Skip to main content
Log in

Collision dynamics of an energetic carbon ion impinging on the stone-wales defect in a single-walled carbon nanotube

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

By employing atomistic simulations based on an empirical potential model and a self-consistent-charge density-functional tight-binding method, the collision dynamics process of an energetic carbon ion impinging on the Stone-Wales defect in a single-walled carbon nanotube was investigated. The outwardly and inwardly displacement threshold energies for the primary knock-on atom in the Stone-Wales defect were calculated to be 24.0 and 25.0 eV, respectively. The final defect configuration for each case was a 5-1DB-T(DB=dangling bond) defect formed in the front surface of the nanotube. Moreover, the minimum incident energy of the projectile prompting the primary knock-on atom displacement was predicted to be 71.0 eV, and the time evolutions of the kinetic and potential energies of the projectile and the primary knock-on atom were both plotted to analyze the energy transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasheninnikov A. V., Nordlund K., J. Appl. Phys., 2010, 107, 071301

    Article  Google Scholar 

  2. Katoh Y., Ozawa K., Shih C., Nozawa T., Shinavski R. J., Hasegawa A., Snead L. L., J. Nucl. Mater. 2014, 448, 448

    Article  CAS  Google Scholar 

  3. Åhlgren E. H., Kotakoski J., Lehtinen O., Krasheninnikov A. V., Appl. Phys. Lett., 2012, 100, 233108

    Article  Google Scholar 

  4. Chen F. D., Tang X. B., Yang Y. H., Huang H., Liu J., Chen D., Nucl. Instrum. Methods Phys. Res. B, 2015, 358, 88

    Article  CAS  Google Scholar 

  5. Zhang R., Li H., Zhang Z. D., Wang Z. S., Zhou S. Y., Wang Z., Li T. C., Liu J. R., Fu D. J., Nucl. Instrum. Methods Phys. Res. B, 2015, 356/357, 99

    Article  Google Scholar 

  6. Zhang Y., Ishimaru M., Varga T., Oda T., Hardiman C., Xue H. Z., Katoh Y., Shannone S., Weber W. J., Phys. Chem. Chem. Phys., 2012, 14, 13429

    Article  CAS  Google Scholar 

  7. Backman M., Toulemonde M., Pakarinen O. H., Juslin N., Djurabekova F., Nordlund K., Debelle A., Weber W. J., Comput. Mater. Sci., 2013, 67, 261

    Article  CAS  Google Scholar 

  8. Iijima S., Nature, 1991, 354, 56

    Article  CAS  Google Scholar 

  9. Liu L. L., Zhao D. X., Yang Z. Z., Chem. Res. Chinese Universities, 2015, 31(5), 878

    Article  CAS  Google Scholar 

  10. Hulman M., Skákalová V., Krasheninnikov A. V., Roth S., Appl. Phys. Lett., 2009, 94, 071907

    Article  Google Scholar 

  11. Karbunar L., Borka D., Radovic I., Miškovic Z. L., Nucl. Instrum. Methods Phys. Res. B, 2015, 358, 82

    Article  CAS  Google Scholar 

  12. Tolvanen A., Buchs G., Ruffieux P., Gröning P., Gröing O., Krasheninnikov A. V., Phys. Rev. B, 2009, 79, 125430

    Article  Google Scholar 

  13. Holmström E., Toikka L., Krasheninnikov A. V., Nordlund K., Phys. Rev. B, 2010, 82, 045420

    Article  Google Scholar 

  14. Zhao S. J., Xue J. M., Wang Y. G., Yan S., Appl. Phys. A, 2012, 12, 6955

    Google Scholar 

  15. Stone A. J., Wales D. J., Chem. Phys. Lett., 1986, 128, 501

    Article  CAS  Google Scholar 

  16. Li P., Chem. Res. Chinese Universities, 2014, 30(6), 1032

    Article  CAS  Google Scholar 

  17. Plimpton S., J. Comput. Phys., 1995, 117, 1

    Article  CAS  Google Scholar 

  18. Stuart S. J., Tutein A. B., Harrison J. A., J. Chem. Phys., 2000, 112, 6472

    Article  CAS  Google Scholar 

  19. Ziegler J. F., Biersack J. P., Littmark U., The Stopping and Range of Ions in Matter, New York, 1985, 21

    Google Scholar 

  20. Xu Z. J., Zhang W., Zhu Z. Y., Huai P., Nanotechnology, 2009, 20, 125706

    Article  Google Scholar 

  21. Zhang C., Mao F., Zhang F. S., Zhang Y., Chem. Phys. Lett., 2012, 541, 92

    Article  CAS  Google Scholar 

  22. Zhang C., Mao F., Zhang F. S., Eur. Phys. J. Appl. Phys., 2013, 64, 10401

    Article  Google Scholar 

  23. Åhlgren E. H., Kotakoski J., Krasheninnikov A. V., Phys. Rev. B, 2011, 83, 115424

    Article  Google Scholar 

  24. Lehtinen O., Kotakoski J., Krasheninnikov A. V., Tolvanen A., Nordlund K., Keinonen J., Phys. Rev. B, 2010, 81, 153401

    Article  Google Scholar 

  25. Kotakoski J., Krasheninnikov A. V., Ma Y., Foster A. S., Nordlund K., Nieminen R. M., Phys. Rev. B, 2005, 71, 205408

    Article  Google Scholar 

  26. Humphrey W., Dalke A., Schulten K., J. Mol. Graphics, 1996, 14, 33

    Article  CAS  Google Scholar 

  27. Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim Th., Suhai S., Seifert G., Phys. Rev. B, 1998, 58, 7260

    Article  CAS  Google Scholar 

  28. Jakowski J., Irle S., Morokuma K., Phys. Rev. B, 2010, 82, 125443

    Article  Google Scholar 

  29. Zhang D. B., Seifert G., Chang K., Phys. Rev. Lett., 2014, 112, 096805

    Article  Google Scholar 

  30. Krasheninnikov A. V., Banhart F., Li J. X., Foster A. S., Nieminen R. M., Phys. Rev. B, 2005, 72, 125428

    Article  Google Scholar 

  31. Kotakoski J., Krasheninnikov A. V., Nordlund K., Phys. Rev. B, 2006, 74, 245420

    Article  Google Scholar 

  32. Lu A. J., Pan B. C., Phys. Rev. Lett., 2004, 92, 105504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengling Pan.

Additional information

Supported by the National Natural Science Foundation of China(Nos.11505003, 11505092), the Natural Science Foundation of Anhui Province, China(No.1608085QA20), the Postdoctoral Science Foundation of Anhui Province, China(No.2016B091) and the Introduced Doctor’s Startup Fund from Anhui University of Science and Technology, China(No.ZX944).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Mao, F., Meng, X. et al. Collision dynamics of an energetic carbon ion impinging on the stone-wales defect in a single-walled carbon nanotube. Chem. Res. Chin. Univ. 32, 803–807 (2016). https://doi.org/10.1007/s40242-016-6179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6179-2

Keywords

Navigation