Skip to main content

Advertisement

Log in

The association between dietary patterns with severity of coronary artery stenosis, serum leptin-to-adiponectin ratio, and some related risk factors in patients with coronary artery disease

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

This research aimed to investigate the association between dietary patterns with severity of coronary artery stenosis, serum leptin-to-adiponectin ratio, and some related risk factors in patients with coronary artery disease referred for coronary angiography.

Methods

This cross-sectional study was carried out on 191 men patients with known coronary disease aged 40–70 years whom were admitted to angiography ward of Ahvaz teaching hospital, Ahvaz, Iran. Dietary patterns were investigated using 161-item semi-quantitative food frequency questionnaire. Anthropometric indices; blood pressure; serum levels of adiponectin and leptin, blood levels of glucose, total cholesterol, HDL-C, LDL-C, and triglycerides were measured. Patients were categorized based on the severity of coronary artery disease [number of vessel involved-single (VD1), double (VD2), triple (VD3)].

Results

Three major dietary patterns were recognized using a factor analysis approach: western, healthy, and traditional patterns. Linear regression analysis demonstrated that there was a negative association between healthy dietary pattern with LDL-C, total cholesterol, and triglycerides. This dietary pattern was positively related to HDL-C. Both traditional and western dietary patterns were related to fasting blood glucose level and lipid profile. General obesity was positively associated with traditional and western dietary patterns. There was a positive relationship between central obesity with traditional and western dietary patterns, but a negative association was reported between the healthy dietary pattern and central obesity. Traditional and western dietary patterns demonstrated a significant positive relationship with serum leptin levels and ratio of L/A, and an inverse relationship with adiponectin. Healthy dietary pattern had a significant negative association with serum leptin levels and ratio of L/A. Healthy dietary pattern was negatively related to the severity of vessel stenosis. Patients in the third quartile of healthy dietary pattern were less likely to have vessel stenosis (OR = 43%, 95% CI: 0.07–0.87).

Conclusions

The findings show that adherence to a healthy dietary pattern was negatively associated with coronary artery stenosis and its related risk factors. However, adherence to western and traditional dietary patterns was positively related to coronary artery disease risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article. The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sarutipaiboon I, Settasatian N, Komanasin N, Kukongwiriyapan U, Sawanyawisuth K, Intharaphet P, Senthong V, Settasatian C. Association of genetic variations in NRF2, NQO1, HMOX1, and MT with severity of coronary artery disease and related risk factors. Cardiovasc Toxicol. 2020;20(2):176–89. https://doi.org/10.1007/s12012-019-09544-7 (PMID: 31332605).

    Article  CAS  PubMed  Google Scholar 

  2. Gholizadeh E, Ayremlou P, Nouri Saeidlou S. The association between dietary pattern and coronary artery disease: a case-control study. J Cardiovasc Thorac Res. 2020;12(4):294–302. https://doi.org/10.34172/jcvtr.2020.48. Epub 2020 Nov 28. PMID: 33510878; PMCID: PMC7828759.

  3. Oikonomou E, Psaltopoulou T, Georgiopoulos G, Siasos G, Kokkou E, Antonopoulos A, Vogiatzi G, Tsalamandris S, Gennimata V, Papanikolaou A, Tousoulis D. Western dietary pattern is associated with severe coronary artery disease. Angiology. 2018;69(4):339–46. https://doi.org/10.1177/0003319717721603 (Epub 2017 Jul 21 PMID: 28731359).

    Article  PubMed  Google Scholar 

  4. Iqbal R, Anand S, Ounpuu S, et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: results of the interheart study. Circulation. 2008;118(19):1929–37.

    Article  CAS  Google Scholar 

  5. Panagiotakos DB, Georgousopoulou EN, Pitsavos C, et al. Ten-year (2002–2012) cardiovascular disease incidence and allcause mortality, in urban Greek population: the ATTICA study. Int J Cardiol. 2015;180:178–84.

    Article  Google Scholar 

  6. Li G, Xu L, Zhao Y, Li L, Fu J, Zhang Q, Li N, Xiao X, Li C, Mi J, Gao S, Li M. Leptin-adiponectin imbalance as a marker of metabolic syndrome among Chinese children and adolescents: The BCAMS study. PLoS ONE. 2017;12(10):e0186222. https://doi.org/10.1371/journal.pone.0186222. PMID: 29020116; PMCID: PMC5636141.

  7. Koh SB, Park JK, Yoon JH, Chang SJ, Oh SS, Kim JY, Ryu SY, Kim KS, Lee TY, You JS. Preliminary report: a serious link between adiponectin levels and metabolic syndrome in a Korean nondiabetic population. Metabolism. 2010;59(3):333–7. https://doi.org/10.1016/j.metabol.2009.07.031 (Epub 2009 Sep 30 PMID: 19796779).

    Article  CAS  PubMed  Google Scholar 

  8. Nakashima R, Yamane K, Kamei N, Nakanishi S, Kohno N. Low serum levels of total and high-molecular-weight adiponectin predict the development of metabolic syndrome in Japanese-Americans. J Endocrinol Invest. 2011;34(8):615–9. https://doi.org/10.3275/7409 (Epub 2010 Dec 15 PMID: 21164278).

    Article  CAS  PubMed  Google Scholar 

  9. Kajikawa Y, Ikeda M, Takemoto S, Tomoda J, Ohmaru N, Kusachi S. Association of circulating levels of leptin and adiponectin with metabolic syndrome and coronary heart disease in patients with various coronary risk factors. Int Heart J. 2011;52(1):17–22. https://doi.org/10.1536/ihj.52.17 (PMID: 21321463).

    Article  CAS  PubMed  Google Scholar 

  10. Franks PW, Brage S, Luan J, Ekelund U, Rahman M, Farooqi IS, Halsall I, O’Rahilly S, Wareham NJ. Leptin predicts a worsening of the features of the metabolic syndrome independently of obesity. Obes Res. 2005;13(8):1476–84. https://doi.org/10.1038/oby.2005.178 (PMID: 16129731).

    Article  CAS  PubMed  Google Scholar 

  11. Salas-Salvadó J, Granada M, Bulló M, Corominas A, Casas P, Foz M. Plasma adiponectin distribution in a Mediterranean population and its association with cardiovascular risk factors and metabolic syndrome. Metabolism. 2007;56(11):1486–92. https://doi.org/10.1016/j.metabol.2007.06.014 (PMID: 17950098).

    Article  CAS  PubMed  Google Scholar 

  12. López-Jaramillo P, Gómez-Arbeláez D, López-López J, López-López C, Martínez-Ortega J, Gómez-Rodríguez A, Triana-Cubillos S. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig. 2014;18(1):37–45. https://doi.org/10.1515/hmbci-2013-0053.

    Article  CAS  PubMed  Google Scholar 

  13. Norata GD, Raselli S, Grigore L, Garlaschelli K, Dozio E, Magni P, Catapano AL. Leptin:adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery. Stroke. 2007;38(10):2844–6. https://doi.org/10.1161/STROKEAHA.107.485540 (Epub 2007 Sep 6 PMID: 17823381).

    Article  CAS  PubMed  Google Scholar 

  14. Yannakoulia M, Yiannakouris N, Melistas L, Fappa E, Vidra N, Kontogianni MD, Mantzoros CS. Dietary factors associated with plasma high molecular weight and total adiponectin levels in apparently healthy women. Eur J Endocrinol. 2008;159(4):R5-10. https://doi.org/10.1530/EJE-08-0331 (Epub 2008 Jul 1 PMID: 18593824).

    Article  CAS  PubMed  Google Scholar 

  15. Yannakoulia M, Yiannakouris N, Melistas L, Kontogianni MD, Malagaris I, Mantzoros CS. A dietary pattern characterized by high consumption of whole-grain cereals and low-fat dairy products and low consumption of refined cereals is positively associated with plasma adiponectin levels in healthy women. Metabolism. 2008;57(6):824–30. https://doi.org/10.1016/j.metabol.2008.01.027 (PMID: 18502266).

    Article  CAS  PubMed  Google Scholar 

  16. Fragopoulou E, Panagiotakos DB, Pitsavos C, Tampourlou M, Chrysohoou C, Nomikos T, Antonopoulou S, Stefanadis C. The association between adherence to the Mediterranean diet and adiponectin levels among healthy adults: the ATTICA study. J Nutr Biochem. 2010;21(4):285–9. https://doi.org/10.1016/j.jnutbio.2008.12.013 (Epub 2009 Apr 14 PMID: 19369051).

    Article  CAS  PubMed  Google Scholar 

  17. Kuroda M, Ohta M, Okufuji T, Takigami C, Eguchi M, Hayabuchi H, Ikeda M. Frequency of soup intake and amount of dietary fiber intake are inversely associated with plasma leptin concentrations in Japanese adults. Appetite. 2010;54(3):538–43. https://doi.org/10.1016/j.appet.2010.02.010 (Epub 2010 Feb 20 PMID: 20176064).

    Article  PubMed  Google Scholar 

  18. Ganji V, Kafai MR, McCarthy E. Serum leptin concentrations are not related to dietary patterns but are related to sex, age, body mass index, serum triacylglycerol, serum insulin, and plasma glucose in the US population. Nutr Metab (Lond). 2009;14(6):3. https://doi.org/10.1186/1743-7075-6-3. PMID: 19144201; PMCID: PMC2657130.

  19. Amani R, Noorizadeh M, Rahmanian S, Afzali N, Haghighizadeh MH. Nutritional related cardiovascular risk factors in patients with coronary artery disease in Iran: a case-control study. Nutr J. 2010;26(9):70. https://doi.org/10.1186/1475-2891-9-70. PMID: 21184687; PMCID: PMC3022640.

  20. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB (PMID: 12900694).

    Article  PubMed  Google Scholar 

  21. Kushner R: Evaluation and management of obesity. In Harrisons’ principals of internal medicine. 17 edition. Edited by: Fauci A, Braunwald E, Kasper D. New York, Mac Graw Hill; 2008:1405–1410.

  22. Esmaillzadeh A, Azadbakht L. Major dietary patterns in relation to general obesity and central adiposity among Iranian women. J Nutr. 2008;138(2):358–63. https://doi.org/10.1093/jn/138.2.358 (PMID: 18203904).

    Article  CAS  PubMed  Google Scholar 

  23. Hu FB, Rimm E, Smith-Warner SA, Feskanich D, Stampfer MJ, Ascherio A, Sampson L, Willett WC. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr. 1999;69(2):243–9. https://doi.org/10.1093/ajcn/69.2.243 (PMID: 9989687).

    Article  CAS  PubMed  Google Scholar 

  24. Fung TT, Willett WC, Stampfer MJ, Manson JE, Hu FB. Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med. 2001 Aug 13–27;161(15):1857–62. https://doi.org/10.1001/archinte.161.15.1857. PMID: 11493127.

  25. Doostvandi T, Bahadoran Z, Mozaffari-Khosravi H, Tahmasebinejad Z, Mirmiran P, Azizi F. The association of dietary patterns and the incidence of insulin resistance after a 3-year follow-up: Tehran Lipid and Glucose Study. Asia Pac J Clin Nutr. 2017;26(3):531–8. https://doi.org/10.6133/apjcn.032016.12 (PMID: 28429920).

    Article  CAS  PubMed  Google Scholar 

  26. Mohammadifard N, Talaei M, Sadeghi M, Oveisegharan S, Golshahi J, Esmaillzadeh A, Sarrafzadegan N. Dietary patterns and mortality from cardiovascular disease: Isfahan Cohort Study. Eur J Clin Nutr. 2017;71(2):252–8. https://doi.org/10.1038/ejcn.2016.170 (Epub 2016 Oct 19 PMID: 27759064).

    Article  CAS  PubMed  Google Scholar 

  27. Khayyatzadeh SS, Esmaillzadeh A, Saneei P, Keshteli AH, Adibi P. Dietary patterns and prevalence of irritable bowel syndrome in Iranian adults. Neurogastroenterol Motil. 2016;28(12):1921–33. https://doi.org/10.1111/nmo.12895 (Epub 2016 Jun 20 PMID: 27324285).

    Article  CAS  PubMed  Google Scholar 

  28. Mirmiran P, Djazayery A, Hosseini esfahani F, Mehrabi Y, Azizi F. Change in food patterns of Tehrani adults and its association with changes in their body weight and body mass index in District 13 of Tehran: Tehran Lipid and Glucose Study. Iranian Journal of Nutrition Sciences & Food Technology. 2008; 2 (4) :67–80

  29. Rezazadeh A, Rashidkhani B. The association of general and central obesity with major dietary patterns in adult women living in tehran, iran. ARYA Atheroscler. 2010 Spring;6(1):23–30. PMID: 22577409; PMCID: PMC3347807.

  30. Okubo H, Sasaki S, Murakami K, Kim MK, Takahashi Y, Hosoi Y, Itabashi M. Freshmen in Dietetic Courses Study II group. Three major dietary patterns are all independently related to the risk of obesity among 3760 Japanese women aged 18–20 years. Int J Obes (Lond). 2008 Mar;32(3):541–9. https://doi.org/10.1038/sj.ijo.0803737. Epub 2007 Sep 25. PMID: 17895884.

  31. Esteghamati A, Ashraf H, Rashidi A, Meysamie A. Waist circumference cut-off points for the diagnosis of metabolic syndrome in Iranian adults. Diabetes Res Clin Pract. 2008;82(1):104–7. https://doi.org/10.1016/j.diabres.2008.07.009 (Epub 2008 Aug 15 PMID: 18706730).

    Article  PubMed  Google Scholar 

  32. Aadahl M, Jørgensen T. Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc. 2003;35(7):1196–202. https://doi.org/10.1249/01.MSS.0000074446.02192.14 (PMID: 12840642).

    Article  PubMed  Google Scholar 

  33. Schulz M, Kroke A, Liese AD, Hoffmann K, Bergmann MM, Boeing H. Food groups as predictors for short-term weight changes in men and women of the EPIC-Potsdam cohort. J Nutr. 2002;132(6):1335–40. https://doi.org/10.1093/jn/132.6.1335 (PMID: 12042455).

    Article  CAS  PubMed  Google Scholar 

  34. Hu FB, Rimm EB, Stampfer MJ, Ascherio A, Spiegelman D, Willett WC. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr. 2000;72(4):912–21. https://doi.org/10.1093/ajcn/72.4.912 (PMID: 11010931).

    Article  CAS  PubMed  Google Scholar 

  35. Mendez MA, Popkin BM, Jakszyn P, Berenguer A, Tormo MJ, Sanchéz MJ, Quirós JR, Pera G, Navarro C, Martinez C, Larrañaga N, Dorronsoro M, Chirlaque MD, Barricarte A, Ardanaz E, Amiano P, Agudo A, González CA. Adherence to a Mediterranean diet is associated with reduced 3-year incidence of obesity. J Nutr. 2006;136(11):2934–8. https://doi.org/10.1093/jn/136.11.2934 (PMID: 17056825).

    Article  CAS  PubMed  Google Scholar 

  36. Schulze MB, Fung TT, Manson JE, Willett WC, Hu FB. Dietary patterns and changes in body weight in women. Obesity (Silver Spring). 2006;14(8):1444–53. https://doi.org/10.1038/oby.2006.164 (PMID: 16988088).

    Article  Google Scholar 

  37. Murtaugh MA, Herrick JS, Sweeney C, Baumgartner KB, Guiliano AR, Byers T, Slattery ML. Diet composition and risk of overweight and obesity in women living in the southwestern United States. J Am Diet Assoc. 2007;107(8):1311–21. https://doi.org/10.1016/j.jada.2007.05.008 (PMID: 17659896).

    Article  CAS  PubMed  Google Scholar 

  38. Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, Jenkins AL, Axelsen M. Glycemic index: overview of implications in health and disease. Am J Clin Nutr. 2002;76(1):266S-S273. https://doi.org/10.1093/ajcn/76/1.266S (PMID: 12081850).

    Article  CAS  PubMed  Google Scholar 

  39. Bell EA, Castellanos VH, Pelkman CL, Thorwart ML, Rolls BJ. Energy density of foods affects energy intake in normal-weight women. Am J Clin Nutr. 1998;67(3):412–20. https://doi.org/10.1093/ajcn/67.3.412 (PMID: 9497184).

    Article  CAS  PubMed  Google Scholar 

  40. Kimm SY. The role of dietary fiber in the development and treatment of childhood obesity. Pediatrics. 1995;96(5 Pt 2):1010–4 (PMID: 7494672).

    CAS  PubMed  Google Scholar 

  41. Sichieri R. Dietary patterns and their associations with obesity in the Brazilian city of Rio de Janeiro. Obes Res. 2002;10(1):42–8. https://doi.org/10.1038/oby.2002.6 (PMID: 11786600).

    Article  PubMed  Google Scholar 

  42. Roberts SB. High-glycemic index foods, hunger, and obesity: is there a connection? Nutr Rev. 2000;58(6):163–9. https://doi.org/10.1111/j.1753-4887.2000.tb01855.x (PMID: 10885323).

    Article  CAS  PubMed  Google Scholar 

  43. Dabbagh-Moghaddam A, Kamali M, Hojjati A, Foroughi M, Ghiasvand R, Askari G, Hosseinzadeh J. The Relationship between Dietary Patterns with Blood Pressure in Iranian Army Staffs. Adv Biomed Res. 2018;21(7):127. https://doi.org/10.4103/abr.abr_35_18.PMID:30310775;PMCID:PMC6159310.

    Article  Google Scholar 

  44. Xu X, Byles J, Shi Z, McElduff P, Hall J. Dietary pattern transitions, and the associations with BMI, waist circumference, weight and hypertension in a 7-year follow-up among the older Chinese population: a longitudinal study. BMC Public Health. 2016;8(16):743. https://doi.org/10.1186/s12889-016-3425-y.PMID:27502827;PMCID:PMC4977626.

    Article  Google Scholar 

  45. Li P, Zhang M, Zhu Y, Liu W, Zhang Y, Gao Y, Huang G. Dietary patterns and changes in cardiovascular risk factors in apparently healthy Chinese women: a longitudinal study. J Clin Biochem Nutr. 2016 May;58(3):232–9. https://doi.org/10.3164/jcbn.15-78. Epub 2016 Apr 13. PMID: 27257349; PMCID: PMC4865601.

  46. Safdar NF, Bertone-Johnson ER, Cordeiro L, Jafar TH, Cohen NL. Dietary patterns and their association with hypertension among Pakistani urban adults. Asia Pac J Clin Nutr. 2015;24(4):710–9. https://doi.org/10.6133/apjcn.2015.24.4.27 (PMID: 26693757).

    Article  CAS  PubMed  Google Scholar 

  47. Nkondjock A, Bizome E. Dietary patterns associated with hypertension prevalence in the Cameroon defence forces. Eur J Clin Nutr. 2010;64(9):1014–21. https://doi.org/10.1038/ejcn.2010.109 (Epub 2010 Jun 30 PMID: 20588293).

    Article  CAS  PubMed  Google Scholar 

  48. Katalambula LK, Meyer DN, Ngoma T, et al. Dietary pattern and other lifestyle factors as potential contributors to hypertension prevalence in Arusha City, Tanzania: a population-based descriptive study. BMC Public Health. 2017;17:659. https://doi.org/10.1186/s12889-017-4679-8.

    Article  CAS  PubMed  Google Scholar 

  49. Ndanuko RN, Tapsell LC, Charlton KE, Neale EP, Batterham MJ. Associations between Dietary Patterns and Blood Pressure in a Clinical Sample of Overweight Adults. J Acad Nutr Diet. 2017;117(2):228–39. https://doi.org/10.1016/j.jand.2016.07.019 (Epub 2016 Sep 22 PMID: 27666380).

    Article  PubMed  Google Scholar 

  50. Castro MA, Baltar VT, Marchioni DM, Fisberg RM. Examining associations between dietary patterns and metabolic CVD risk factors: a novel use of structural equation modelling. Br J Nutr. 2016;115(9):1586–97. https://doi.org/10.1017/S0007114516000556 (Epub 2016 Mar 2 PMID: 26931638).

    Article  CAS  PubMed  Google Scholar 

  51. Touyz RM. Reactive oxygen species in vascular biology: role in arterial hypertension. Expert Rev Cardiovasc Ther. 2003;1(1):91–106. https://doi.org/10.1586/14779072.1.1.91 (PMID: 15030300).

    Article  CAS  PubMed  Google Scholar 

  52. Mirmiran P, Bahadoran Z, Vakili AZ, Azizi F. Western dietary pattern increases risk of cardiovascular disease in Iranian adults: a prospective population-based study. Appl Physiol Nutr Metab. 2017;42(3):326–32. https://doi.org/10.1139/apnm-2016-0508 (Epub 2016 Dec 5 PMID: 28177742).

    Article  CAS  PubMed  Google Scholar 

  53. Asadi Z, Shafiee M, Sadabadi F, Saberi-Karimian M, Darroudi S, Tayefi M, Ghazizadeh H, Heidari Bakavoli A, Moohebati M, Esmaeily H, Ferns GA, Ghayour-Mobarhan M. Association Between dietary patterns and the risk of metabolic syndrome among Iranian population: A cross-sectional study. Diabetes Metab Syndr. 2019 Jan-Feb;13(1):858–865. https://doi.org/10.1016/j.dsx.2018.11.059. Epub 2018 Dec 1. PMID: 30641822.

  54. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–16. https://doi.org/10.1001/jama.288.21.2709 (PMID: 12460094).

    Article  PubMed  Google Scholar 

  55. Asadi Z, Shafiee M, Sadabadi F, Heidari-Bakavoli A, Moohebati M, Khorrami MS, Darroudi S, Heidari S, Hoori T, Tayefi M, Mohammadi F, Esmaeily H, Safarian M, Ghayour-Mobarhan M, Ferns GA. Association of dietary patterns and risk of cardiovascular disease events in the MASHAD cohort study. J Hum Nutr Diet. 2019;32(6):789–801. https://doi.org/10.1111/jhn.12669 (Epub 2019 Jul 23 PMID: 31332855).

    Article  CAS  PubMed  Google Scholar 

  56. Sauvageot N, Leite S, Alkerwi A, Sisanni L, Zannad F, Saverio S, Donneau AF, Albert A, Guillaume M. Association of Empirically Derived Dietary Patterns with Cardiovascular Risk Factors: A Comparison of PCA and RRR Methods. PLoS ONE. 2016;11(8):e0161298. https://doi.org/10.1371/journal.pone.0161298.Erratum.In:PLoSOne.2016;11(9):e0163837. PMID: 27548287; PMCID: PMC4993423.

  57. Berg CM, Lappas G, Strandhagen E, Wolk A, Torén K, Rosengren A, Aires N, Thelle DS, Lissner L. Food patterns and cardiovascular disease risk factors: the Swedish INTERGENE research program. Am J Clin Nutr. 2008;88(2):289–97. https://doi.org/10.1093/ajcn/88.2.289 (PMID: 18689363).

    Article  CAS  PubMed  Google Scholar 

  58. Beck KL, Jones B, Ullah I, McNaughton SA, Haslett SJ, Stonehouse W. Associations between dietary patterns, socio-demographic factors and anthropometric measurements in adult New Zealanders: an analysis of data from the 2008/09 New Zealand Adult Nutrition Survey. Eur J Nutr. 2018;57(4):1421–33. https://doi.org/10.1007/s00394-017-1421-3 (Epub 2017 Apr 4 PMID: 28378296).

    Article  CAS  PubMed  Google Scholar 

  59. Sun J, Buys NJ, Hills AP. Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. Int J Environ Res Public Health. 2014;11(4):3956–71. https://doi.org/10.3390/ijerph110403956. PMID: 24727356; PMCID: PMC4025020. 

  60. Sadakane A, Tsutsumi A, Gotoh T, Ishikawa S, Ojima T, Kario K, Nakamura Y, Kayaba K. Dietary patterns and levels of blood pressure and serum lipids in a Japanese population. J Epidemiol. 2008;18(2):58–67. https://doi.org/10.2188/jea.18.58. PMID: 18403855;  PMCID: PMC4771578

  61. Akil L, Ahmad HA. Relationships between obesity and cardiovascular diseases in four southern states and Colorado. J Health Care Poor Underserved. 2011;22(4 Suppl):61–72. https://doi.org/10.1353/hpu.2011.0166.PMID:22102306;PMCID:PMC3250069.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32. https://doi.org/10.1016/j.jacc.2008.12.068 (PMID: 19460605).

    Article  PubMed  Google Scholar 

  63. Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010 Sep;7(9):510–9. doi: https://doi.org/10.1038/nrcardio.2010.104. Epub 2010 Jul 6. PMID: 20603647; PMCID: PMC3075976.

  64. Jafari-Vayghan H, Tarighat-Esfanjani A, Jafarabadi MA, Ebrahimi-Mameghani M, Ghadimi SS, Lalezadeh Z. Association between dietary patterns and serum leptin-to-adiponectin ratio in apparently healthy adults. J Am Coll Nutr. 2015;34(1):49–55. https://doi.org/10.1080/07315724.2014.880389 (Epub 2015 Feb 3 PMID: 25648370).

    Article  CAS  PubMed  Google Scholar 

  65. Cassidy A, Skidmore P, Rimm EB, Welch A, Fairweather-Tait S, Skinner J, Burling K, Richards JB, Spector TD, MacGregor AJ. Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins. J Nutr. 2009;139(2):353–8. https://doi.org/10.3945/jn.108.098681 (Epub 2008 Dec 23 PMID: 19106327).

    Article  CAS  PubMed  Google Scholar 

  66. Reis CE, Bressan J, Alfenas RC. Effect of the diet components on adiponectin levels. Nutr Hosp. 2010 Nov-Dec;25(6):881–8. PMID: 21519758.

  67. Kamari Y, Grossman E, Oron-Herman M, Peleg E, Shabtay Z, Shamiss A, Sharabi Y. Metabolic stress with a high carbohydrate diet increases adiponectin levels. Horm Metab Res. 2007;39(5):384–8. https://doi.org/10.1055/s-2007-976534 (PMID: 17533582).

    Article  CAS  PubMed  Google Scholar 

  68. Kim SM, Cho GJ, Yannakoulia M, Hwang TG, Kim IH, Park EK, Mantzoros CS. Lifestyle modification increases circulating adiponectin concentrations but does not change vaspin concentrations. Metabolism. 2011;60(9):1294–9. https://doi.org/10.1016/j.metabol.2011.01.013 (Epub 2011 Apr 12 PMID: 21489569).

    Article  CAS  PubMed  Google Scholar 

  69. Murakami K, Sasaki S, Takahashi Y, Uenishi K, Yamasaki M, Hayabuchi H, Goda T, Oka J, Baba K, Ohki K, Watanabe R, Sugiyama Y. Nutrient and food intake in relation to serum leptin concentration among young Japanese women. Nutrition. 2007;23(6):461–8. https://doi.org/10.1016/j.nut.2007.04.006 (PMID: 17573997).

    Article  CAS  PubMed  Google Scholar 

  70. Fung TT, Rimm EB, Spiegelman D, Rifai N, Tofler GH, Willett WC, Hu FB. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr. 2001;73(1):61–7. https://doi.org/10.1093/ajcn/73.1.61 (PMID: 11124751).

    Article  CAS  PubMed  Google Scholar 

  71. Kabir M, Guerre-Millo M, Laromiguiere M, Slama G, Rizkalla SW. Negative regulation of leptin by chronic high-glycemic index starch diet. Metabolism. 2000;49(6):764–9. https://doi.org/10.1053/meta.2000.6258 (PMID: 10877204).

    Article  CAS  PubMed  Google Scholar 

  72. Agus MS, Swain JF, Larson CL, Eckert EA, Ludwig DS. Dietary composition and physiologic adaptations to energy restriction. Am J Clin Nutr. 2000;71(4):901–7. https://doi.org/10.1093/ajcn/71.4.901.PMID:10731495;PMCID:PMC2905862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Havel PJ, Townsend R, Chaump L, Teff K. High-fat meals reduce 24-h circulating leptin concentrations in women. Diabetes. 1999;48(2):334–41. https://doi.org/10.2337/diabetes.48.2.334 (PMID: 10334310).

    Article  CAS  PubMed  Google Scholar 

  74. Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. 2007;129(2):251–62. https://doi.org/10.1016/j.cell.2007.04.001.PMID:17448988;PMCID:PMC2202913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mozaffarian D, Rimm EB, Herrington DM. Dietary fats, carbohydrate, and progression of coronary atherosclerosis in postmenopausal women. Am J Clin Nutr. 2004;80(5):1175–84. https://doi.org/10.1093/ajcn/80.5.1175.Erratum.In:AmJClinNutr.2005Jan;81(1):199.PMID:15531663;PMCID:PMC1270002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kokkou E, Tousoulis D, Siasos G, Oikonomou E, Kioufis S, Zaromitidou M, et al. PM307 higher adherence to a Western type of diet is associated with higher probability of severe coronary artery disease. Glob Heart March 2012;9: e124e5.

  77. Mahalle N, Garg MK, Naik SS, Kulkarni MV. Association of dietary factors with severity of coronary artery disease. Clin Nutr ESPEN. 2016;15:75–9. https://doi.org/10.1016/j.clnesp.2016.06.004 (Epub 2016 Jun 29 PMID: 28531788).

    Article  PubMed  Google Scholar 

  78. Helmersson J, Arnlöv J, Larsson A, Basu S. Low dietary intake of beta-carotene, alpha-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort. Br J Nutr. 2009;101(12):1775–82. https://doi.org/10.1017/S0007114508147377 (Epub 2008 Dec 15 PMID: 19079838).

    Article  CAS  PubMed  Google Scholar 

  79. Schröder H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem. 2007;18(3):149–60. https://doi.org/10.1016/j.jnutbio.2006.05.006 (Epub 2006 Sep 11 PMID: 16963247).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was funded by Ahvaz Jundishapur University of Medical Sciences. We would like to acknowledge the contribution of research participants who were involved in this study.

Funding

This research was supported by Ahvaz Jundishapur University of Medical Sciences. The funders had no a role in study design, decision to publish and preparation of the manuscript. No addition external funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

MM, HH, and AM designed this study. HH and AM participated in the conduct of the study. MH analyzed the data. BA drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Habib Haybar.

Ethics declarations

Ethics approval and consent to participate

All participants were informed about the objectives of the study and written informed consent was obtained from all patients. The study protocol was approved by the Medical Ethics Committee of Ahvaz Jundishapur University of Medical Sciences (approval number: IR.AJUMS.REC.1394.186).

Competing interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadshahi, M., Haybar, H., Mousavi-Borazjani, A. et al. The association between dietary patterns with severity of coronary artery stenosis, serum leptin-to-adiponectin ratio, and some related risk factors in patients with coronary artery disease. J Diabetes Metab Disord 20, 697–708 (2021). https://doi.org/10.1007/s40200-021-00801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00801-7

Keywords

Navigation