Skip to main content
Log in

Identifying citrus limonoids as a potential fusion inhibitor of DENV-2 virus through its in silico study and FTIR analysis

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Dengue virus type 2 (DENV-2) is an arthropod-borne deadly RNA human pathogen transmitted through the mosquito Aedes. The DENV-2 roots viral infection by facilitating entry with its envelope glycoprotein to the receptor protein Dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN) through membrane fusion. Here, an organizational path is reported for inhibiting the transition due to fusion activation and by blocking the residues of the DC-SIGN–E-Glyco protein complex through citrus limonoids with its antiviral effect. Based on lower binding affinity obtained with E-glycoprotein, and based on ADMET and drug-likeness study, limonin was selected as having effective interaction with DC-SIGN–E-glycoprotein complex in comparison to other citrus limonoids. The FTIR spectra performed with the limonin–E-glycoprotein sample provide evidence of hydrogen bond formation that indicates the formation of a strong limonin–E-glycoprotein conjugate. Further, the strong physical interaction between DC-SIGN and small limonin molecules in comparison to that of E-glyco with DC-SIGN assures the development of immunity against DENV-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Abd AJ, Al-Shammarie Ahmed M, Abd A-HH (2019) Antiviral activity of limonin against Newcastle disease virus in vitro. Res J Biotechnol 14:320–328

    Google Scholar 

  • Abdolmaleki A, Ghasemi JB, Ghasemi F (2017) Computer aided drug design for multi-target drug design: SAR/QSAR, molecular docking and pharmacophore methods. Curr Drug Targets 18:556–575

    Article  CAS  PubMed  Google Scholar 

  • Ali J et al (2012) Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J Chem Inf Model 52:420–428

    Article  CAS  PubMed  Google Scholar 

  • Arias BA, Ramón-Laca L (2005) Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. J Ethnopharmacol 97:89–95

    Article  PubMed  Google Scholar 

  • Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

  • Balestrieri E et al (2011) Antiviral activity of seed extract from citrus Bergamia towards human retroviruses. Bioorg Med Chem 19:2084–2089

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj S et al (2001) Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol 75:4002–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressanelli S et al (2004) Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlos CC et al (2005) Comparison of clinical features and hematologic abnormalities between dengue fever and dengue hemorrhagic fever among children in the Philippines. Am J Trop Med Hyg 73:435–440

    Article  PubMed  Google Scholar 

  • Chandrasekaran R et al (2019) A computational approach on understanding structural interactions of envelope protein of dengue virus bound with squalene, a prototype anti-viral compound. Int J Pharm Pharm Sci 11:1113

    Article  Google Scholar 

  • Codoñer-Franch P, Valls-Bellés V (2010) Citrus as functional foods. Curr Top Nutr Res 8:173–183

    Google Scholar 

  • Crill WD, Roehrig JT (2001) Monoclonal antibodies that bind to domain III of dengue virus E-glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75:7769–7773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13

    Article  Google Scholar 

  • De La Guardia C, Lleonart R (2014) Progress in the identification of dengue virus entry/fusion inhibitors. Biomed Res Int 2014:825039

    PubMed  Google Scholar 

  • Delaney JS (2004) ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 44:1000–1005

    Article  CAS  PubMed  Google Scholar 

  • Derdar H, Belbachir M, Harrane A (2019) A green synthesis of polylimonene using Maghnite-H+, an exchanged montmorillonite clay, as eco-catalyst. Bull Chem React Eng Catal 14:69–78

    Article  CAS  Google Scholar 

  • Dighe SN et al (2019) Recent update on anti-dengue drug discovery. Eur J Med Chem 176:431–455

    Article  CAS  PubMed  Google Scholar 

  • Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1:1–11

    Article  Google Scholar 

  • Fritz R, Stiasny K, Heinz FX (2008) Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183(2):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68

    Article  CAS  PubMed  Google Scholar 

  • Gualdani R et al (2016) The chemistry and pharmacology of citrus limonoids. Molecules 21:1530

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzmán MG et al (2002) Effect of age on outcome of secondary dengue 2 infections. Int J Infect Dis 6:118–124

    Article  PubMed  Google Scholar 

  • Guzman MG et al (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:S7–S16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanley KA, Weaver SC (2010) Frontiers in dengue virus research. Caister Academic Press, London

    Google Scholar 

  • Hughes JD et al (2008) Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 18:4872–4875

    Article  CAS  PubMed  Google Scholar 

  • Ismail NA, Jusoh SA (2017) Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein. Interdisci Sci Comput Life Sci 9:499–511

    Article  CAS  Google Scholar 

  • Kampmann T et al (2006) The role of histidine residues in low-pH-mediated viral membrane fusion. Structure 14:1481–1487

    Article  CAS  PubMed  Google Scholar 

  • Kittigul L et al (2007) The differences of clinical manifestations and laboratory findings in children and adults with dengue virus infection. J Clin Virol 39:76–81

    Article  PubMed  Google Scholar 

  • Knipe D, Howley P (2007) Flaviviridae: the viruses and their replication in fields virology. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  • Kozakov D et al (2013) How good is automated protein docking? Proteins: structure. Funct Bioinform 81:2159–2166

    Article  CAS  Google Scholar 

  • Kozakov D et al (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn RJ et al (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon H-J et al (2010) In vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination. Virol J 7:1–9

    Article  Google Scholar 

  • Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  • Mir A et al (2016) Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Inform Med Unlock 3:1–6

    Article  Google Scholar 

  • Modis Y et al (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci 100:6986–6991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modis Y et al (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319

    Article  CAS  PubMed  Google Scholar 

  • Nakao S, Lai C-J, Young NS (1989) Dengue virus, a flavivirus, propagates in human bone marrow progenitors and hematopoietic cell lines. Blood 74:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Normile D (2013) Surprising new dengue virus throws a spanner in disease control efforts. Am Assoc Adv Sci 2013:415

    Google Scholar 

  • Omar NA, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WM, Sadrolhosseini AR, Mahdi MA (2020) Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor. Sci Rep 10:2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Organization WH et al (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization, New York

    Google Scholar 

  • Patil BS et al (2009) Bioactive compounds: historical perspectives, opportunities, and challenges. J Agric Food Chem 57:8142–8160

    Article  CAS  PubMed  Google Scholar 

  • Perera R, Kuhn RJ (2008) Structural proteomics of dengue virus. Curr Opin Microbiol 11:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S et al (2018) Extraction, identification, and antioxidant property evaluation of limonin from pummelo seeds. Anim Nutr 4:281–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Rey FA et al (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298

    Article  CAS  PubMed  Google Scholar 

  • Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67:2773–2786

    Article  CAS  PubMed  Google Scholar 

  • Shah M et al (2013) Interaction and inhibition of dengue envelope glycoprotein with mammalian receptor DC-SIGN, an in-silico approach. PLoS ONE 8:e59211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiasny K et al (2007) Characterization of a structural intermediate of flavivirus membrane fusion. PLoS Pathog 3(2):e20

    Article  PubMed  PubMed Central  Google Scholar 

  • Švajger U et al (2010) C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 22:1397–1405

    Article  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veber DF et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara-Bell J et al (2010) In vitro evaluation of marine-microorganism extracts for anti-viral activity. Virol J 7:1–11

    Article  Google Scholar 

  • Zhang Y et al (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H-Y et al (2012) Bioactivity evaluations of ingredients extracted from the flowers of Citrus aurantium L. var. amara Engl. Food Chem 135:2175–2181

    Article  CAS  PubMed  Google Scholar 

  • Zheng X et al (2013) Rational drug design: the search for Ras protein hydrolysis intermediate conformation inhibitors with both affinity and specificity. Curr Pharm Des 19:2246–2258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors like to thank the Department of Electronics and Communication Engineering, Tezpur University for providing facilities to do the research work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Satyajit Das: Conceptualization, methodology, investigation, writing—original draft preparation. Geetartha Sarma: investigation, writing—reviewing and editing Nithin Joseph Panicker.: Investigation, writing—reviewing and editing, Partha P. Sahu: supervision, writing—reviewing and editing.

Corresponding author

Correspondence to Geetartha Sarma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 150 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sarma, G., Panicker, N.J. et al. Identifying citrus limonoids as a potential fusion inhibitor of DENV-2 virus through its in silico study and FTIR analysis. In Silico Pharmacol. 12, 35 (2024). https://doi.org/10.1007/s40203-024-00207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-024-00207-2

Keywords

Navigation