Skip to main content
Log in

Synthesis, Thermal Degradation and Dielectric Properties of Poly[octyl(triphenylethynyl)]silane Resin

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Octyl(triphenylethynyl)silane monomer(OTPES) was synthesized with ethyl bromide, octyltrichlorosilane and phenylethylene by Grignard reaction. The molecular structure was confirmed by FTIR and NMR. The poly[octyl(triphenylethynyl)]silane resin(POTPES) was prepared by thermal polymerization and the corresponding thermal degradation behavior wasstudied by thermogravimetric analysis(TG) combining with model and model-free fitted methods. The dielectric property of resin was also studied by vector network analyzer. The results show that the melt point of OTPES was 50 °C and the processing window was over 236 °C. The resin degradation temperature of Td5 occurred over 433 °C and the char yield was over 60% at 800 °C. Based on Kissinger, Flynn-Wall-Ozawa, Coats-Redfern, Achar, Vyazovkin-Wight and Tang methods, the reaction activity(E) was 155.51, 152.97, 150.82, 146.02, 148.38 and 148.77 kJ/mol, respectively. Dielectric properties analysis displayed that the real part(ε′) and the imaginary part(ε″) of the relative complex permittivity of POTPES was 2.5 and 0.05, respectively, and the dielectric loss tangent was between 0.03 and 0.25. The reflection loss of resin was more than −2.85 dB in all range of 1–5 mm thicknesses and 2–18 GHz frequency, which indicated that POTPES resin was a real wave-transparent resin matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dhanalakshmi J. P., Raj M. A., Vijayakumar C. T., Chinese J. Polym. Sci., 2016, 34, 253

    Article  CAS  Google Scholar 

  2. Wunderlich B., Basics of Thermal Analysis(2nd Ed.), Springer, Berlin, New York, 2005

    Google Scholar 

  3. Vyazovkin S., Sbirrazzuoli N., Macromol. Rapid Commun., 2006, 27, 1515

    Article  CAS  Google Scholar 

  4. Balart R., Garcia D., Quiles L., Polymers, 2019, 11, 281

    Article  Google Scholar 

  5. Guo J., Wang J., Wu Y., He Y., Song H., Chen X., Polym. Eng. Sci., 2019, 59, 246

    Article  CAS  Google Scholar 

  6. Li H., Fu Y., Liu H., Sun C., Li R., Song L., Yang A., J. Polym. Eng., 2019, 39, 105

    Article  CAS  Google Scholar 

  7. Melissaris A. P., Litt M. H., Macromolecules, 1994, 27, 2675

    Article  CAS  Google Scholar 

  8. Zhou Q., Feng X., Ni L., J. Appl. Polym. Sci., 2006, 102, 2488

    Article  CAS  Google Scholar 

  9. Tan D., Shi T. Li Z., Res. Chem. Intermed., 2011, 37, 831

    Article  CAS  Google Scholar 

  10. Cai M., Yuan Q., Huang F., Int Polym.., 2018, 67, 1563

    Article  CAS  Google Scholar 

  11. Wrackmeyer B., Khan E., Bayer S., Z. Naturforsch B., 2010, 65, 725

    Article  CAS  Google Scholar 

  12. Itoh M., Inoue K., Iwata K., Adv. Mater., 1997, 9, 1187

    Article  CAS  Google Scholar 

  13. Sellers K. W., Towns C. M., Mubarak C. R., J. Anal. Appl. Pyrolysis, 2002, 64, 313

    Article  CAS  Google Scholar 

  14. Zhang J., Huang J., Du W., Polym. Degrad. Stab., 2011, 96, 2276

    Article  CAS  Google Scholar 

  15. Guo K., Li P., Zhu Y., Polym. Degrad. Stab., 2016, 131, 98

    Article  CAS  Google Scholar 

  16. Kuroki S., Kakigano K. O., Ishikawa J., Itoh M., Macromolecules, 1998, 31, 2804

    Article  CAS  Google Scholar 

  17. Ren Y., Cheng B., Zhang J., Chem. Res. Chinese Universities, 2008, 24(5), 628

    Article  CAS  Google Scholar 

  18. Askari F., Barikani M., Barmar M., Iran. Polym. J., 2015, 24, 783

    Article  CAS  Google Scholar 

  19. Tang W., Liu Y., Zhang H., Wang C., Thermochimica Acta, 2003, 408, 39

    Article  CAS  Google Scholar 

  20. Chen Y., You X., Deng S., J. Mater. Sci. Chem. Eng., 2018, 7, 1

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Overseas Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University, China and the Research Center for Clean Energy Materials Chemical Engineering Technology of Guangdong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Tan.

Additional information

Supported by the Natural Science Foundation of Guangdong Province, China(No.2017A030307028), the Special Fund for Science and Technology Innovation Strategy of Guangdong Province, China(No.2018A01005), the Yangfan Plan of Guangdong Province, China(No.0003017011) and the Research Initiation Foundation of the Lingnan Normal University, China(Nos.ZL1604, ZL1822).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tan, D. Synthesis, Thermal Degradation and Dielectric Properties of Poly[octyl(triphenylethynyl)]silane Resin. Chem. Res. Chin. Univ. 35, 1076–1081 (2019). https://doi.org/10.1007/s40242-019-9170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-9170-x

Keywords

Navigation