Skip to main content

Advertisement

Log in

Bacteriocin activity of various iranian honey‐associated bacteria and development of a simple medium for enhanced bacteriocin activity

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Honey is a promising source of bacterial strains producing metabolites with antimicrobial activity. There is a great variety in the antimicrobial activity of honey from different areas of nature. Therefore, the aim of present study was to investigate the antibacterial activity of Iranian honey from different regions and to optimize the culture condition for the highly potent bacterial isolate.

Methods

Honey samples were collected from ten different regions of Iran and were screened for bacteriocin-producing bacteria. The best bacteriocin-producing strain was characterized and identified by 16S rDNA analysis. One-factor-at-a-time method was used for optimization of culture medium and the yield and time-course of bacteriocin production were compared in both shake flask and bio-reactor.

Results

The Bacillus subtilis SB1 that was isolated from Sabalan honey showed potent antibacterial activity with prominent thermal stability. The optimum medium for the bacteiocin production was a yeast extract-based medium. The optimum incubation temperature for bacteriocin production was 34 °C. Bacteriocin production was higher near neutral pH conditions than that produced at acidic or alkaline environment. The results of cell growth and bacteriocin assays revealed that the exponential phase of growth and antibacterial compounds production was started rapidly in bioreactor than flask.

Conclusions

Findings of this study supported the folkloric application of honey against some infectious diseases. B.subtilis SB1 that isolated from Sabalan honey was a potential source for bacteriocins-like compounds. Our studies suggested a simple buffered nitrogen-based medium for SB1 growth and bacteriocin activity in both shake flask and bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kwakman PHS, Van den Akker JPC, Güçlü A, et al. Medical grade honey kills antibiotic resistant bacteria in vitro and eradicates skin colonization. Clin Infect Dis. 2008;46(11):1677–82. https://doi.org/10.1086/587892.

    Article  CAS  Google Scholar 

  2. Mandal MD, Mandal S, Honey. Its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011;1(2):154–60. https://doi.org/10.1016/S2221-1691(11)60016-6.

    Article  Google Scholar 

  3. Abd-El Aal A, El-Hadidy M, El-Mashad N, El-Sebaie A. Antimicrobial effect of bee honey in comparison to antibiotics on organisms isolated from infected burns . Ann Burns Fire Disasters. 2007;20(2):83–8.

    CAS  Google Scholar 

  4. Al-Waili NS. Investigating the antimicrobial activity of natural honey and its effects on the pathogenic bacterial infections of surgical wounds and conjunctiva. J Med Food. 2004;7(2):210–22. https://doi.org/10.1089/1096620041224139.

    Article  CAS  Google Scholar 

  5. Ibarguren C, Raya RR, Apella MC, Audisio MC. Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains. J Microbiol. 2010;48(1):44–52. https://doi.org/10.1007/s12275-009-0177-8.

    Article  CAS  Google Scholar 

  6. Pajor M, Worobo RW, Milewski S, Szweda P. The antimicrobial potential of bacteria isolated from honey samples produced in the apiaries located in pomeranian voivodeship in Northern Poland. Int J Environ Res Public Health. 2018;15(9):1–14. https://doi.org/10.3390/ijerph15092002.

    Article  CAS  Google Scholar 

  7. Ansari A, Aman A, Siddiqui NN, Iqbal S, Ali S. Bacteriocin. (BAC-IB17): screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak. J Pharm Sci. 2012;25(1):195–201.

    CAS  Google Scholar 

  8. Kim MH, Kong YJ, Baek H, Hyun HH. Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5. J Biotechnol. 2006;121(1):54–61. https://doi.org/10.1016/j.jbiotec.2005.06.022.

    Article  CAS  Google Scholar 

  9. Snowdon JA, Cliverb D. Microorganisms in honey. Int J Food Microbiol. 1996;31(1–3):1–26. https://doi.org/10.1016/0168-1605(96)00970-1.

    Article  CAS  Google Scholar 

  10. Gomes S, Dias LG, Moreira LL, Rodrigues P, Estevinho L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem Toxicol. 2010;48(2):544–8. https://doi.org/10.1016/j.fct.2009.11.029.

    Article  CAS  Google Scholar 

  11. Abriouel H, Franz CMAP, Omar N, Ben, Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011;35(1):201–32. https://doi.org/10.1111/j.1574-6976.2010.00244.x.

    Article  CAS  Google Scholar 

  12. Esawy MA, Ahmed EF, Helmy WA, Mansour NM, El-Senousy WM, El-Safty MM. Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohyd Polym. 2011;86(2):823–30. https://doi.org/10.1016/j.carbpol.2011.05.035.

    Article  CAS  Google Scholar 

  13. Corsetti A, Settanni L, Sinderen D, Van, Felis GE, Dellaglio F, Gobbetti M. Lactobacillus rossii sp. nov., isolated from wheat sourdough. 2019;(2005):35–40. https://doi.org/10.1099/ijs.0.63075-0.

  14. Batdorj B, Dalgalarrondo M, Choiset Y, et al. Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol. 2006;101(4):837–48. https://doi.org/10.1111/j.1365-2672.2006.02966.x.

    Article  CAS  Google Scholar 

  15. Van Reenen CA, Dicks LMT, Chikindas ML. Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol. 1998;84(6):1131–7. https://doi.org/10.1046/j.1365-2672.1998.00451.x.

    Article  Google Scholar 

  16. Agbagwa OE, Rani SD, Halami PM. Antibacterial potential components of Bacillus species and antibiotics residues in branded and unbranded honey samples from Nigeria. Afr J Biotechnol. 2017;16(2):58–64. https://doi.org/10.5897/AJB2016.15714.

    Article  CAS  Google Scholar 

  17. Lu Z, Guo W, Liu C. Isolation, identification and characterization of novel Bacillus subtilis. J Vet Med Sci. 2018;80(3):427–33. https://doi.org/10.1292/jvms.16-0572.

    Article  CAS  Google Scholar 

  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991.

    Article  CAS  Google Scholar 

  19. Studier W. Stable expression clones and auto-induction for protein production in E. coli. Structural Genomics. 2013:17–32. https://doi.org/10.1007/978-1-62703-691-7_2.

  20. Powell JE, Witthuhn RC, Todorov SD, Dicks LMT. Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int Dairy J. 2007;17(3):190–8. https://doi.org/10.1016/j.idairyj.2006.02.012.

    Article  CAS  Google Scholar 

  21. Lee NK, Paik HD. Partial characterisation of lactocin NK24, a newly identified bacteriocin of Lactococcus lactis NK24 isolated from Jeot-gal. Food Microbiol. 2001;18(1):17–24. https://doi.org/10.1006/fmic.2000.0368.

    Article  CAS  Google Scholar 

  22. Ivanova I, Kabadjova P, Pantev A, Danova S, Dousset X. Detection, purification and partial characterization of a novel bacteriocin substance produced by Lactococcus lactis subsp. lactis B14 isolated from boza-Bulgarian traditional cereal beverage. Biocatalisis. 2000;41:47–53.

    Google Scholar 

  23. Mojgani N, Vaccine R. Detection and characterization of a heat stable bacteriocin (Lactocin LC-09) produced by a clinical isolate of Lactobacilli. Med J Islam Acad Sci. 1999;12(3):67–71.

    Google Scholar 

  24. Nadu T, Nadu T, Nadu T. Optimization of bacteriocin production by Bacillus subtilis BMP01 isolated from Solanum trilobatum L. Int J Curr Microbiol App Sci. 2015;4(3):617–26.

    Google Scholar 

  25. Stein T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol Microbiol. 2005;56(4):845–57. https://doi.org/10.1111/j.1365-2958.2005.04587.x.

    Article  CAS  Google Scholar 

  26. Todorov SD, Dicks LMT. Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol Res. 2006;161(2):102–8. https://doi.org/10.1016/j.micres.2005.06.006.

    Article  CAS  Google Scholar 

  27. Rhouma A, Jaouadi B, Rebai A, Nesme X. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol. 2009;48(2):253–60. https://doi.org/10.1111/j.1472-765X.2008.02524.x.

    Article  CAS  Google Scholar 

  28. Kayalvizhi N, Gunasekaran P. Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett Appl Microbiol. 2008;47(6):600–7. https://doi.org/10.1111/j.1472-765X.2008.02473.x.

    Article  CAS  Google Scholar 

  29. Todorov SD, Dicks LMT. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzym Microb Technol. 2005;36(2–3):318–26. https://doi.org/10.1016/j.enzmictec.2004.09.009.

    Article  CAS  Google Scholar 

  30. Cheigh C, Choi H, Park H, et al. Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J Biotechnol. 2002;95(3):225–35. https://doi.org/10.1016/S0168-1656(02)00010-X.

    Article  CAS  Google Scholar 

  31. Brito D, Fevereiro P, Delgado A, No´ e Arroyo L´opez F, Peres C, Garrido-Fern´andez A. Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J Biotechnol. 2007;130(2):193–201. https://doi.org/10.1016/j.jbiotec.2007.01.041.

    Article  CAS  Google Scholar 

  32. Taheri P, Samadi N, Reza Ehsani M, Reza Khoshay M, Jamalifar H. An evaluation and partial characterization of a bacteriocin produced by lactococcus lactis subsp lactis ST1 isolated from goat milk. Braz J Microbiol. 2012;43(4):1452–62. https://doi.org/10.1590/S1517-83822012000400029.

    Article  CAS  Google Scholar 

  33. Mitra S, Chakrabartty PK. Production of Nisin Z by Lactococcus lactis Isolated from Dahi. Appl Biochem Biotechnol. 2007;143(1):41–53. https://doi.org/10.1007/s12010-007-0032-5.

    Article  CAS  Google Scholar 

  34. Onda T, Yanagida F, Tsuji M. Production and purification of a bacteriocin peptide produced by Lactococcus sp. strain GM005, isolated from Miso -paste. Int J Food Microbiol. 2003;87(1–2):153–9. https://doi.org/10.1016/S0168-1605(03)00063-1.

    Article  CAS  Google Scholar 

  35. Bizani D, Brandelli A. Influence of media and temperature on bacteriocin production by Bacillus cereus 8A during batch cultivation. Appl Microbiol Biotechnol. 2004;65(2):158–62. https://doi.org/10.1007/s00253-004-1570-1.

    Article  CAS  Google Scholar 

  36. Leal-Sánchez MV, Jiménez-Díaz R, Maldonado-Barragán A, Garrido-Fernández A, Ruiz-Barba JL. Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl Environ Microbiol. 2002;68(9):4465–71. https://doi.org/10.1128/AEM.68.9.4465-4471.2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Samadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili Samani, M., Noormohammadi, Z., Fazeli, M.R. et al. Bacteriocin activity of various iranian honey‐associated bacteria and development of a simple medium for enhanced bacteriocin activity. J Environ Health Sci Engineer 19, 427–435 (2021). https://doi.org/10.1007/s40201-021-00615-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00615-y

Keywords

Navigation