Skip to main content
Log in

Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

BiOCl nanosheets with oxygen vacancies on the exposed {010} facets were assistant-synthesized by triethanolamine(TEOA) via hydrothermal method. We explored the surface properties, crystal structure, morphology and optical absorption ability of the prepared samples via various characterization technologies. The results indicate that the morphologies and microstructures of the obtained samples depend on the amount of TEOA in the synthesis. The addition of TEOA induces the production of oxygen vacancy on the surface of the samples. Therefore, the synthesized samples with TEOA-assistance hold higher photoactivity for the degradation of colorless antibiotic agent Ciprofloxacin(CIP) under visible light(λ⩾420 nm). The obtained sample upon the addition of 20 mL of TEOA exhibits the highest photocatalytic performance, which is nearly 14 times as high as that of the sample prepared without TEOA and twice as high as that of the prepared samples with NaOH or NH3·H2O. The possible degradation mechanism was discussed on the basis of the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burda C., Chen X. B., Narayanan R., El-Sayed M. A., Chem. Rev. 2005, 105(4), 1025

    Article  CAS  PubMed  Google Scholar 

  2. Peng L., Hu L. F., Fang X. S., Adv. Funct. Mater. 2014, 24(18), 2591

    Article  CAS  Google Scholar 

  3. Gu Y., Xu Z. D., Guo L., Wan Y. Q., Cryst. Eng. Comm. 2014, 16(48), 10997

    Article  CAS  Google Scholar 

  4. Han S. C., Hu L. F., Gao N., Al-Ghamdi A. A., Fang X. S., Adv. Funct. Mater. 2014, 24(24), 3725

    Article  CAS  Google Scholar 

  5. Xu Z. D., Li Y. X., Peng S. Q., Lu G. X., Li S. B., Cryst. Eng. Comm. 2011, 13(14), 4770

    Article  CAS  Google Scholar 

  6. Wan Y. Q., Wang X. F., Gu Y., Guo L., Xu Z. D., Appl. Surf. Sci. 2016, 366, 59

    Article  CAS  Google Scholar 

  7. Zhang H., Cai J. M., Wang Y. T., Wu M. Q., Meng M., Tian Y., Li X. G., Zhang J., Zheng L. R., Jiang Z., Appl. Catal. B: Environ. 2018, 220, 126

    Article  CAS  Google Scholar 

  8. Zhou X. X., Qu F. D., Zhang B. X., Jiang C. J., Yang M. H., Mater. Lett. 2017, 209, 618

    Article  CAS  Google Scholar 

  9. Feng J., Wang Y. T., Zou L. Y., Li B. W., He X. F., Liu S. N., Chen T. T., Fan Z. J., Ren Y. M., Lu Y. Z., Chem. Res. Chinese Universities 2015, 31(3), 439

    Article  CAS  Google Scholar 

  10. Cui S., Li X. S., Li Y. J., Zhao H. X., Wang Y. Y., Li N., Li X. T., Li G. D., Chem. Res. Chinese Universities 2017, 33(3), 436

    Article  CAS  Google Scholar 

  11. Zhang K. L., Liu C. M., Huang F. Q., Zheng C., Wang W. D., Appl. Catal. B: Environ., 2006, 68(3/4), 125

    Article  CAS  Google Scholar 

  12. Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature 2008, 453(7195), 638

    Article  CAS  PubMed  Google Scholar 

  13. Han X. G., Kuang Q., Jin M. S., Xie Z. X., Zheng L. S., J. Am. Chem. Soc., 2009, 131(9), 3152

    Article  CAS  PubMed  Google Scholar 

  14. Liu M., Piao L. Y., Zhao L., Ju S. T., Yan Z. J., He T., Zhou C. L., Wang W. J., Chem. Commun. 2010, 46(10), 1664

    Article  CAS  Google Scholar 

  15. Chen J. W., Jiang H., Jin W. L., Shi C. K., Appl. Catal. B: Environ. 2016, 160, 698

    Article  CAS  Google Scholar 

  16. Xiao F., Jiang G. Q., Chen J. Y., Jiang Z. L., Liu X. Z., Osaka A., Ma X. C., J. Mater. Sci., 2018, 53(1), 285

    Article  CAS  Google Scholar 

  17. Liu J. C., Yu S. Y., Zhu W. Y., Yan X. L., Appl. Catal. A: Gen. 2015, 500, 30

    Article  CAS  Google Scholar 

  18. Yang Z. M., Jiang Y. H., Yu Q. H., Ding Y. H., Jiang Y., Yin J. R., Zhang P., J. Mater. Sci., 2017, 52(23), 13586

    Article  CAS  Google Scholar 

  19. Wei R. J., Zhou X. L., Zhou T. F., Hu J. C., Ho J. C., J. Phys. Chem. C, 2017, 121(35), 19002

    Article  CAS  Google Scholar 

  20. Yamazoe S., Koyasu K., Tsukuda T., Accounts Chem. Res. 2014, 47(3), 816

    Article  CAS  Google Scholar 

  21. Zang C. J., Zhang X. S., Hu S. Y., Chen F., Appl. Catal. B: Environ. 2017, 216, 106

    Article  CAS  Google Scholar 

  22. Yu J. C. C., Nguyen V. H., Lasek J., Wu J. C. S., Appl. Catal. B: Environ. 2017, 219, 391

    Article  CAS  Google Scholar 

  23. Ye L. Q., Zan L., Tian L. H., Peng T. Y., Zhang J. J., Chem. Commun. 2011, 47(24), 6951

    Article  CAS  Google Scholar 

  24. Truong Q. D., Hoa H. T., Le T. S., J. Colloid. Interf. Sci., 2017, 504, 223

    Article  CAS  Google Scholar 

  25. Peng F. P., Zhou Q., Lu C. H., Ni Y. R., Kou J. H., Xu Z. Z., Appl. Surf. Sci. 2017, 394, 115

    Article  CAS  Google Scholar 

  26. Chen S. L., Li D., Liu Y. X., Huang W. X., J. Catal., 2016, 341, 126

    Article  CAS  Google Scholar 

  27. Sang W. J., Zhang G., Lan H. C., An X. Q., Liu H. J., Electrochim. Acta 2017, 231, 429

    Article  CAS  Google Scholar 

  28. Zhao K., Zhang L. Z., Wang J. J., Li Q. X., He W. W., Yin J. J., J. Am. Chem. Soc., 2013, 135(42), 15750

    Article  CAS  PubMed  Google Scholar 

  29. Yaremchenko A. A., Populoh S., Patricio S. G., Macias J., Thiel P., Fagg D. P., Weidenkaff A., Frade J. R., Kovalevsky A. V., Chem. Mater. 2015, 27(14), 4995

    Article  CAS  Google Scholar 

  30. Liu M., Li H. M., Wang W. J., Catal. Today 2016, 264, 236

    Article  CAS  Google Scholar 

  31. Pan X. Y., Yang M. Q., Fu X. Z., Zhang N., Xu Y. J., Nanoscale 2013, 5(9), 3601

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y., Wang B. J., Xu Y., Fang M., Wu Z. Y., Zhu W. J., Hong J. H., Li C., J. Chin. Chem. Soc., 2017, 64(2), 188

    Article  CAS  Google Scholar 

  33. Bachman R. E., Whitmire K. H., Thurston J. H., Gulea A., Stavila O., Stavila V., Inorg. Chim. 2003, 346, 249

    Article  CAS  Google Scholar 

  34. Jiang J., Zhao K., Xiao X. Y., Zhang L. Z., J. Am. Chem. Soc., 2012, 134(10), 4473

    Article  CAS  PubMed  Google Scholar 

  35. Li J., Zhang L. Z., Li Y. J., Yu Y., Nanoscale 2014, 6(1), 167

    Article  PubMed  Google Scholar 

  36. Hancock R. D., Cukrowski I., Baloyi, J., Mashishi J., J. Chem. Soc. Dalton, 1993, (19), 2895

    Article  Google Scholar 

  37. Poppl A., Volkel G., Esr P., Phys. Status Solidi A 1991, 125(2), 571

    Article  Google Scholar 

  38. Batzill M., Morales E. H., Diebold U., Chem. Phys., 2007, 339(1–3), 36

    Article  CAS  Google Scholar 

  39. Rath C., Mohanty P., Pandey A. C., Mishra N. C., J. Phys. D: Appl. Phys., 2009, 42(20), 205101

    Article  CAS  Google Scholar 

  40. Park S. M., Ikegami T., Ebihara K., Thin Solid Films, 2006, 513(1/2), 90

    Article  CAS  Google Scholar 

  41. Cui N. Y., Brown N. M. D., McKinley A., Appl. Surf. Sci., 2000, 158(1/2), 104

    Article  CAS  Google Scholar 

  42. Wang J. P., Wang Z. Y., Huang B. B., Ma Y. D., Liu Y. Y., Qin X. Y., Zhang X. Y., Dai Y., ACS Appl. Mater. Inter., 2012, 4(8), 4024

    Article  CAS  Google Scholar 

  43. Kwo J., Wertheim G. K., Gurvitch M., Buchanan D. N. E., Appl. Phys. Lett. 1982, 40(8), 675

    Article  CAS  Google Scholar 

  44. Tan S. J., Ji Y. F., Zhao Y., Zhao A. D., Wang B., Yang J. L., Hou J. G., J. Am. Chem. Soc., 2011, 133(6), 2002

    Article  CAS  PubMed  Google Scholar 

  45. Li H., Li. J., Ai Z. H., Jia F. L., Zhang L. Z., Angew. Chem. Int. Ed. 2017, 57(1), 17

    Google Scholar 

  46. Serpone N., J. Phys. Chem. B, 2006, 110(48), 24287

    Article  CAS  PubMed  Google Scholar 

  47. Nagaveni K., Hegde M. S., Madras G., J. Phys. Chem. B, 2004, 108(52), 20204

    Article  CAS  Google Scholar 

  48. Li Y. X., Hu Y. F., Peng S. Q., Lu G. X., Li S. B., J. Phys. Chem. C, 2009, 113(21), 9352

    Article  CAS  Google Scholar 

  49. Fan H. M., Jiang T. F., Li H. Y., Wang D. J., Wang L. L., Zhai J. L., He D. Q., Wang P., Xie T. F., J. Phys. Chem. C, 2012, 116(3), 2425

    Article  CAS  Google Scholar 

  50. Zeng X. X., Wan Y. Q., Gong. X. F., Xu Z. D., RSC Adv., 2017, 7, 36269

    Article  CAS  Google Scholar 

  51. Bendjabeur S., Zouaghi R., Kaabeche O. N. H., Sehili T., Int. J. Chem. React. Eng., 2017, 15(4), 0206

    Google Scholar 

  52. Khakpash N., Simchi A., Jafari T., J. Mater. Sci.: Mater. El., 2012, 23(3), 659

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaodi Xu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21563020, 31660483, 41761095).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Gong, X., Wan, Y. et al. Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin. Chem. Res. Chin. Univ. 34, 711–718 (2018). https://doi.org/10.1007/s40242-018-8035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-8035-z

Keywords

Navigation