Skip to main content

Advertisement

Log in

Amelioration of diabetes and its complications by Manilkara zapota (L) P. Royen fruit peel extract and its fractions in alloxan and STZ-NA induced diabetes in Wistar rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

This study aims to evaluate the effects of Manilkara zapota (L) P. Royen fruit peel extract (EMZFP) and its fractions in ameliorating diabetes and its complications in alloxan and STZ-NA induced diabetes in Wistar rats.

Methods

Antidiabetic effects of EMZFP were assessed in alloxan (150 mg kg-1) induced diabetes in differently grouped rats (n=6). Diabetic rats were treated with EMZFP 150, 300, and 600 mg kg-1 while, glimepiride (0.09 mg kg-1) was used as a reference standard. Treated animals were assessed for various biological parameters i.e. blood glucose, serum lipids, nephroprotective markers, cardiovascular risk indices, liver glycogen, neuropathy, body weight, and histopathology of kidneys. However, for evaluating antidiabetic effects of fractions (chloroform, acetone, ethyl acetate, and remaining ethanol fraction) of EMZFP, diabetes was induced by streptozotocin (60 mg kg-1)–nicotinamide (120 mg kg-1/ml) in differently grouped male rats (n=6). Diabetic rats were treated with EMZFP fractions 200 mg kg-1 however; glibenclamide (10 mg kg-1) was a reference standard and evaluated for blood glucose, serum lipids, cardiovascular risk indices, and diabetic neuropathy.

Results

EMZFP 300 and 600 mg kg-1/day demonstrated significant antihyperglycemic effects with augmentation in glycogen content, perfection in serum lipid profile, cardiovascular risk indices, body weight enhancement, nephroprotective effects, beneficial in peripheral neuropathy, and histopathological evidence of reversal of glomerulosclerosis. EMZFP-Et and EMZFP-EA fractions depicted a significant improvement in blood glucose, serum lipid profile, cardiovascular risk indices, and peripheral neuropathy.

Conclusion

EMZFP and its Et and EA fractions ameliorated diabetes and its complications by improving glycemic control and associated biochemical alteration.

Highlights

Manilkara Zapota (L.) P. Royen fruit peel 70% ethanolic extract exert antidiabetic effects

• EMZFP significantly ameliorated diabetic biochemical parameters and its complications.

• EMZFP-Et and EMZFP-EA fractions exert potential antihyperglycemic, hypolipidemic effects and significantly improved cardiovascular risk indices, and peripheral neuropathy.

• Studied MZFP can be used as promising natural herbal source of antidiabetic principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Availability of data on reasonable request to corresponding author

Declaration

Abbreviations

i.p.:

Intraperitoneal

p.o.:

Administered orally

b.w.:

Body weight

STZ:

Streptozotocin

NA:

Nicotinamide

MZFP:

Manilkara zapota (L.) P. Royen fruit peel

EMZFP:

70% ethanolic extract of Manilkara zapota (L.) P. Royen fruit peel

EMZFP-C:

Chloroform fraction of EMZFP

EMZFP-A:

Acetone fraction of EMZFP

EMZFP-EA:

Ethyl acetate fraction of EMZFP

EMZFP-Et:

Remaining ethanol fraction of EMZFP

References

  1. Szkudelski T. Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012; 237(5):481–490. https://doi.org/10.1258/ebm.2012.011372

  2. Sharma B, Balomajumder C, Roy P. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol. 2008;46(7):2376–83. https://doi.org/10.1016/j.fct.2008.03.020.

    Article  CAS  PubMed  Google Scholar 

  3. El-Tantawy WH. Nutrition in the management of type 2 diabetes mellitus. Arch Physiol Biochem. 2019;28:1–8. https://doi.org/10.1080/13813455.2019.1657899.

    Article  CAS  Google Scholar 

  4. Dewanjee S, Das AK, Sahu R, Gangopadhyay M. Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. Food Chem Toxicol. 2009;47(10):2679–85. https://doi.org/10.1016/j.fct.2009.07.038.

    Article  CAS  PubMed  Google Scholar 

  5. Elangovan A, Subramanian A, Durairaj S, Ramachandran J, Lakshmanan DK, Ravichandran G, Nambirajan G, Thilagar S. Antidiabetic and hypolipidemic efficacy of skin and seed extracts of Momordica cymbalaria on alloxan induced diabetic model in rats. J Ethnopharmacol. 2019;15(241):111989. https://doi.org/10.1016/j.jep.2019.111989.

    Article  CAS  Google Scholar 

  6. Eriksson JW, Bodegard J, Nathanson D, Thuresson M, Nyström T, Norhammar A. Sulphonylurea compared to DPP-4 inhibitors in combination with metformin carries increased risk of severe hypoglycemia, cardiovascular events, and all-cause mortality. Diabetes Res Clin Pract. 2016;1(117):39–47. https://doi.org/10.1016/j.diabres.2016.04.055.

    Article  CAS  Google Scholar 

  7. Chinsembu KC. Diabetes mellitus and nature’s pharmacy of putative antidiabetic plants. J Herb Med. 2019;1(15):100230. https://doi.org/10.1016/j.hermed.2018.09.001.

    Article  Google Scholar 

  8. Sun W, Zeng C, Liao L, Chen J, Wang Y. Comparison of acarbose and metformin therapy in newly diagnosed type 2 diabetic patients with overweight and/or obesity. Curr Med Res Opin. 2016;32(8):1389–96. https://doi.org/10.1080/03007995.2016.1176013.

    Article  CAS  PubMed  Google Scholar 

  9. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone. 2016;1(82):93–100. https://doi.org/10.1016/j.bone.2015.04.026.

    Article  CAS  Google Scholar 

  10. Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, Clement SC, Henry RR, Kitabchi AE, Mudaliar S, Ratner RE, Stentz FB. Diabetes incidence and glucose tolerance after termination of pioglitazone therapy: results from ACT NOW. J Clin Endocrinol Metab. 2016;101(5):2056–62. https://doi.org/10.1210/jc.2015-4202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galanakis CM. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci Technol. 2012;26(2):68–87. https://doi.org/10.1016/j.tifs.2012.03.003.

    Article  CAS  Google Scholar 

  12. Choudhary SK, Chhabra G, Sharma D, Vashishta A, Ohri S, Dixit A. Comprehensive evaluation of anti-hyperglycemic activity of fractionated Momordica charantia seed extract in alloxan-induced diabetic rats. Evid Based Complement Alternat Med. 2012;1:2012. https://doi.org/10.1155/2012/293650.

    Article  Google Scholar 

  13. Gomathy K, Baskar R, Kumaresan K. Comparison of antioxidant potential in pulp and peel extracts of Manilkara zapota (L.) P. Royen. Afr J Biotechnol. 2013; 12(31):4936–4943.

  14. Singh B, Singh JP, Kaur A, Singh N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res Int. 2017;1(101):1–6. https://doi.org/10.1016/j.foodres.2017.09.026.

    Article  CAS  Google Scholar 

  15. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med. 1997;22(5):749–60. https://doi.org/10.1016/S0891-5849(96)00351-6.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao J, Capanoglu E, Jassbi AR, Miron A. Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr. 2016;56(sup1):S29-45. https://doi.org/10.1080/10408398.2015.1067595.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr. 2017;57(9):1874–905. https://doi.org/10.1080/10408398.2015.1032400.

    Article  CAS  PubMed  Google Scholar 

  18. Khan H, Jawad M, Kamal MA, Baldi A, Xiao J, Nabavi SM, Daglia M. Evidence and prospective of plant derived flavonoids as antiplatelet agents: Strong candidates to be drugs of future. Food Chem Toxicol. 2018;1(119):355–67. https://doi.org/10.1016/j.fct.2018.02.014.

    Article  CAS  Google Scholar 

  19. Yen GC, Duh PD, Tsai CL. Relationship between antioxidant activity and maturity of peanut hulls. J Agric Food Chem. 1993;41(1):67–70. https://doi.org/10.1021/jf00025a015.

    Article  CAS  Google Scholar 

  20. Ma J, Luo XD, Protiva P, Yang H, Ma C, Basile MJ, Weinstein IB, Kennelly EJ. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla). J Nat Prod. 2003;66(7):983–6. https://doi.org/10.1021/np020576x.

    Article  CAS  PubMed  Google Scholar 

  21. Pontes PV, Moreira RF, Trugo LC, Maria CA. The content of chlorogenic acids in tropical fruits. J Sci Food Agric. 2002;82(10):1177–81. https://doi.org/10.1002/jsfa.1163.

    Article  CAS  Google Scholar 

  22. da Silva LM, De Figueiredo EA, Ricardo NM, Vieira IG, De Figueiredo RW, Brasil IM, Gomes CL. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014;15(143):398–404. https://doi.org/10.1016/j.foodchem.2013.08.001.

    Article  CAS  Google Scholar 

  23. Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. Cmaj. 2000;163(6):739–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Porrini M, Riso P, Brusamolino A, Berti C, Guarnieri S, Visioli F. Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br J Nutr. 2005;93(1):93–9.

    Article  CAS  Google Scholar 

  25. Singh JP, Kaur A, Shevkani K, Singh N. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. J Food Sci Technol. 2016;53(11):4056–66. https://doi.org/10.1007/s13197-016-2412-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Can-Cauich CA, Sauri-Duch E, Betancur-Ancona D, Chel-Guerrero L, González-Aguilar GA, Cuevas-Glory LF, Pérez-Pacheco E, Moo-Huchin VM. Tropical fruit peel powders as functional ingredients: Evaluation of their bioactive compounds and antioxidant activity. J Funct Foods. 2017;1(37):501–6. https://doi.org/10.1016/j.jff.2017.08.028.

    Article  CAS  Google Scholar 

  27. Ahmed OM, Hassan MA, Abdel-Twab SM, Azeem MN. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats. Biomed Pharmacother. 2017;1(94):197–205. https://doi.org/10.1016/j.biopha.2017.07.094.

    Article  CAS  Google Scholar 

  28. González-Molina E, Domínguez-Perles R, Moreno DA, García-Viguera C. Natural bioactive compounds of Citrus limon for food and health. J Pharm Biomed Anal. 2010;51(2):327–45. https://doi.org/10.1016/j.jpba.2009.07.027.

    Article  CAS  PubMed  Google Scholar 

  29. Karle PP, Dhawale SC, Navghare VV, Shivpuje SS. Optimization of extraction conditions and evaluation of Manilkara zapota (L.) P. Royen fruit peel extract for in vitro α-glucosidase enzyme inhibition and free radical scavenging potential. Futur J Pharm Sci. 2021;7(1):1.

    Article  Google Scholar 

  30. Woo PF, Yim HS, Khoo HE, Sia CM, Ang YK. Effects of extraction conditions on antioxidant properties of sapodilla fruit (Manilkara zapota). Int Food Res J. 2013;20(5):2065.

    CAS  Google Scholar 

  31. Duh PD, Yen GC. Antioxidant efficacy of methanolic extracts of peanut hulls in soybean and peanut oils. J Am Oil Chem Soc. 1997;74(6):745.

    Article  CAS  Google Scholar 

  32. Gini TG, Jeya Jothi G. Column chromatography and HPLC analysis of phenolic compounds in the fractions of Salvinia molesta mitchell. Egypt J Basic Appl Sci. 2018;5(3):197–203. https://doi.org/10.1016/j.ejbas.2018.05.010.

    Article  Google Scholar 

  33. Primarianti AU, Sujono TA. Antidiabetic activity of durian (Durio zibethinus Murr.) and rambutan (Nephelium lappaceum L.) fruit peels in alloxan diabetic rats. Procedia Food Sci. 2015;3:255–61. https://doi.org/10.1016/j.profoo.2015.01.028.

    Article  Google Scholar 

  34. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22(4):359–70. https://doi.org/10.1111/j.1464-5491.2005.01499.x.

    Article  CAS  PubMed  Google Scholar 

  35. Ramya S, Narayanan V, Ponnerulan B, Saminathan E, Veeranan U. Potential of peel extracts of Punica granatum and Citrus aurantifolia on alloxan-induced diabetic rats. Beni-Suef Univ J Basic Appl Sci. 2020;9(1):1–1.

    Article  Google Scholar 

  36. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(1):5–47. https://doi.org/10.1002/0471141755.ph0547s70.

    Article  PubMed  Google Scholar 

  37. Shirwaikar A, Rajendran K, Barik R. Effect of aqueous bark extract of Garuga pinnata Roxb. in streptozotocin-nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol. 2006;107(2):285–90. https://doi.org/10.1016/j.jep.2006.03.012.

    Article  PubMed  Google Scholar 

  38. Azad AK, Sulaiman WM. Antidiabetic effects of P. macrocarpa ethanolic fruit extract in streptozotocin-induced diabetic rats. Futur J Pharm Sci. 2020;6(1):1–2.

    Article  Google Scholar 

  39. Macdonald Ighodaro O, Mohammed Adeosun A, Adeboye Akinloye O. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina. 2017;53(6):365–74. https://doi.org/10.1016/j.medici.2018.02.001.

    Article  PubMed  Google Scholar 

  40. Agrawal R, Sethiya NK, Mishra SH. Antidiabetic activity of alkaloids of Aerva lanata roots on streptozotocin-nicotinamide induced type-II diabetes in rats. Pharm Biol. 2013;51(5):635–42. https://doi.org/10.3109/13880209.2012.761244.

    Article  CAS  PubMed  Google Scholar 

  41. Chika A, Bello SO. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats. J Ethnopharmacol. 2010;129(1):34–7. https://doi.org/10.1016/j.jep.2010.02.008.

    Article  PubMed  Google Scholar 

  42. Bora NS, Bairy PS, Salam A, Kakoti BB. Antidiabetic and antiulcerative potential of Garcinia lanceifolia Roxb. bark. Futur J Pharm Sci. 2020;6(1):1–1.

    Article  Google Scholar 

  43. Nagarajan NS, Murugesh N, Kumaresan PT, Radha N, Murali A. Antidiabetic and antihyperlipemic effects of Clemeo felina. Fitoterapia. 2005;76(3–4):310–5. https://doi.org/10.1016/j.fitote.2005.03.020.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar D, Kumar S, Kohli S, Arya R, Gupta J. Antidiabetic activity of methanolic bark extract of Albizia odoratissima Benth. in alloxan induced diabetic albino mice. Asian Pac J Trop Med. 2011;4(11):900–3. https://doi.org/10.1016/S1995-7645(11)60215-0.

    Article  PubMed  Google Scholar 

  45. Srivastava AK, Mukerjee A, Tripathi A. Antidiabetic and antihyperlipidemic activities of Cucumis melo var. momordica fruit extract on experimental animals. Futur J Pharm Sci. 2020;6(1):1–9.

    Article  CAS  Google Scholar 

  46. Arunachalam K, Parimelazhagan T. Antidiabetic activity of Ficus amplissima Smith. bark extract in streptozotocin induced diabetic rats. J Ethnopharmacol. 2013;147(2):302–10. https://doi.org/10.1016/j.jep.2013.03.004.

    Article  PubMed  Google Scholar 

  47. Soussi A, Gargouri M, El Feki A. Effects of co-exposure to lead and zinc on redox status, kidney variables, and histopathology in adult albino rats. Toxicol Ind Health. 2018;34(7):469–80. https://doi.org/10.1177/0748233718770293.

    Article  CAS  PubMed  Google Scholar 

  48. Carroll NV, Longley RW, Roe JH. The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem. 1956;220(2):583–93.

    Article  CAS  Google Scholar 

  49. Kang MJ, Lee EK, Lee SS. Effects of two P/S ratios with same peroxidizability index value and antioxidants supplementation on serum lipid concentration and hepatic enzyme activities of rats. Clin Chim Acta. 2004;350(1–2):79–87. https://doi.org/10.1016/j.cccn.2004.07.005.

    Article  CAS  PubMed  Google Scholar 

  50. Boyce-Rustay JM, Jarvis MF. Neuropathic pain: models and mechanisms. Curr Pharm Des. 2009;15(15):1711–6. https://doi.org/10.2174/138161209788186272.

    Article  CAS  PubMed  Google Scholar 

  51. Pravin KP, Shashikant DC. Manilkara zapota (L.) Royen fruit peel: a phytochemical and pharmacological review. Syst Rev Pharm. 2019;10(1):11–4.

    Article  Google Scholar 

  52. Weng Y, Yu L, Cui J, Zhu YR, Guo C, Wei G, Duan JL, Yin Y, Guan Y, Wang YH, Yang ZF. Antihyperglycemic, hypolipidemic and antioxidant activities of total saponins extracted from Aralia taibaiensis in experimental type 2 diabetic rats. J Ethnopharmacol. 2014;152(3):553–60. https://doi.org/10.1016/j.jep.2014.02.001.

    Article  CAS  PubMed  Google Scholar 

  53. Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes. Acta Physiol Hung. 2014;101(4):408–20. https://doi.org/10.1556/APhysiol.101.2014.4.2.

    Article  CAS  PubMed  Google Scholar 

  54. Arun KB, Jayamurthy P, Anusha CV, Mahesh SK, Nisha P. Studies on activity guided fractionation of pomegranate peel extracts and its effect on antidiabetic and cardiovascular protection properties. J Food Process Preserv. 2017;41(1):e13108. https://doi.org/10.1111/jfpp.13108.

    Article  CAS  Google Scholar 

  55. Gandhi GR, Jothi G, Antony PJ, Balakrishna K, Paulraj MG, Ignacimuthu S, Stalin A, Al-Dhabi NA. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol. 2014;15(745):201–16. https://doi.org/10.1016/j.ejphar.2014.10.044.

    Article  CAS  Google Scholar 

  56. Ramkumar KM, Vijayakumar RS, Vanitha P, Suganya N, Manjula C, Rajaguru P, Sivasubramanian S, Gunasekaran P. Protective effect of gallic acid on alloxan-induced oxidative stress and osmotic fragility in rats. Hum Exp Toxicol. 2014;33(6):638–49. https://doi.org/10.1177/0960327113504792.

    Article  CAS  PubMed  Google Scholar 

  57. Garud MS, Kulkarni YA. Gallic acid attenuates type I diabetic nephropathy in rats. Chem Biol Interact. 2018;25(282):69–76. https://doi.org/10.1016/j.cbi.2018.01.010.

    Article  CAS  Google Scholar 

  58. Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V. Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.) Sm., in STZ-induced diabetic rats. Chem Biol Interact. 2009; 182(1):67–72. https://doi.org/10.1016/j.cbi.2009.08.012

  59. Mollazadeh H, Mahdian D, Hosseinzadeh H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. Phytomedicine. 2019;1(53):43–52. https://doi.org/10.1016/j.phymed.2018.09.024.

    Article  CAS  Google Scholar 

  60. Udenze EC, Braide VB, Okwesilieze CN, Akuodor GC. Pharmacological effects of Garcinia kola seed powder on blood sugar, lipid profile and atherogenic index of alloxan-induced diabetes in rats. Pharmacologia. 2012;3(12):693–9.

    Article  Google Scholar 

  61. Kapoor R, Singh S, Tripathi M, Bhatnagar P, Kakkar P, Gupta KC. O-hexadecyl-dextran entrapped berberine nanoparticles abrogate high glucose stress induced apoptosis in primary rat hepatocytes. PloS One. 2014;9(2):e89124. https://doi.org/10.1371/journal.pone.0089124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mathe D. Dyslipidemia and diabetes: animal models. Diabete Metab. 1995;21(2):106–11.

    CAS  PubMed  Google Scholar 

  63. Kamalakkannan N, Prince PS. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol. 2006;98(1):97–103. https://doi.org/10.1111/j.1742-7843.2006.pto_241.x.

    Article  CAS  PubMed  Google Scholar 

  64. Mahmoud AM, Ahmed OM, Ashour MB, Abdel-Moneim A. In vivo and in vitro antidiabetic effects of citrus flavonoids; a study on the mechanism of action. Int J Diabetes Dev Countries. 2015;35(3):250–63.

    Article  CAS  Google Scholar 

  65. Rajanandh MG, Satishkumar MN, Elango K, Suresh B. Moringa oleifera Lam. A herbal medicine for hyperlipidemia: A pre–clinical report. Asian Pac J Trop Dis. 2012;2:S790-5. https://doi.org/10.1016/S2222-1808(12)60266-7.

    Article  Google Scholar 

  66. Ferretti G, Rabini RA, Bacchetti T, Vignini A, Salvolini E, Ravaglia F, Curatola G, Mazzanti L. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. J Clin Endocrinol Metab. 2002;87(5):2180–4. https://doi.org/10.1210/jcem.87.5.8466.

    Article  CAS  PubMed  Google Scholar 

  67. Metwally FM, Rashad HM, Ahmed HH, Mahmoud AA, Raouf ER, Abdalla AM. Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pac J Trop Biomed. 2017;7(3):214–21. https://doi.org/10.1016/j.apjtb.2016.12.007.

    Article  Google Scholar 

  68. Latha RC, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact. 2011;189(1–2):112–8. https://doi.org/10.1016/j.cbi.2010.11.005.

    Article  CAS  PubMed  Google Scholar 

  69. Salil G, Nevin KG, Rajamohan T. Effect of dietary coconut kernel protein on the liver and pancreas of alloxan-induced diabetic rats: comparison with L-arginine and glibenclamide. Mediterr J Nutr Metab. 2012;5(2):127–33. https://doi.org/10.3233/s12349-012-0090-2.

    Article  Google Scholar 

  70. Grover JK, Vats V, Yadav S. Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism. Mol Cell Biochem. 2002;241(1):53–9.

    Article  CAS  Google Scholar 

  71. Ramkumar KM, Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Sujatha J. Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011;49(12):3390–4. https://doi.org/10.1016/j.fct.2011.09.027.

    Article  CAS  PubMed  Google Scholar 

  72. Sugimoto K, Yasujima M, Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des. 2008;14(10):953–61. https://doi.org/10.2174/138161208784139774.

    Article  CAS  PubMed  Google Scholar 

  73. Sharma A, Mittal S, Aggarwal R, Chauhan MK. Diabetes and cardiovascular disease: inter-relation of risk factors and treatment. Futur J Pharm Sci. 2020;6(1):1–9.

    Article  Google Scholar 

  74. Tavakoli M, Mojaddidi M, Fadavi H, Malik RA. Pathophysiology and treatment of painful diabetic neuropathy. Curr Pain Headache Rep. 2008;12(3):192–7.

    Article  Google Scholar 

  75. Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I. Antioxidants and human diseases. Clin Chim Acta. 2014;25(436):332–47. https://doi.org/10.1016/j.cca.2014.06.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the research center, School of Pharmacy and RUSA Centre for herbo medicinal studies at S.R.T.M. University, Nanded, India. Sincerely acknowledges S. N. Institute of Pharmacy, Pusad, India for providing laboratory animal research facilities. The authors are grateful to the Botanical Survey of India, Pune, India, for identification and authentication of plant material.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KPP: Conceptualization, methodology, investigation, data interpretation, editing & writing original draft. DSC: Methodology supervision. NVV: Formal analysis. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Pravin P. Karle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karle, P.P., Dhawale, S.C. & Navghare, V.V. Amelioration of diabetes and its complications by Manilkara zapota (L) P. Royen fruit peel extract and its fractions in alloxan and STZ-NA induced diabetes in Wistar rats. J Diabetes Metab Disord 21, 493–510 (2022). https://doi.org/10.1007/s40200-022-01000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01000-8

Keywords

Navigation