kim J. M., Lee S. S., Kim Y., Kim D. Y., Jo J. Y., Appl. Phys. Lett., 2015, 107(26), 262902

    Article  Google Scholar 

  8. Kim J. W., Lee T. K., Jung J. H., Shin S., Lee B. W., Ko J. H., J. Korean Phys. Soc., 2016, 69(11), 1724

    Article  CAS  Google Scholar 

  9. Li X. H., Huang B. H., Hu W. J., Zhang Z. D., J. Mater. Sci. Technol., 2019, 35(10), 2194

    Article  CAS  Google Scholar 

  10. Choudhury S., Li Y. L., Chen L. Q., Jia Q. X., Appl. Phys. Lett., 2008, 92(14), 142907

    Article  Google Scholar 

  11. Wen Z., Qiu X. B., Li C., Zheng C. Y., Ge X. H., Li A. D., Wu D., Appl. Phys. Lett., 2014, 104(4), 042907

    Article  Google Scholar 

  12. Giada G., Luca C., Attilio M., Massimiliano L., Sergio M., Francesca P., Luca B., Virgilio M., Gianni C., Adv. Healthc. Mater., 2016, 5(14), 1808

    Article  Google Scholar 

  13. Tsutsumi N., Kosugi R., Kinashi K., Sakai W., ACS Appl. Mater. Interfaces, 2016, 8(26), 16816

    Article  CAS  PubMed  Google Scholar 

  14. Paik H., Choi Y. Y., Hong S., No K., Sci. Rep., 2015, 5(1), 13209

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ke X. H., Yan J., Zhang A., Zhang B., Chen Y. L., Appl. Phys. Lett., 2015, 107(9), 091904

    Article  Google Scholar 

  16. Zhou Y., You L., Wang S. W., Ku Z. L., Fan H. J., Schmidt D., Rusydi A., Chang L., Wang L., Ren P., Chen L. F., Yuan G. L., Chen L., Wang J. L., Nat. Commun., 2016, 7(1), 11193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin H., Song D., Han H., Kim S., Kim J., Kim D., Shin H., Ahn T., Wolf C., Lee T., Im S., Adv. Mater., 2015, 27(22), 3424

    Article  Google Scholar 

  18. Seo J., Son J., Kim W., Mater. Lett., 2019, 238, 294

    Article  CAS  Google Scholar 

  19. Liu Y. C., Zhang Y. X., Yang Z., Yang D., Ren X. D., Pang L. Q., Liu S. Z., Adv. Mater., 2016, 28(41), 9204

    Article  CAS  PubMed  Google Scholar 

  20. Sheikh A. D., Vhanalakar V., Katware A., Pawar K., Patil P. S., Adv. Mater. Technol., 2019, 4(9), 1900251

    Article  CAS  Google Scholar 

  21. Saidaminov M. I., Abdelhady A. L., Murali B., Alarousu E., Burlakov V. M., Peng W., Dursun I., Wang L., He Y., Maculan G., Goriely A., Wu T., Mohammed O. F., Nat. Commun., 2015, 6(1), 7586

    Article  PubMed  Google Scholar 

  22. Zhou Z., Zhang Z., Zhang Q. L., Yang H., Zhu Y. L., Wang Y. Y., Chen L., ACS Appl. Mater. Interfaces, 2020, 12(1), 1567

    Article  CAS  PubMed  Google Scholar 

  23. Park B., Philippe B., Gustafsson T., Sveinbjörnsson K., Hagfeldt A., Johansson E. M. J., Boschloo G., Chem. Mater., 2014, 26(15), 4466

    Article  CAS  Google Scholar 

  24. Oh S., Kim Y., Choi Y. Y., Kim D., Choi H., No K., Adv. Mater., 2012, 24(42), 5708

    Article  CAS  PubMed  Google Scholar 

  25. Habibur R. M., Yaqoob U., Muhammad S., Uddin A. S. M. I., Kim H. C., Mater. Chem. Phys., 2018, 215, 46

    Article  CAS  Google Scholar 

  26. Gregorio R., Jr., Cestari M., J. Polym. Sci. Part B: Polym. Phys., 1994, 32(5), 859

    Article  CAS  Google Scholar 

  27. Yang Y., Zou X. P., Pei Y. X., Bai X., Jin W. B., Chen D., J. Mater. Sci. Mater. Electron., 2018, 29(1), 205

    Article  CAS  Google Scholar 

  28. Lv X. J., Dong S., Huang X., Cao B., Zeng S. X., Wang Y. J., Wu T., Chen L., Wang J. L., Yuan G. L., Liu J. M., Adv. Opt. Mater., 2021, 9(20), 2100837

    Article  CAS  Google Scholar 

  29. D’Innocenzo V., Srimath Kandada A. R., De Bastiani M., Gandini M., Petrozza A., J. Am. Chem. Soc., 2014, 136(51), 17730

    Article  PubMed  Google Scholar 

  30. Warren B. E., X-Ray Diffraction, Courier Corporation, North Chelmsford, 1990

    Google Scholar 

  31. Lu H., Bark C. W., Esque de los Ojos D., Alcala J., Eom C. B., Catalan G., Gruverman A., Science, 2012, 336(6077), 59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province, China(No.LR21E020004), the National Natural Science Foundation of China (No.U1909212) and the Project of the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, China(No.2021SX-FR007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Ren.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Sun, Y., Zhou, D. et al. Optically Controlled Coercive Field of MAPbl3/P(VDF-TrFE) Ferroelectric Composite Films. Chem. Res. Chin. Univ. 39, 228–233 (2023). https://doi.org/10.1007/s40242-022-2140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2140-8

Keywords

Navigation