Skip to main content
Log in

Effect of molar ratio of citric acid to metal nitrate on the structure and catalytic activity of NiO nanoparticles

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

NiO nanoparticles were prepared by means of sol-gel method via varying the ratio of citric acid to nickel nitrate. The samples were characterized by powder X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). It was found that the molar ratio of citric acid to nickel nitrate has a great effect on the crystal structure and particle size of NiO. The increase of the molar ratio of citric acid to nickel nitrate is favorable to the formation of NiO smaller particles within the range tested. Compared to bulk NiO obtained by thermal decomposition, NiO nanoparticles possess more surface oxygen species O. The activity test indicates that surface oxygen species O plays a crucial role in the hydroxylation of benzene to phenol with hydrogen peroxide as oxidant. The active site may be originated from Ni2+ on the surface of the samples, while Ni0 does not contribute to the hydroxylation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen C. C. Herhold A. B. Johnson C. S. Alivisatos A. P., Science, 1997, 276, 398

    Article  CAS  Google Scholar 

  2. Beach E. R. Shqau K. R. Brown S. E. Rozeveld S. J. Morris P. A., Mater. Chem. Phys., 2009, 115, 371

    Article  CAS  Google Scholar 

  3. Bi H., Li S. D. Zhang Y. C., J. Magn. Magn. Mater., 2004, 277, 363

    Article  CAS  Google Scholar 

  4. Farhadi S., Kazem M., Siadatnasab F., Polyhedron, 2011, 30, 606

    Article  CAS  Google Scholar 

  5. Sohn J. R. Han J. S., Appl. Catal. A, Gen., 2006, 298, 168

    Article  CAS  Google Scholar 

  6. Li J. F. Yan R., Xiao B., Liang D. T. Lee D. H., Energy Fuels, 2008, 22, 16

    Article  Google Scholar 

  7. Carnes C. L. Klabunde K. J., J. Mol. Catal. A, Chem., 2003, 194, 227

    Article  CAS  Google Scholar 

  8. Wu Y., Chen T., Cao X. D. Weng W. Z. Wan H. L., Chin. J. Catal., 2003, 24, 403

    CAS  Google Scholar 

  9. Biju V., Khadar M. A., J. Mater. Sci., 2001, 36, 5779

    Article  CAS  Google Scholar 

  10. Maia A. O. G. Meneses C. T. Menezes A. S. Flores W. H. Melo D. M. A. Sasaki J. M., J. Non-Cryst. Solids, 2006, 352, 3729

    Article  CAS  Google Scholar 

  11. Ohta H., Hirano M., Nakahara K., Maruta H., Tanabe T., Kamiya M., Kamiya T., Hosono H., Appl. Phys. Lett., 2003, 83, 1029

    Article  CAS  Google Scholar 

  12. Aslani A., Oroojpour V., Fallahi M., Apppl. Surf. Sci., 2011, 257, 4056

    Article  CAS  Google Scholar 

  13. Komath M., Thomas S., Cherian K. A., Mater. Chem. Phys., 1993, 36, 190

    Article  CAS  Google Scholar 

  14. Hu X. K. Zhu L. F. Guo B., Liu Q. Y. Li G. Y. Hu C. W., Chem. Res. Chinese Universities, 2011, 27(3), 503

    CAS  Google Scholar 

  15. Barbera D., Cavani F., D’Alessandro T., Fornasari G., Guidetti S., Aloise A., Giordano G., Piumetti M., Bonelli B., Zanzottera C., J. Catal., 2010, 275, 158

    Article  CAS  Google Scholar 

  16. Parida K. M. Rath D., Appl. Catal. A, Gen., 2007, 321, 101

    Article  CAS  Google Scholar 

  17. Miyahara T. Kanzaki H., Hamada R., Kuroiwa S., Nishiyama S., Tsuruya S., J. Mol. Catal. A, Chem., 2001, 176, 141

    Article  CAS  Google Scholar 

  18. Wu Y., He Y. M. Wu T. H. Chen T., Weng W. Z. Wan H. L., Mater. Lett., 2007, 61, 3174

    Article  CAS  Google Scholar 

  19. Liu J. H. Yu M., Li S. M., Chin. Mater. Eng., 2006, 1, 110

    Google Scholar 

  20. Kanthimathi M., Dhathathreyan A., Nair B. U., Mater. Lett., 2004, 58, 2914

    Article  CAS  Google Scholar 

  21. Wang Y. P. Zhu J. W. Yang X. J. Lu L. D. Wang X., Thermochi. Acta, 2005, 437, 106

    Article  CAS  Google Scholar 

  22. van der Laan G. V. Westra C., Haas C., Sawatzky G. A., Phys. Rev. B, 1981, 23, 4369

    Article  Google Scholar 

  23. Fierro G., Jacono M. L. Inversi M., Dragone R., Porta P., Top Catal., 2000, 10, 39

    Article  CAS  Google Scholar 

  24. Naghash A. R. Etsell T. H. Xu S., Chem. Mater., 2006, 18, 2480

    Article  CAS  Google Scholar 

  25. Rao C. N. R. Vijayakrishnan V., Kulkarni G. U. Rajumon M. K., Appl. Surf. Sci., 1995, 84, 285

    Article  CAS  Google Scholar 

  26. Hegde M. S. Ayyoob M., Surf. Sci., 1986, 173, L635

    Article  CAS  Google Scholar 

  27. Fu Z. J. Chen T., Yu T. H. Hu C. W. Tian A. M., Chin. Gas Technol., 2003, 28, 14

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gui-ying Li or Chang-wei Hu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21021001, 20502017) and the Program for Changjiang Scholars and Innovative Research Team in Universities of China(No.0846).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Tan, Xy., Li, Gy. et al. Effect of molar ratio of citric acid to metal nitrate on the structure and catalytic activity of NiO nanoparticles. Chem. Res. Chin. Univ. 29, 154–158 (2013). https://doi.org/10.1007/s40242-013-2059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2059-1

Keywords

Navigation