Skip to main content

Advertisement

Log in

Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

The current study aims to determine the molecular mechanisms of diabetic retinopathy (DR) using the protein-protein interactome and metabolome map. We examined the protein network of novel biomarkers of DR for direct (physical) and indirect (functional) interactions using clinical target proteins in different models.

Methods

We used proteomic tools including 2-dimensional gel electrophoresis, mass spectrometry analysis, and database search for biomarker identification using in vivo murine and human model of diabetic retinopathy and in vitro model of oxidative stress. For the protein interactome and metabolome mapping, various bioinformatic tools that include STRING and OmicsNet were used.

Results

We uncovered new diabetic biomarkers including prohibitin (PHB), dynamin 1, microtubule-actin crosslinking factor 1, Toll-like receptor (TLR 7), complement activation, as well as hypothetical proteins that include a disintegrin and metalloproteinase (ADAM18), vimentin III, and calcium-binding C2 domain-containing phospholipid-binding switch (CAC2PBS) using a proteomic approach. Proteome networks of protein interactions with diabetic biomarkers were established using known DR-related proteome data. DR metabolites were interconnected to establish the metabolome map. Our results showed that mitochondrial protein interactions were changed during hyperglycemic conditions in the streptozotocin-treated murine model and diabetic human tissue.

Conclusions

Our interactome mapping suggests that mitochondrial dysfunction could be tightly linked to various phases of DR pathogenesis including altered visual cycle, cytoskeletal remodeling, altered lipid concentration, inflammation, PHB depletion, tubulin phosphorylation, and altered energy metabolism. The protein-metabolite interactions in the current network demonstrate the etiology of retinal degeneration and suggest the potential therapeutic approach to treat DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pusparajah P, Lee LH, Kadir KA. Molecular markers of diabetic retinopathy: Potential screening tool of the future? Front Physiol. 2016;7:1–19. https://doi.org/10.3389/fphys.2016.00200.

    Article  Google Scholar 

  2. VanGuilder HD, Bixler GV, Kutzler L, Brucklacher RM, Bronson SK, Kimball SR, Freeman WM. Multi-modal proteomic analysis of retinal protein expression alterations in a rat model of diabetic retinopathy. PLoS One. 2011;6:e16271. https://doi.org/10.1371/journal.pone.0016271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuo JZ, Wong TY, Rotter JI, Wiggs JL. Challenges in elucidating the genetics of diabetic retinopathy. JAMA Ophthalmol. 2014;132:96–107. https://doi.org/10.1001/jamaophthalmol.2013.5024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30:343–58. https://doi.org/10.1016/j.preteyeres.2011.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Petrovič D. Candidate genes for proliferative diabetic retinopathy. Biomed Res Int 2013;2013:1–9. https://doi.org/10.1155/2013/540416.

  6. Ly A, Scheerer MF, Zukunft S, Muschet C, Merl J, Adamski J, Hrabě M, De Angelis S, Neschen SM, Hauck M, Ueffing. Retinal proteome alterations in a mouse model of type 2 diabetes. Diabetologia. 2014;57:192–203. https://doi.org/10.1007/s00125-013-3070-2.

    Article  CAS  PubMed  Google Scholar 

  7. Decanini A, Karunadharma PR, Nordgaard CL, Feng X, Olsen TW, Ferrington DA. Human retinal pigment epithelium proteome changes in early diabetes. Diabetologia. 2008;51:1051–61. https://doi.org/10.1007/s00125-008-0991-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shah SS, Tsang SH, Mahajan VB. Erythropoetin receptor expression in the human diabetic retina. BMC Res Notes. 2009;2:234. https://doi.org/10.1186/1756-0500-2-234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res. 2012;31:89–119. https://doi.org/10.1016/j.preteyeres.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  10. Schrier SA, Falk MJ. Mitochondrial disorders and the eye. Curr Opin Ophthalmol. 2011;22:325–31. https://doi.org/10.1097/ICU.0b013e328349419d.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mishra M, Kowluru RA. Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy. Investig Ophthalmol Vis Sci. 2015;56:5133–42. https://doi.org/10.1167/iovs.15-16937.

    Article  CAS  Google Scholar 

  12. Rajala A, Gupta VK, Anderson RE, Rajala RVS. Light activation of the insulin receptor regulates mitochondrial hexokinase. A possible mechanism of retinal neuroprotection. Mitochondrion. 2013;13:566–76. https://doi.org/10.1016/j.mito.2013.08.005.

    Article  CAS  PubMed  Google Scholar 

  13. Fort PE, Freeman WM, Losiewicz MK, Singh RSJ, Gardner TW. The Retinal Proteome in Experimental Diabetic Retinopathy. Mol Cell Proteomics. 2009;8:767–79. https://doi.org/10.1074/mcp.M800326-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Csősz É, Deák E, Kalló G, Csutak A, Tőzsér J. Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms. J Proteomics. 2017;150:351–8. https://doi.org/10.1016/j.jprot.2016.06.034.

    Article  CAS  PubMed  Google Scholar 

  15. Cunha-Vaz JG. Pathophysiology of diabetic retinopathy. Br J Ophthalmol. 1978;62:351–5. https://doi.org/10.1136/bjo.62.6.351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53:2404–11. https://doi.org/10.2337/diabetes.53.9.2404.

    Article  CAS  PubMed  Google Scholar 

  17. Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis. 2015. https://doi.org/10.1016/j.bbadis.2015.08.001.

    Article  Google Scholar 

  18. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. J Biol Chem. 1999;274:23463–7. https://doi.org/10.1074/jbc.274.33.23463.

    Article  CAS  PubMed  Google Scholar 

  19. Chung H, Lee H, Lamoke F, Hrushesky WJM, Wood P, Jahng WJ. Neuroprotective role of erythropoietin by antiapoptosis in the retina. J Neurosci Res. 2009;87:2365–74. https://doi.org/10.1002/jnr.22046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arnouk H, Lee H, Zhang R, Chung H, Hunt RC, Jahng WJ. Early biosignature of oxidative stress in the retinal pigment epithelium. J Proteomics. 2011;74:254–61. https://doi.org/10.1016/j.jprot.2010.11.004.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang R, Hrushesky WJM, Wood P, Lee SH, Hunt RC, Jahng WJ. Melatonin reprogrammes proteomic profile in light-exposed retina in vivo. Int J Biol Macromol. 2010;47:255–60. https://doi.org/10.1016/j.ijbiomac.2010.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sripathi SR, Prigge CL, Elledge B, He W, Offor J, Gutsaeva DR, Jahng WJ. Melatonin modulates prohibitin and cytoskeleton in the retinal pigment epithelium. Int J Sci Eng Res. 2017;8:502–6. https://doi.org/10.14299/ijser.2017.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Joshua M, Okere C, Sylvester O, Yahaya M, Precious O, Dluya T, Um J-Y, Neksumi M, Boyd J, Vincent-Tyndall J, Choo D-W, Gutsaeva DR, Jahng WJ. Disruption of angiogenesis by anthocyanin-rich extracts of hibiscus sabdariffa. Int J Sci Eng Res. 2017;8:299–307. https://doi.org/10.14299/ijser.2017.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jahng WJ. New Biomarkers in the Retina and RPE Under Oxidative Stress, in: Adio A, editor, Ocul. Dis., IntechOpen, 2012: pp. 121–155. https://doi.org/10.5772/48785.

  25. He W, Sripathi SR, Joshua M, Zhang R, Tosin F, Ambrose P, Gutsaeva DR, Jahng WJ. Mechanistic dissection of macular degeneration using the phosphorylation interactome, in: Lo G, Giudice, editors, Vis. Impair. Blind., IntechOpen, 2020. https://doi.org/10.5772/intechopen.83016.

  26. Lee H, Arnouk H, Sripathi S, Chen P, Zhang R, Bartoli M, Hunt RC, Hrushesky WJM, Chung H, Lee SH, Jahng WJ. Prohibitin as an oxidative stress biomarker in the eye. Int J Biol Macromol. 2010;47:685–90. https://doi.org/10.1016/j.ijbiomac.2010.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee H, Chung H, Lee SH, Jahng WJ. Light-induced phosphorylation of crystallins in the retinal pigment epithelium. Int J Biol Macromol. 2011;48:194–201. https://doi.org/10.1016/j.ijbiomac.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  28. Lee H, Chung H, Arnouk H, Lamoke F, Hunt RC, Hrushesky WJM, Wood PA, Lee SH, Jahng WJ. Cleavage of the retinal pigment epithelium-specific protein RPE65 under oxidative stress. Int J Biol Macromol. 2010;47:104–8. https://doi.org/10.1016/j.ijbiomac.2010.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sripathi SR, He W, Atkinson CL, Smith JJ, Liu Z, Elledge BM, Jahng WJ. Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry. 2011;50:8342–51. https://doi.org/10.1021/bi2008933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sripathi SR, He W, Um J, Moser T, Dehnbostel S, Kindt K, Goldman J, Frost MC, Jahng WJ. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress. Adv Biosci Biotechnol. 2012;03:1167–78. https://doi.org/10.4236/abb.2012.38143.

    Article  Google Scholar 

  31. Sripathi SR, Sylvester O, He W, Moser T, Um J, Lamoke F, Ramakrishna W, Bernstein PS, Bartoli M, Jahng WJ. Prohibitin as the molecular binding switch in the retinal pigment epithelium. Protein J. 2016;35:1–16. https://doi.org/10.1007/s10930-015-9641-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sripathi SR, He W, Sylvester O, Neksumi M, Um J-Y, Dluya T, Bernstein PS, Jahng WJ. Altered cytoskeleton as a mitochondrial decay signature in the retinal pigment epithelium. Protein J. 2016;35:179–92. https://doi.org/10.1007/s10930-016-9659-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sripathi S, He W, Prigge CL, Sylvester O, Um J-Y, Powell FL, Neksumi M, Bernstein PS, Choo D-W, Bartoli M, Gutsaeva DR, Jahng WJ. Interactome mapping guided by tissue-specific phosphorylation in age-related macular degeneration. Int J Sci Eng Res. 2017;8:680–98. https://doi.org/10.14299/ijser.2017.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ponce J, Brea D, Carrascal M, Guirao VV, Degregorio-Rocasolano N, Sobrino TT, Castillo JJ, Davalos A, Gasull T, Dávalos A, Gasull T. The effect of simvastatin on the proteome of detergent-resistant membrane domains: decreases of specific proteins previously related to cytoskeleton regulation, calcium homeostasis and cell fate. Proteomics. 2010;10:1954–65. https://doi.org/10.1002/pmic.200900055.

    Article  CAS  PubMed  Google Scholar 

  35. Dong P, Flores J, Pelton K, Solomon KR. Prohibitin is a cholesterol-sensitive regulator of cell cycle transit. J Cell Biochem. 2010;111:1367–74. https://doi.org/10.1002/jcb.22865.

    Article  CAS  PubMed  Google Scholar 

  36. Kowluru RA, Santos JM, Zhong Q. Sirt1, A negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Investig Ophthalmol Vis Sci. 2014;55:5653–60. https://doi.org/10.1167/iovs.14-14383.

    Article  CAS  Google Scholar 

  37. Pusparajah P, Lee LH, Kadir KA. Molecular markers of diabetic retinopathy: Potential screening tool of the future? Front Physiol. 2016. https://doi.org/10.3389/fphys.2016.00200.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liyanage VRB, Jarmasz JS, Murugeshan N, Bigio MRD, Rastegar M, Davie DNA Jr. modifications: Function and applications in normal and disease states. Biology (Basel). 2014;3(4):670–723. https://doi.org/10.3390/biology3040670.

    Article  CAS  Google Scholar 

  39. Jin J, Min H, Kim SJ, Oh S, Kim K, Yu HG, Park T, Kim Y. Development of diagnostic biomarkers for detecting diabetic retinopathy at early stages using quantitative proteomics. J Diabetes Res. 2016;2016:6571976. https://doi.org/10.1155/2016/6571976.

    Article  CAS  PubMed  Google Scholar 

  40. Nalefski EA, Falke JJ. The C2 domain calcium-binding motif: Structural and functional diversity. Protein Sci. 1996;5:2375–90. https://doi.org/10.1002/pro.5560051201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Venhoranta H, Bauersachs S, Taponen J, Lohi H, Taira T, Andersson M, Kind A, Schnieke A, Flisikowski K. Fetal growth restriction caused by MIMT1 deletion alters brain transcriptome in cattle. Int J Dev Neurosci. 2013;31:463–7. https://doi.org/10.1016/j.ijdevneu.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  42. Zou B, Liu X, Gong Y, Cai C, Li P, Xing S, Pokhrel B, Zhang B, Li J. A novel 12-marker panel of cancer-associated fibroblasts involved in progression of hepatocellular carcinoma. Cancer Manag Res. 2018;10:5303–11. https://doi.org/10.2147/CMAR.S176152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu R, Cheng M, Lu T, Yang N, Ye S, Pan Y-H, Hong T, Dang S, Zhang W. A disintegrin and metalloproteinase with thrombospondin motifs 18 deficiency leads to visceral adiposity and associated metabolic syndrome in mice. Am J Pathol. 2018;188:461–73. https://doi.org/10.1016/j.ajpath.2017.10.020.

    Article  CAS  PubMed  Google Scholar 

  44. Shalaby L, Thounaojam M, Tawfik A, Li J, Hussein K, Jahng WJ, Al-Shabrawey M, Kwok HF, Bartoli M, Gutsaeva D. Role of endothelial ADAM17 in early vascular changes associated with diabetic retinopathy. J Clin Med. 2020;9:400. https://doi.org/10.3390/jcm9020400.

    Article  CAS  PubMed Central  Google Scholar 

  45. Brockhaus K, Melkonyan H, Prokosch-Willing V, Liu H, Thanos S. Alterations in tight- and adherens-junction proteins related to glaucoma mimicked in the organotypically cultivated mouse retina under elevated pressure. Investig Opthalmol Vis Sci. 2020;61:46. https://doi.org/10.1167/iovs.61.3.46.

    Article  CAS  Google Scholar 

  46. Nita M, Grzybowski A, Ascaso FJ, Huerva V. Age-related macular degeneration in the aspect of chronic low-grade inflammation (Pathophysiological paraInflammation). Mediat Inflamm. 2014;2014:1–10. https://doi.org/10.1155/2014/930671.

    Article  CAS  Google Scholar 

  47. Livne-Bar I, Lam S, Chan D, Guo X, Askar I, Nahirnyj A, Flanagan JG, Sivak JM. Pharmacologic inhibition of reactive gliosis blocks TNF-α-mediated neuronal apoptosis. Cell Death Dis. 2016. https://doi.org/10.1038/cddis.2016.277.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arsenijevic Y, Taverney N, Kostic C, Tekaya M, Riva F, Zografos L, Schorderet D, Munier F. Non-neural regions of the adult human eye: A potential source of neurons? Investig Ophthalmol Vis Sci. 2003. https://doi.org/10.1167/iovs.02-0267.

    Article  Google Scholar 

  49. Shinoda K, Hirakata A, Hida T, Yamaguchi Y, Fukuda M, Maekawa S, Azuma N, Ultrastructural and immunohistochemical findings in five patients with vitreomacular traction syndrome, Retina. 2000. https://doi.org/10.1097/00006982-200003000-00011.

  50. Viewer GD. Fam81b family with sequence similarity 81, member B [Rattus norvegicus (Norway rat)]. 2019;3:1–5.

  51. Ramirez-Ardila DE, Ruigrok-Ritstier K, Helmijr JC, Look MP, van Laere S, Dirix L, Berns EMJJ, Jansen MPHM. LRG1 mRNA expression in breast cancer associates with PIK3CA genotype and with aromatase inhibitor therapy outcome. Mol Oncol. 2016;10:1363–73. https://doi.org/10.1016/j.molonc.2016.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nogales E. Structural insights into microtubule function. Annu Rev Biochem. 2000;69:277–302. https://doi.org/10.1146/annurev.biochem.69.1.277.

    Article  CAS  PubMed  Google Scholar 

  53. Eckmiller MS. Renewal of the ciliary axoneme in cone outer segments of the retina of Xenopus laevis. Cell Tissue Res. 1996;285:165–9. https://doi.org/10.1007/s004410050632.

    Article  CAS  PubMed  Google Scholar 

  54. Gong J, Sagiv O, Cai H, Tsang SH, Del LV, Priore. Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res. 2008;86:957–65. https://doi.org/10.1016/j.exer.2008.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldenberg-Cohen N, Avraham-Lubin B-CR, Sadikov T, Goldstein RS, Askenasy N. Primitive stem cells derived from bone marrow express glial and neuronal markers and support revascularization in injured retina exposed to ischemic and mechanical damage. Stem Cells Dev. 2012;21:1488–500. https://doi.org/10.1089/scd.2011.0366.

    Article  CAS  PubMed  Google Scholar 

  56. Struebing FL, Lee RK, Williams RW, Geisert EE. Genetic networks in mouse retinal ganglion cells. Front Genet. 2016;7:169. https://doi.org/10.3389/fgene.2016.00169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Loukovaara S, Sandholm J, Aalto K, Liukkonen J, Jalkanen S, Yegutkin GG. Deregulation of ocular nucleotide homeostasis in patients with diabetic retinopathy. J Mol Med. 2017;95:193–204. https://doi.org/10.1007/s00109-016-1472-6.

    Article  CAS  PubMed  Google Scholar 

  58. Loukovaara S, Sahanne S, Jalkanen S, Yegutkin GG. Increased intravitreal adenosine 5′-triphosphate, adenosine 5′-diphosphate and adenosine 5′-monophosphate levels in patients with proliferative diabetic retinopathy. Acta Ophthalmol. 2015;93:67–73. https://doi.org/10.1111/aos.12507.

    Article  CAS  PubMed  Google Scholar 

  59. Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci. 2013;110:16586–91. https://doi.org/10.1073/pnas.1314575110.

    Article  PubMed  Google Scholar 

  60. Schlotterer A, Kolibabka M, Lin J, Acunman K, Dietrichá N, Sticht C, Fleming T, Nawroth P, Hammes H-P. Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model. FASEB J. 2019;33:4141–53. https://doi.org/10.1096/fj.201801146RR.

    Article  CAS  PubMed  Google Scholar 

  61. Acute FPE Complications C. Diabetes. 2011;60:A133–95. https://doi.org/10.2337/db11-478-715.

  62. Zamora DO, Riviere M, Choi D, Pan Y, Planck SR, Rosenbaum JT, David LL, Smith JR. Proteomic profiling of human retinal and choroidal endothelial cells reveals molecular heterogeneity related to tissue of origin. Mol Vis. 2007;13:2058–65. http://www.ncbi.nlm.nih.gov/pubmed/18079679.

  63. Devi TS, Yumnamcha T, Yao F, Somayajulu M, Kowluru RA, Singh LP. TXNIP mediates high glucose-induced mitophagic flux and lysosome enlargement in human retinal pigment epithelial cells. Biol Open. 2019;8:bio038521. https://doi.org/10.1242/bio.038521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamane K, Minamoto A, Yamashita H, Takamura H, Miyamoto-Myoken Y, Yoshizato K, Nabetani T, Tsugita A, Mishima HK. Proteome analysis of human vitreous proteins. Mol Cell Proteomics. 2003;2:1177–87. https://doi.org/10.1074/mcp.M300038-MCP200.

    Article  CAS  PubMed  Google Scholar 

  65. Garcia-Ramírez M, Hernández C, Villarroel M, Canals F, Alonso MA, Fortuny R, Masmiquel L, Navarro A, García-Arumí J, Simó R. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia. 2009;52:2633–41. https://doi.org/10.1007/s00125-009-1548-8.

    Article  CAS  PubMed  Google Scholar 

  66. Minamoto A, Yamane K, Yokoyama T. Proteomics of Vitreous Fluid. In: Proteomics Hum Body Fluids. Totowa: Humana Press; 2007. p. 495–507. https://doi.org/10.1007/978-1-59745-432-2_23.

  67. Kang M-K, Lee E-J, Kim Y-H, Kim D, Oh H, Kim S-I, Kang Y-H. Chrysin ameliorates malfunction of retinoid visual cycle through blocking activation of AGE-RAGE-ER stress in glucose-stimulated retinal pigment epithelial cells and diabetic eyes. Nutrients. 2018;10:1046. https://doi.org/10.3390/nu10081046.

    Article  CAS  PubMed Central  Google Scholar 

  68. Goldstein AS, Witte ON. A plethora of progenitors in the post-natal prostate. EMBO Rep. 2012. https://doi.org/10.1038/embor.2012.169.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fisher JW. Landmark advances in the development of erythropoietin. Exp Biol Med (Maywood). 2010;235:1398–411. https://doi.org/10.1258/ebm.2010.010137.

    Article  CAS  Google Scholar 

  70. Wu T, Handa JT, Gottsch JD. Light-induced oxidative stress in choroidal endothelial cells in mice. Invest Ophthalmol Vis Sci. 2005;46:1117–23. https://doi.org/10.1167/iovs.04-0517.

    Article  PubMed  Google Scholar 

  71. Jarajapu YPR, Cai J, Yan Y, Li Calzi S, Kielczewski JL, Hu P, Shaw LC, Firth SM, Chan-Ling T, Boulton ME, Baxter RC, Grant MB. Protection of blood retinal barrier and systemic vasculature by insulin-like growth factor binding protein-3. PLoS One. 2012;7:e39398. https://doi.org/10.1371/journal.pone.0039398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moreira PI, Santos MS, Moreno AM, Proenca T, Seica R, Oliveira CR. Effect of streptozotocin-induced diabetes on rat brain mitochondria. J Neuroendocrinol. 2004;16:32–8. https://doi.org/10.1111/j.1365-2826.2004.01107.x.

    Article  CAS  PubMed  Google Scholar 

  73. Alam NM, Mills WC, Wong AA, Douglas RM, Szeto HH, Prusky GT. A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech. 2015;8:701–10. https://doi.org/10.1242/dmm.020248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gargiulo P, Goldberg J, Romani B, Schiaffini R, Ciampalini P, Faulk WP, McIntyre JA. Qualitative and quantitative studies of autoantibodies to phospholipids in diabetes mellitus. Clin Exp Immunol. 1999;118:30–4. https://doi.org/10.1046/j.1365-2249.1999.01014.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerl VB, Bohl J, Pitz S, Stoffelns B, Pfeiffer N, Bhakdi S. Extensive deposits of complement C3d and C5b-9 in the choriocapillaris of eyes of patients with diabetic retinopathy. Investig Ophthalmol Vis Sci. 2002;43:1104–8. https://iovs.arvojournals.org/article.aspx?articleid=2200162.

  76. Liu X, Mameza MG, Lee YS, Eseonu CI, Yu C-R, Kang Derwent JJ, Egwuagu CE. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells. Diabetes. 2008;57:1651–8. https://doi.org/10.2337/db07-1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. del Olmo-Aguado S, Núñez-Álvarez C, Osborne NN. Blue light action on mitochondria leads to cell death by necroptosis. Neurochem Res. 2016;41:2324–35. https://doi.org/10.1007/s11064-016-1946-5.

    Article  CAS  PubMed  Google Scholar 

  78. Ren X, Lu H, Wang N, Zhang C, Ji Y, Cui S, Dong Y, Yang K, Du M, Diao F, Kong L. Thioredoxin is implicated in the anti-apoptotic effects of grape seed proanthocyanidin extract during hyperglycemia. Mol Med Rep. 2017;16:7731–7. https://doi.org/10.3892/mmr.2017.7508.

    Article  CAS  PubMed  Google Scholar 

  79. Kim SS, Utsunomiya H, Koski J, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg. 1998;228:8–13. https://doi.org/10.1097/00000658-199807000-00002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pang C, Jia L, Jiang S, Liu W, Hou X, Zuo Y, Gu H, Bao Y, Wu Q, Xiang K, Gao X, Jia W. Determination of diabetic retinopathy prevalence and associated risk factors in Chinese diabetic and pre-diabetic subjects: Shanghai diabetic complications study. Diabetes Metab Res Rev. 2012;28:276–83. https://doi.org/10.1002/dmrr.1307.

    Article  PubMed  Google Scholar 

  81. Sheetz MJ. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288:2579. https://doi.org/10.1001/jama.288.20.2579.

    Article  CAS  PubMed  Google Scholar 

  82. Popova EA, Mironova RS, Odjakova MK. Non-enzymatic glycosylation and deglycating enzymes. Biotechnol Biotechnol Equip. 2010;24:1928–35. https://doi.org/10.2478/V10133-010-0066-7.

    Article  CAS  Google Scholar 

  83. Pacher P, Szabó C. Role of poly(ADP-Ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal. 2005;7:1568–80. https://doi.org/10.1089/ars.2005.7.1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kiss L, Szabó C. The pathogenesis of diabetic complications: the role of DNA injury and poly(ADP-ribose) polymerase activation in peroxynitrite-mediated cytotoxicity. Mem Inst Oswaldo Cruz. 2005;100:29–37. https://doi.org/10.1590/S0074-02762005000900007.

    Article  CAS  PubMed  Google Scholar 

  85. Warboys CM, Fraser PA. Hyperglycemia attenuates acute permeability response to advanced glycation end products in retinal microvasculature. Microvasc Res. 2010;80:174–6. https://doi.org/10.1016/j.mvr.2010.03.004.

    Article  CAS  PubMed  Google Scholar 

  86. Lind KR, Ball KK, Cruz NF, Dienel GA. The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes. Neurochem Int. 2013;62:784–95. https://doi.org/10.1016/j.neuint.2013.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Investig Opthalmology Vis Sci. 2004;45:2543. https://doi.org/10.1167/iovs.03-1294.

    Article  Google Scholar 

  88. Huang SP, Palla S, Ruzycki P, Varma RA, Harter T, Reddy GB, Petrash JM. Aldo-keto reductases in the eye. J Ophthalmol. 2010;2010:1–6. https://doi.org/10.1155/2010/521204.

    Article  CAS  Google Scholar 

  89. Kawanishi K, Ueda H, Moriyasu M. Aldose reductase inhibitors from the nature. Curr Med Chem. 2003;10:1353–74. https://doi.org/10.2174/0929867033457304.

    Article  CAS  PubMed  Google Scholar 

  90. Kumar H, Shah A, Sobhia ME. Novel insights into the structural requirements for the design of selective and specific aldose reductase inhibitors. J Mol Model. 2012;18:1791–9. https://doi.org/10.1007/s00894-011-1195-0.

    Article  CAS  PubMed  Google Scholar 

  91. Veeresham C, Swetha E, Rao AR, Asres K. Vitro and in vivo aldose reductase inhibitory activity of standardized extracts and the major constituent of andrographis paniculata. Phyther Res. 2013;27:412–6. https://doi.org/10.1002/ptr.4722.

    Article  CAS  Google Scholar 

  92. Zhan X, Du Y, Crabb JS, Gu X, Kern TS, Crabb JW. Targets of tyrosine nitration in diabetic rat retina. Mol Cell Proteomics. 2008;7:864–74. https://doi.org/10.1074/mcp.M700417-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res. 2007;26:205–38. https://doi.org/10.1016/j.preteyeres.2007.01.004.

    Article  CAS  PubMed  Google Scholar 

  94. Gao B-B, Phipps JA, Bursell D, Clermont AC, Feener EP. Angiotensin AT1 receptor antagonism ameliorates murine retinal proteome changes induced by diabetes. J Proteome Res. 2009;8:5541–9. https://doi.org/10.1021/pr9006415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, Xu G, Lu L, Dai W, Yanoff M, Li W, Xu G-T. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci. 2008;49:732–42. https://doi.org/10.1167/iovs.07-0721.

    Article  PubMed  Google Scholar 

  96. Huang Y-C, Lin J-M, Lin H-J, Chen C-C, Chen S-Y, Tsai C-H, Tsai F-J. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology. 2011;118:642–8. https://doi.org/10.1016/j.ophtha.2010.07.020.

    Article  PubMed  Google Scholar 

  97. Qin G, Mallik S, Mitra R, Li A, Jia P, Eischen CM, Zhao Z. MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors. Sci Rep. 2020;10:852. https://doi.org/10.1038/s41598-020-57834-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miller SFC, Summerhurst K, Rünker AE, Kerjan G, Friedel RH, Chédotal A, Murphy P, Mitchell KJ. Expression of Plxdc2/TEM7R in the developing nervous system of the mouse. Gene Expr Patterns. 2007;7:635–44. https://doi.org/10.1016/j.modgep.2006.12.002.

    Article  CAS  PubMed  Google Scholar 

  99. Perrone L, Devi TS, Hosoya K, Terasaki T, Singh LP. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol. 2009;221:262–72. https://doi.org/10.1002/jcp.21852.

    Article  CAS  PubMed  Google Scholar 

  100. Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009;58:2137–47. https://doi.org/10.2337/db09-0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Simões MJ, Lobo C, Egas C, Nunes S, Carmona S, Costa M, Duarte T, Ribeiro L, Faro C, Cunha-Vaz JG. Genetic variants in ICAM1, PPARGC1A and MTHFR are potentially associated with different phenotypes of diabetic retinopathy. Ophthalmologica. 2014;232:156–62. https://doi.org/10.1159/000365229.

    Article  CAS  PubMed  Google Scholar 

  102. Kowluru RA. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras. Investig Opthalmology Vis Sci. 2010;51:4320. https://doi.org/10.1167/iovs.09-4851.

    Article  Google Scholar 

  103. Mishra M, Flaga J, Kowluru RA. Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy. J Cell Physiol. 2016;231:1709–18. https://doi.org/10.1002/jcp.25268.

    Article  CAS  PubMed  Google Scholar 

  104. Kinnunen K, Puustjarvi T, Terasvirta M, Nurmenniemi P, Heikura T, Laidinen S, Paavonen T, Uusitalo H, Yla-Herttuala S. Differences in retinal neovascular tissue and vitreous humour in patients with type 1 and type 2 diabetes. Br J Ophthalmol. 2009;93:1109–15. https://doi.org/10.1136/bjo.2008.148841.

    Article  CAS  PubMed  Google Scholar 

  105. GUSTAVSSON C, AGARDH C-D, HAGERT P, AGARDH E. Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina. 2008;28:645–52. https://doi.org/10.1097/IAE.0b013e31815ec32d.

    Article  PubMed  Google Scholar 

  106. Azcutia V, Abu-Taha M, Romacho T, Vázquez-Bella M, Matesanz N, Luscinskas FW, Rodríguez-Mañas L, Sanz MJ, Sánchez-Ferrer CF, Peiró C. Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo. PLoS One. 2010;5:e10091. https://doi.org/10.1371/journal.pone.0010091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie M, Hu A, Luo Y, Sun W, Hu X, Tang S. Interleukin-4 and melatonin ameliorate high glucose and interleukin-1β stimulated inflammatory reaction in human retinal endothelial cells and retinal pigment epithelial cells. Mol Vis. 2014;20:921–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077596/.

  108. Arjamaa O, Nikinmaa M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res. 2006;83:473–83. https://doi.org/10.1016/j.exer.2006.01.016.

    Article  CAS  PubMed  Google Scholar 

  109. Loukovaara S, Koivunen P, Inglés M, Escobar J, Vento M, Andersson S. Elevated protein carbonyl and HIF-1α levels in eyes with proliferative diabetic retinopathy. Acta Ophthalmol. 2014;92:323–7. https://doi.org/10.1111/aos.12186.

    Article  CAS  PubMed  Google Scholar 

  110. Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan I, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004;45:2760–6. https://doi.org/10.1167/iovs.03-1392.

    Article  PubMed  Google Scholar 

  111. Shevchenko AV, Prokofiev VF, Konenkov VI, Klimontov VV, Tyan NV, Chernykh DV, Trunov AN, Chernykh VV. Polymorphisms of extracellular connective tissue remodeling proteinases and MMP2, MMP3, MMP9 genes, and neoangigenesis VEGF gene in retinal microangiopathy in the patients with type 2 diabetes mellitus. Med Immunol. 2019;21:441–50. https://doi.org/10.15789/1563-0625-2019-3-441-450.

    Article  Google Scholar 

  112. Karumanchi DK, Gaillard ER, Dillon J. Early diagnosis of diabetes through the eye. Photochem Photobiol. 2015;91:1497–504. https://doi.org/10.1111/php.12524.

    Article  CAS  PubMed  Google Scholar 

  113. Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res. 2012;159:303–12. https://doi.org/10.1016/j.trsl.2012.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Laíns I, Gantner M, Murinello S, Lasky-Su JA, Miller JW, Friedlander M, Husain D. Metabolomics in the study of retinal health and disease. Prog Retin Eye Res. 2019;69:57–79. https://doi.org/10.1016/j.preteyeres.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  115. Rhee SY, Jung ES, Park HM, Jeong SJ, Kim K, Chon S, Yu S-Y, Woo J-T, Lee CH. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics. 2018;14:89. https://doi.org/10.1007/s11306-018-1383-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Paris LP, Johnson CH, Aguilar E, Usui Y, Cho K, Hoang LT, Feitelberg D, Benton HP, Westenskow PD, Kurihara T, Trombley J, Tsubota K, Ueda S, Wakabayashi Y, Patti GJ, Ivanisevic J, Siuzdak G, Friedlander M. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics. 2016;12:15. https://doi.org/10.1007/s11306-015-0877-5.

    Article  CAS  PubMed  Google Scholar 

  117. Haines NR, Manoharan N, Olson JL, D’Alessandro A, Reisz JA. Metabolomics Analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment. J Proteome Res. 2018;17:2421–7. https://doi.org/10.1021/acs.jproteome.8b00169.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The current research was supported in part by Research Assistantship and Teaching Assistantship from the American University of Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Jin Jahng.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Dissection of the retina control map showing several pathways, including PI3K, WNT, cytoskeleton, apoptosis, p53, VEGF, HIF-1, and cholesterol mechanism. A. PI3K-AKT signaling, B. WNT network, C. Actin cytoskeletal network, D. Apoptosis, E. p53 network, F. VEGF pathway, G. HIF-1 network, H. Cholesterol metabolism. (PDF 5027 kb)

ESM 2

Mechanistic dissection of the interactome network leading to the pathogenesis of diabetic retinopathy, A. Apoptosis, B. Angiogenesis, C. Inflammation network, D. Retinoid metabolism, E. Vascular permeability/occlusion, F. Energy metabolism network, G. Lipid metabolism, H. Cytoskeleton organization, I. Mitochondria dysfunction, J. Hyperglycemia, K. Oxidative stress. (PDF 7678 kb)

ESM 3

Identified proteins in the retina as the control. A total of 1090 proteins were identified as biological, cellular, and molecular functional proteins which serve as the control proteins in the retina. Control interactome map was established using bioinformatics tools including PPI software STRING (http://string-db.org/) by adding 1104 identified normal eye proteins in the query. (XLSX 111 kb)

ESM 4

DR biomarkers. DR-specific proteins were identified from our proteomics study, protein database, and proteomics literature. These proteins were considered DR biomarkers and used in bioinformatics analysis. DR-specific interactome map was established using STRING to find the probable interacting partners of the proteins associated with DR. These potential DR biomarkers are presented in the interaction map and mechanistic dissection was presented in Supplement Figures 2A-2K. (XLSX 35 kb)

ESM 5

Metabolites associated with DR pathogenesis. A total of 121 metabolites were collected from the literature and databases including KEGG and PubChem. The metabolome map was established using bioinformatics tools including OmicsNet software by adding 121 metabolites in the query. (XLSX 19 kb)

ESM 6

Reverse interactome mapping from the metabolome map. A total of 115 proteins related to DR were identified as the DR-specific metabolome-proteome interactions from the nodes of metabolites in the metabolome map. Proteins obtained from the metabolome-proteome interactions were added in STRING software and determined the protein interactions. (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, A.T., He, W., Madu, J. et al. Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome. J Diabetes Metab Disord 19, 829–848 (2020). https://doi.org/10.1007/s40200-020-00570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00570-9

Keywords

Navigation