Skip to main content
Log in

Fabrication and Excellent Antibacterial Activity of Well-defined CuO/Graphdiyne Nanostructure

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Copper oxide(CuO), due to its low cost, good chemical and physical stability, has recently been given special attention as a potential candidate for antibacterial agents. However, developing novel CuO nanocomposites with improved antibacterial property and unraveling the interface promotion mechanism has been a fundamental challenge for decades. Herein, well-defined CuO/graphdiyne(CuO/GDY) nanostructures with uniformly anchored CuO nanoparticles(ca. 4.5 nm) have been fabricated. The CuO/GDY nanostructure exhibited superior E. coli inactivation efficiency, which is nearly 19 times and 7.9 times higher than the bare GDY and commercial CuO, respectively. The improved E. coli inactivation performance was mainly due to the increased reactive ·O2 species generated by the activation of molecular O2 over CuO/GDY surface. These findings demonstrate the efficient antibacterial activity of well-defined CuO/GDY nanostructures and provide insights on the development of efficient GDY-based antibacterial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manisalidis I., Stavropoulou E., Stavropoulos A., Front. Public Heal, 2020, 8, 14

    Article  Google Scholar 

  2. Mayton H. M., Marcus I. M., White D., Walker S. L., Walker S. L., Environ. Sci. Nano, 2019, 6, 3268

    Article  CAS  Google Scholar 

  3. Gao Q., Keller A. A., ACS ES&T Water, 2021, 1, 185

    Article  CAS  Google Scholar 

  4. Jones I. G., Roworth M., Public Health, 1996, 110, 277

    Article  CAS  PubMed  Google Scholar 

  5. Watahiki M., Isobe J., Kimata K., Shima T., Kanatani J. I., Shimizu M., Nagata A., Kawakami K., Yamada M., Izumiya H., J. Clin. Microbiol, 2014, 52, 2757

    Article  PubMed  PubMed Central  Google Scholar 

  6. Park J., Kim J. S., Kim S., Shin E., Oh K. H., Kim Y., Kim C. H., Hwang M. A., Jin C. M., Na K., Int. J. Infect. Dis, 2018, 66, 45

    Article  PubMed  Google Scholar 

  7. Quintelas C., Rocha Z., Silva B., Fonseca B., Figueiredo H., Tavares T., Chem. Eng. J, 2009, 152, 110

    Article  CAS  Google Scholar 

  8. Yamasaki T., Miyake S., Nakano S., Morimura H., Hirakawa Y., Nagao M., Iijima Y., Narita H., Ichiyama S., Anal. Chem., 2016, 88, 6711

    Article  CAS  PubMed  Google Scholar 

  9. Zhang G. B., Maddili S. K., Tangadanchu V. K. R., Gopala L., Gao W. W., Cai G. X., Zhou C. H., Sci. China Chem., 2018, 61, 557

    Article  CAS  Google Scholar 

  10. Sun H., Wang J., Jiang Y., Shen W., Jia F., Wang S., Liao X., Zhang L., Environ. Sci. Technol., 2019, 53, 3707

    Article  CAS  PubMed  Google Scholar 

  11. Suresh A. K., Pelletier D. A., Doktycz M. J., Nanoscale, 2013, 5, 463

    Article  CAS  PubMed  Google Scholar 

  12. Hajipour M. J., Fromm K. M., Akbar Ashkarran A., Jimenez de Aberasturi D., de Larramendi I. R., Rojo T., Serpooshan V., Parak W. J., Mahmoudi M., Trends Biotechnol., 2012, 30, 499

    Article  CAS  PubMed  Google Scholar 

  13. Chwalibog A., Sawosz E., Hotowy A., Szeliga J., Mitura S., Mitura K., Grodzik M., Orlowski P., Sokolowska A., Int. J. Nanomedicine, 2010, 5, 1085

    Article  PubMed  PubMed Central  Google Scholar 

  14. Giannousi K., Avramidis I., Dendrinou-Samara C., RSC Adv., 2013, 3, 21743

    Article  CAS  Google Scholar 

  15. Guan G., Zhang L., Zhu J., Wu H., Li W., Sun Q., J. Hazard. Mater., 2021, 402, 123542

    Article  CAS  PubMed  Google Scholar 

  16. Kung M. L., Tai M. H., Lin P. Y., Wu D. C., Wu W. J., Yeh B. W., Hung H. S., Kuo C. H., Chen Y. W., Hsieh S. L., Colloids Surfaces B Biointerfaces, 2017, 155, 399

    Article  CAS  PubMed  Google Scholar 

  17. Srevarit W., Moonmangmee S., Phapugrangkul P., Kuboon S., Klamchuen A., Saito N., Ponchio C., J. Alloys Compd., 2021, 859, 157818

    Article  CAS  Google Scholar 

  18. Xin Q., Shah H., Nawaz A., Xie W., Akram M. Z., Batool A., Tian L., Jan S. U., Boddula R., Guo B., Adv. Mater., 2019, 31, 1

    Google Scholar 

  19. Pan C., Wang C., Fang Y., Zhu Y., Deng H., Guo Y., Environ. Sci. Nano, 2021, 8, 1863

    Article  CAS  Google Scholar 

  20. Zhu Z., Bai Q., Li S., Li S., Liu M., Du F., Sui N., Yu W. W., Small, 2020, 16, 1

    Google Scholar 

  21. Wang X., Yang Z., Si W., Shen X., Li X., Li R., Lv Q., Wang N., Huang C., Carbon, 2019, 147, 9

    Article  CAS  Google Scholar 

  22. Liu J., Wang L., Shen X., Gao X., Chen Y., Liu H., Liu Y., Yin D., Liu Y., Xu W., Nano Today, 2020, 34, 100907

    Article  CAS  Google Scholar 

  23. Ren H., Shao H., Zhang L., Guo D., Jin Q., Yu R., Wang L., Li Y., Wang Y., Zhao H., Adv. Energy Mater., 2015, 5, 1

    CAS  Google Scholar 

  24. Li G., Li Y., Liu H., Guo Y., Li Y., Zhu D., Chem. Commun, 2010, 46, 3256

    Article  CAS  Google Scholar 

  25. Brayner R., Ferrari-Iliou R., Brivois N., Djediat S., Benedetti M. F., Fiévet F., Nano Lett., 2006, 6, 866

    Article  CAS  PubMed  Google Scholar 

  26. Kang S., Pinault M., Pfefferle L. D., Elimelech M., Langmuir, 2007, 23, 8670

    Article  CAS  PubMed  Google Scholar 

  27. Li W. R., Xie X. B., Shi Q. S., Zeng H. Y., Ou-Yang Y. S., Chen Y. Ben., Appl. Microbiol. Biotechnol., 2010, 85, 1115

    Article  CAS  PubMed  Google Scholar 

  28. Yu W. B., Hu Z. Y., Yi M., Huang S. Z., Chen D. S., Jin J., Li Y., van Tendeloo G., Su B. L., RSC Adv., 2016, 6, 97129

    Article  CAS  Google Scholar 

  29. Lee S., Song H., Hwang J. Y., Kim S. M., Jeong Y., Carbon Lett., 2018, 27, 98

    Article  Google Scholar 

  30. Zhou J., Gao X., Liu R., Xie Z., Yang J., Zhang S., Zhang G., Liu H., Li Y., Zhang J., J. Am. Chem. Soc., 2015, 137, 7596

    Article  CAS  PubMed  Google Scholar 

  31. Yan H., Yu P., Han G., Zhang Q., Gu L., Yi Y., Liu H., Li Y., Mao L., Angew. Chem. Int. Ed., 2019, 58, 746

    Article  CAS  Google Scholar 

  32. Yao Y., Zhu Y., Pan C., Wang C., Hu S., Xiao W., Chi X., Fang Y., Yang J., Deng H., Zhu L., Guo Y., J. Am. Chem. Soc., 2021, 143, 8720

    Article  CAS  PubMed  Google Scholar 

  33. Li J., Zhong L., Tong L., Yu Y., Liu Q., Zhang S., Yin C., Qiao L., Li S., Si R., Adv. Funct. Mater., 2019, 29, 1

    Google Scholar 

  34. Xu J., Zhou J., Chen C., Li J., Zhang J., Xie Z., Xiong Y., Liu Z., Gao X., Adv. Mater., 2018, 30, 1800548

    Article  Google Scholar 

  35. He J., Bao K., Cui W., Yu J., Huang C., Shen X., Cui Z., Wang N., Chem. -A Eur. J., 2018, 24, 1187

    Article  CAS  Google Scholar 

  36. Avgouropoulos G., Ioannides T., Appl. Catal. A Gen., 2003, 244, 155

    Article  CAS  Google Scholar 

  37. Li L., Zhang N., Huang X., Liu Y., Li Y., Zhang G., Song L., He H., ACS Catal., 2018, 8, 3222

    Article  CAS  Google Scholar 

  38. Huang Z., Maness P. C., Blake D. M., Wolfrum E. J., Smolinski S. L., Jacoby W. A., J. Photochem. Photobiol. A Chem., 2000, 130, 163

    Article  CAS  Google Scholar 

  39. Shang H., Huang S., Li H., Li M., Zhao S., Wang J., Ai Z., Zhang L., Chem. Eng. J., 2020, 386, 124047

    Article  CAS  Google Scholar 

  40. Ma L. L., Li J. L., Sun H. Z., Qiu M. Q., Wang J. B., Chen J. Y., Yu Y., Mater. Res. Bull., 2010, 45, 961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22076060, 51702112, 21777051, 21707039), the Project of the National Engineering Laboratory for Mobile Source Emission Control Technology, China (Nos.NELMS2019A17, NELMS2018A08), the Open Foundation of the Project of the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China(No.2019-KF-8), the Recruitment Program of Global Young Experts Start-up Funds of China, the Program of Introducing Talents of Discipline to Universities of China(No. B17019), and the Project of the Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbing Guo.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Liu, X., Zhang, X. et al. Fabrication and Excellent Antibacterial Activity of Well-defined CuO/Graphdiyne Nanostructure. Chem. Res. Chin. Univ. 37, 1341–1347 (2021). https://doi.org/10.1007/s40242-021-1348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1348-3

Keywords

Navigation