Skip to main content
Log in

Using homology modeling, molecular dynamics and molecular docking techniques to identify inhibitor binding regions of somatostatin receptor 1

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The G protein coupled receptor(GPCR), one of the members in the superfamily, which consists of thousands of integral membrane proteins, exerts a wide variety of physiological functions and responses to a large portion of the drug targets. The 3D structure of somatostatin receptor 1(SSTR1) was modeled and refined by means of homology modeling and molecular dynamics simulation. This model was assessed by Verify-3D and Vadar, which confirmed the reliability of the refined model. The interaction between the inhibitor cysteamine, somatostatin(SST) and SSTR1 was investigated by a molecular docking program, Affinity. The binding module not only showed the crucial residues involved in the interaction, but also provided important information about the interaction between SSTR1 on the one hand and ligands on the other, which might be the significant evidence for the structure-based design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhong C., Ding J., Acta Biochim. Biophys. Sin., 2011, 43, 337

    Article  CAS  Google Scholar 

  2. Wu B. L., Chien E. Y. T., Mol C. D., Fenalti G., Liu W., Katritch V., Abagyan R., Brooun A., Wells P., Bi C. F., Hamel D. J., Kuhn P., Handel T. M., Cherezov V., Stevens R. C., Science, 2010, 330, 1066

    Article  CAS  Google Scholar 

  3. Baggiolini M., Nature, 1998, 392, 565

    Article  CAS  Google Scholar 

  4. Moser B., Wolf M., Walz A., Loetscher P., Trends Immunol., 2004, 25, 75

    Article  CAS  Google Scholar 

  5. Mackay C. R., Nat. Immunol., 2001, 2, 95

    Article  CAS  Google Scholar 

  6. Congreve M., Marshall F., Br. J. Pharmacol., 2010, 159, 986

    Article  CAS  Google Scholar 

  7. Watt H. L., Kharmate G. D., Kumar U., Cell Signal., 2009, 21, 428

    Article  CAS  Google Scholar 

  8. Zatelli M. C., Piccin D., Tagliati F., Ambrosio M. R., Margutti A., Padovani R., Scanarini M., Culler M. D., degli Uberti E. C., J. Clin. Endocrinol. Metab., 2003, 88, 2797

    Article  CAS  Google Scholar 

  9. Liapakis G., Tallent M., Reisine T., Metabolism, 1996, 45, 12

    Article  CAS  Google Scholar 

  10. Reynisdottir I., Massagué J., Genes. Dev., 1997, 11, 492

    Article  CAS  Google Scholar 

  11. Altschu S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J., Nucleic. Acid Res., 1997, 25, 3389

    Article  Google Scholar 

  12. Marklund S., Tuggle C. K., Rothschild M. F., Anim. Genet., 2000, 31, 318

    Article  CAS  Google Scholar 

  13. Schwede T., Kopp J., Guex N., Peitsch M. C., Nucleic. Acids Res., 2003, 31, 3381

    Article  CAS  Google Scholar 

  14. Guex N., Peitsch M. C., Electrophoresis, 1997, 18, 2714

    Article  CAS  Google Scholar 

  15. Arnold K., Bordoli L., Kopp J., Schwede T., Bioinformatics, 2006, 22, 195

    Article  CAS  Google Scholar 

  16. Zhan D., Han W. W., Feng Y., J. Mol. Model., 2011, 17, 1241

    Article  CAS  Google Scholar 

  17. Kiefer F., Arnold K., Künzli M., Bordoli L., Schwede T., Nucleic. Acids Res., 1995, 37, D387

    Article  Google Scholar 

  18. Arnold K., Bordoli L., Kopp J., Schwede T., Bioinformatics, 2006, 22, 195

    Article  CAS  Google Scholar 

  19. Gruber C. C., Pleiss J., J. Comput. Chem., 2011, 32, 600

    Article  CAS  Google Scholar 

  20. Jorgensen W. L., Chandrasekhar J., Madurs J., Impey R. W., Klein M. L., J. Chem. Phys., 1983, 79, 926

    Article  CAS  Google Scholar 

  21. Binding Site Analysis User Guide, Accelrys Inc., San Diego, 1999

  22. Dundas J., Zheng O., Tseng J., Binkowski A., Turpaz Y., Liang Y., Nucleic. Acids Res., 2006, 34, W116

    Article  CAS  Google Scholar 

  23. Trott O., Olson A.J., J. Comput. Chem., 2010, 31, 455

    CAS  Google Scholar 

  24. Affinity User Guide, Accelrys Inc., San Diego, 1999

  25. Han W. W., Zhan D. L., Zhao X., Wang S., Chem. Res. Chinese Universities, 2010, 26(1), 128

    CAS  Google Scholar 

  26. Han W. W., Wang Y., Luo Q., Feng Y., J. Chem. Theory. Comput., 2011, 10, 165

    Article  CAS  Google Scholar 

  27. Han W. W., Zhou Y. H., Luo Q., Yao Y., Li Z. S., Polymer, 2007, 48, 3726

    Article  CAS  Google Scholar 

  28. Han W. W., Wang Y., Zhou Y. H., Yao Y., Li Z. S., Feng Y., J. Mol. Model., 2009, 15, 481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-wei Han or Xin Zheng.

Additional information

Supported by the National Basic Research Program of China(No.2012CB721003) and the National Natural Science Foundation of China(Nos.30871842, 20333050, 20073014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Hn., Wang, Yx., Zheng, Mz. et al. Using homology modeling, molecular dynamics and molecular docking techniques to identify inhibitor binding regions of somatostatin receptor 1. Chem. Res. Chin. Univ. 29, 139–143 (2013). https://doi.org/10.1007/s40242-013-2103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2103-1

Keywords

Navigation